mu/subx/022check_instruction.cc

618 lines
23 KiB
C++
Raw Normal View History

//: Beginning of "level 2": tagging bytes with metadata around what field of
//: an x86 instruction they're for.
//:
//: The x86 instruction set is variable-length, and how a byte is interpreted
//: affects later instruction boundaries. A lot of the pain in programming machine code
//: stems from computer and programmer going out of sync on what a byte
//: means. The miscommunication is usually not immediately caught, and
//: metastasizes at runtime into kilobytes of misinterpreted instructions.
//: Tagging bytes with what the programmer expects them to be interpreted as
//: helps the computer catch miscommunication immediately.
//:
//: This is one way SubX is going to be different from a 'language': we
//: typically think of languages as less verbose than machine code. Here we're
//: making machine code *more* verbose.
//:
//: ---
//:
//: While we're here, we'll also improve a couple of other things:
//:
//: a) Machine code often packs logically separate operands into bitfields of
//: a single byte. We'll start writing out each operand separately, and the
//: translator will construct the right bytes out of operands.
//:
//: SubX now gets still more verbose. What used to be a single byte, say 'c3',
//: can now expand to '3/mod 0/subop 3/rm32'.
//:
//: b) Since each operand is tagged, we can loosen ordering restrictions and
//: allow writing out the operands in any order, like keyword arguments.
//:
//: c) Operand values can be expressed in either decimal or hex (when prefixed
//: with '0x'. Raw 2-character hex bytes without the '0x' are only valid when
//: tagged without any operand metadata. (This may be a bad idea.)
//:
//: Coda: the actual opcodes (1-3 bytes) will continue to be at the start of
//: each line, in hex, and untagged. The x86 instruction set is a mess, and
//: instructions don't admit good names.
:(before "End Help Texts")
put(Help, "instructions",
2018-07-26 04:06:29 +00:00
"Each x86 instruction consists of an instruction or opcode and some number\n"
"of operands.\n"
"Each operand has a type. An instruction won't have more than one operand of\n"
"any type.\n"
"Each instruction has some set of allowed operand types. It'll reject others.\n"
2018-07-26 04:06:29 +00:00
"The complete list of operand types: mod, subop, r32 (register), rm32\n"
"(register or memory), scale, index, base, disp8, disp16, disp32, imm8,\n"
"imm32.\n"
"Each of these has its own help page. Try reading 'subx help mod' next.\n"
);
:(before "End Help Contents")
cerr << " instructions\n";
//:: Check for 'syntax errors'; missing or unexpected operands.
:(scenario check_missing_imm8_operand)
% Hide_errors = true;
== 0x1
# opcode ModR/M SIB displacement immediate
# instruction mod, reg, Reg/Mem bits scale, index, base
# 1-3 bytes 0/1 byte 0/1 byte 0/1/2/4 bytes 0/1/2/4 bytes
cd # int ??
+error: 'cd' (software interrupt): missing imm8 operand
:(before "End One-time Setup")
Transform.push_back(check_operands);
:(code)
void check_operands(/*const*/ program& p) {
if (p.segments.empty()) return;
const segment& seg = p.segments.at(0);
for (int i = 0; i < SIZE(seg.lines); ++i) {
check_operands(seg.lines.at(i));
if (trace_contains_errors()) return; // stop at the first mal-formed instruction
}
}
void check_operands(const line& inst) {
uint8_t op = hex_byte(inst.words.at(0).data);
if (trace_contains_errors()) return;
if (op == 0x0f) {
check_operands_0f(inst);
return;
}
if (op == 0xf3) {
check_operands_f3(inst);
return;
}
if (!contains_key(name, op)) {
raise << "unknown opcode '" << HEXBYTE << NUM(op) << "'\n" << end();
return;
}
check_operands(op, inst);
}
//: To check the operands for an opcode, we'll track the permitted operands
//: for each supported opcode in a bitvector. That way we can often compute the
//: bitvector for each instruction's operands and compare it with the expected.
:(before "End Types")
enum operand_type {
// start from the least significant bit
MODRM, // more complex, may also involve disp8 or disp32
SUBOP,
DISP8,
DISP16,
DISP32,
IMM8,
IMM32,
NUM_OPERAND_TYPES
};
:(before "End Globals")
vector<string> Operand_type_name;
map<string, operand_type> Operand_type;
:(before "End One-time Setup")
init_op_types();
:(code)
void init_op_types() {
assert(NUM_OPERAND_TYPES <= /*bits in a uint8_t*/8);
Operand_type_name.resize(NUM_OPERAND_TYPES);
#define DEF(type) Operand_type_name.at(type) = tolower(#type), put(Operand_type, tolower(#type), type);
DEF(MODRM);
DEF(SUBOP);
DEF(DISP8);
DEF(DISP16);
DEF(DISP32);
DEF(IMM8);
DEF(IMM32);
#undef DEF
}
:(before "End Globals")
map</*op*/uint8_t, /*bitvector*/uint8_t> Permitted_operands;
const uint8_t INVALID_OPERANDS = 0xff; // no instruction uses all the operands
:(before "End One-time Setup")
init_permitted_operands();
:(code)
void init_permitted_operands() {
//// Class A: just op, no operands
// halt
put(Permitted_operands, 0xf4, 0x00);
// push
put(Permitted_operands, 0x50, 0x00);
put(Permitted_operands, 0x51, 0x00);
put(Permitted_operands, 0x52, 0x00);
put(Permitted_operands, 0x53, 0x00);
put(Permitted_operands, 0x54, 0x00);
put(Permitted_operands, 0x55, 0x00);
put(Permitted_operands, 0x56, 0x00);
put(Permitted_operands, 0x57, 0x00);
// pop
put(Permitted_operands, 0x58, 0x00);
put(Permitted_operands, 0x59, 0x00);
put(Permitted_operands, 0x5a, 0x00);
put(Permitted_operands, 0x5b, 0x00);
put(Permitted_operands, 0x5c, 0x00);
put(Permitted_operands, 0x5d, 0x00);
put(Permitted_operands, 0x5e, 0x00);
put(Permitted_operands, 0x5f, 0x00);
// return
put(Permitted_operands, 0xc3, 0x00);
//// Class B: just op and disp8
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 0 |0 1 0 0
// jump
put(Permitted_operands, 0xeb, 0x04);
put(Permitted_operands, 0x74, 0x04);
put(Permitted_operands, 0x75, 0x04);
put(Permitted_operands, 0x7c, 0x04);
put(Permitted_operands, 0x7d, 0x04);
put(Permitted_operands, 0x7e, 0x04);
put(Permitted_operands, 0x7f, 0x04);
//// Class C: just op and disp16
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 0 |1 0 0 0
put(Permitted_operands, 0xe8, 0x08); // jump
//// Class D: just op and disp32
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 1 |0 0 0 0
put(Permitted_operands, 0xe9, 0x10); // call
//// Class E: just op and imm8
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 1 0 |0 0 0 0
put(Permitted_operands, 0xcd, 0x20); // software interrupt
//// Class F: just op and imm32
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 1 0 0 |0 0 0 0
put(Permitted_operands, 0x05, 0x40); // add
put(Permitted_operands, 0x2d, 0x40); // subtract
put(Permitted_operands, 0x25, 0x40); // and
put(Permitted_operands, 0x0d, 0x40); // or
put(Permitted_operands, 0x35, 0x40); // xor
put(Permitted_operands, 0x3d, 0x40); // compare
put(Permitted_operands, 0x68, 0x40); // push
// copy
put(Permitted_operands, 0xb8, 0x40);
put(Permitted_operands, 0xb9, 0x40);
put(Permitted_operands, 0xba, 0x40);
put(Permitted_operands, 0xbb, 0x40);
put(Permitted_operands, 0xbc, 0x40);
put(Permitted_operands, 0xbd, 0x40);
put(Permitted_operands, 0xbe, 0x40);
put(Permitted_operands, 0xbf, 0x40);
//// Class M: using ModR/M byte
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 0 |0 0 0 1
// add
put(Permitted_operands, 0x01, 0x01);
put(Permitted_operands, 0x03, 0x01);
// subtract
put(Permitted_operands, 0x29, 0x01);
put(Permitted_operands, 0x2b, 0x01);
// and
put(Permitted_operands, 0x21, 0x01);
put(Permitted_operands, 0x23, 0x01);
// or
put(Permitted_operands, 0x09, 0x01);
put(Permitted_operands, 0x0b, 0x01);
// complement
put(Permitted_operands, 0xf7, 0x01);
// xor
put(Permitted_operands, 0x31, 0x01);
put(Permitted_operands, 0x33, 0x01);
// compare
put(Permitted_operands, 0x39, 0x01);
put(Permitted_operands, 0x3b, 0x01);
// copy
put(Permitted_operands, 0x89, 0x01);
put(Permitted_operands, 0x8b, 0x01);
// swap
put(Permitted_operands, 0x87, 0x01);
// pop
put(Permitted_operands, 0x8f, 0x01);
//// Class O: op, ModR/M and subop (not r32)
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 0 0 0 |0 0 1 1
put(Permitted_operands, 0xff, 0x03); // jump/push/call
//// Class N: op, ModR/M and imm32
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 1 0 0 |0 0 0 1
put(Permitted_operands, 0xc7, 0x41); // copy
//// Class P: op, ModR/M, subop (not r32) and imm32
// imm32 imm8 disp32 |disp16 disp8 subop modrm
// 1 0 0 |0 0 1 1
put(Permitted_operands, 0x81, 0x43); // combine
}
:(before "End Includes")
#define HAS(bitvector, bit) ((bitvector) & (1 << (bit)))
#define SET(bitvector, bit) ((bitvector) | (1 << (bit)))
#define CLEAR(bitvector, bit) ((bitvector) & (~(1 << (bit))))
:(code)
void check_operands(uint8_t op, const line& inst) {
uint8_t expected_bitvector = get(Permitted_operands, op);
if (HAS(expected_bitvector, MODRM))
check_operands_modrm(inst, op);
compare_bitvector(op, inst, CLEAR(expected_bitvector, MODRM));
}
//: Many instructions can be checked just by comparing bitvectors.
void compare_bitvector(uint8_t op, const line& inst, uint8_t expected) {
if (all_raw_hex_bytes(inst) && has_operands(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere
uint8_t bitvector = compute_operand_bitvector(inst);
if (trace_contains_errors()) return; // duplicate operand type
if (bitvector == expected) return; // all good with this instruction
for (int i = 0; i < NUM_OPERAND_TYPES; ++i, bitvector >>= 1, expected >>= 1) {
//? cerr << "comparing " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n';
if ((bitvector & 0x1) == (expected & 0x1)) continue; // all good with this operand
const string& optype = Operand_type_name.at(i);
if ((bitvector & 0x1) > (expected & 0x1))
raise << "'" << to_string(inst) << "' (" << get(name, op) << "): unexpected " << optype << " operand\n" << end();
else
raise << "'" << to_string(inst) << "' (" << get(name, op) << "): missing " << optype << " operand\n" << end();
// continue giving all errors for a single instruction
}
// ignore settings in any unused bits
}
uint32_t compute_operand_bitvector(const line& inst) {
uint32_t bitvector = 0;
for (int i = /*skip op*/1; i < SIZE(inst.words); ++i) {
bitvector = bitvector | bitvector_for_operand(inst.words.at(i));
if (trace_contains_errors()) return INVALID_OPERANDS; // duplicate operand type
}
return bitvector;
}
bool has_operands(const line& inst) {
return SIZE(inst.words) > first_operand(inst);
}
int first_operand(const line& inst) {
if (inst.words.at(0).data == "0f") return 2;
if (inst.words.at(0).data == "f3") {
if (inst.words.at(1).data == "0f")
return 3;
else
return 2;
}
return 1;
}
bool all_raw_hex_bytes(const line& inst) {
for (int i = 0; i < SIZE(inst.words); ++i) {
const word& curr = inst.words.at(i);
if (contains_any_operand_metadata(curr))
return false;
if (SIZE(curr.data) != 2)
return false;
if (curr.data.find_first_not_of("0123456789abcdefABCDEF") != string::npos)
return false;
}
return true;
}
bool contains_any_operand_metadata(const word& word) {
for (int i = 0; i < SIZE(word.metadata); ++i)
if (Instruction_operands.find(word.metadata.at(i)) != Instruction_operands.end())
return true;
return false;
}
// Scan the metadata of 'w' and return the bit corresponding to any operand type.
// Also raise an error if metadata contains multiple operand types.
uint32_t bitvector_for_operand(const word& w) {
uint32_t bv = 0;
bool found = false;
for (int i = 0; i < SIZE(w.metadata); ++i) {
const string& curr = w.metadata.at(i);
if (!contains_key(Operand_type, curr)) continue; // ignore unrecognized metadata
if (found) {
raise << "'" << w.original << "' has conflicting operand types; it should have only one\n" << end();
return INVALID_OPERANDS;
}
bv = (1 << get(Operand_type, curr));
found = true;
}
return bv;
}
:(scenario conflicting_operand_type)
% Hide_errors = true;
== 0x1
cd/software-interrupt 80/imm8/imm32
+error: '80/imm8/imm32' has conflicting operand types; it should have only one
//: Instructions computing effective addresses have more complex rules, so
//: we'll hard-code a common set of instruction-decoding rules.
:(scenario check_missing_mod_operand)
% Hide_errors = true;
== 0x1
81 0/add/subop 3/rm32/ebx 1/imm32
+error: '81 0/add/subop 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing mod operand
:(before "End Globals")
set<string> Instruction_operands;
:(before "End One-time Setup")
Instruction_operands.insert("subop");
Instruction_operands.insert("mod");
Instruction_operands.insert("rm32");
Instruction_operands.insert("base");
Instruction_operands.insert("index");
Instruction_operands.insert("scale");
Instruction_operands.insert("r32");
Instruction_operands.insert("disp8");
Instruction_operands.insert("disp16");
Instruction_operands.insert("disp32");
Instruction_operands.insert("imm8");
Instruction_operands.insert("imm32");
:(code)
void check_operands_modrm(const line& inst, uint8_t op) {
if (all_raw_hex_bytes(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere
check_metadata_present(inst, "mod", op);
check_metadata_present(inst, "rm32", op);
// no check for r32; some instructions don't use it; just assume it's 0 if missing
if (op == 0x81 || op == 0x8f || op == 0xff) { // keep sync'd with 'help subop'
check_metadata_present(inst, "subop", op);
check_metadata_absent(inst, "r32", op, "should be replaced by subop");
}
if (trace_contains_errors()) return;
if (metadata(inst, "rm32").data != "4") return;
// SIB byte checks
uint8_t mod = hex_byte(metadata(inst, "mod").data);
if (mod != /*direct*/3) {
check_metadata_present(inst, "base", op);
check_metadata_present(inst, "index", op); // otherwise why go to SIB?
}
else {
check_metadata_absent(inst, "base", op, "direct mode");
check_metadata_absent(inst, "index", op, "direct mode");
}
// no check for scale; 0 (2**0 = 1) by default
}
void check_metadata_present(const line& inst, const string& type, uint8_t op) {
if (!has_metadata(inst, type))
raise << "'" << to_string(inst) << "' (" << get(name, op) << "): missing " << type << " operand\n" << end();
}
void check_metadata_absent(const line& inst, const string& type, uint8_t op, const string& msg) {
if (has_metadata(inst, type))
raise << "'" << to_string(inst) << "' (" << get(name, op) << "): unexpected " << type << " operand (" << msg << ")\n" << end();
}
bool has_metadata(const line& inst, const string& m) {
bool result = false;
for (int i = 0; i < SIZE(inst.words); ++i) {
if (!has_metadata(inst.words.at(i), m)) continue;
if (result) {
raise << "'" << to_string(inst) << "' has conflicting " << m << " operands\n" << end();
return false;
}
result = true;
}
return result;
}
bool has_metadata(const word& w, const string& m) {
bool result = false;
bool metadata_found = false;
for (int i = 0; i < SIZE(w.metadata); ++i) {
const string& curr = w.metadata.at(i);
if (!contains_key(Instruction_operands, curr)) continue; // ignore unrecognized metadata
if (metadata_found) {
raise << "'" << w.original << "' has conflicting operand types; it should have only one\n" << end();
return false;
}
metadata_found = true;
result = (curr == m);
}
return result;
}
word metadata(const line& inst, const string& m) {
for (int i = 0; i < SIZE(inst.words); ++i)
if (has_metadata(inst.words.at(i), m))
return inst.words.at(i);
assert(false);
}
:(scenario conflicting_operands_in_modrm_instruction)
% Hide_errors = true;
== 0x1
01/add 0/mod 3/mod
+error: '01/add 0/mod 3/mod' has conflicting mod operands
:(scenario conflicting_operand_type_modrm)
% Hide_errors = true;
== 0x1
01/add 0/mod 3/rm32/r32
+error: '3/rm32/r32' has conflicting operand types; it should have only one
:(scenario check_missing_rm32_operand)
% Hide_errors = true;
== 0x1
81 0/add/subop 0/mod 1/imm32
+error: '81 0/add/subop 0/mod 1/imm32' (combine rm32 with imm32 based on subop): missing rm32 operand
:(scenario check_missing_subop_operand)
% Hide_errors = true;
== 0x1
81 0/mod 3/rm32/ebx 1/imm32
+error: '81 0/mod 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing subop operand
:(scenario check_missing_base_operand)
% Hide_errors = true;
== 0x1
81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32
+error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32' (combine rm32 with imm32 based on subop): missing base operand
:(scenario check_missing_index_operand)
% Hide_errors = true;
== 0x1
81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32
+error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32' (combine rm32 with imm32 based on subop): missing index operand
:(scenario check_missing_base_operand_2)
% Hide_errors = true;
== 0x1
81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32
+error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32' (combine rm32 with imm32 based on subop): missing base operand
:(scenario check_base_operand_not_needed_in_direct_mode)
== 0x1
81 0/add/subop 3/mod/indirect 4/rm32/use-sib 1/imm32
$error: 0
//:: similarly handle multi-byte opcodes
:(code)
void check_operands_0f(const line& inst) {
assert(inst.words.at(0).data == "0f");
if (SIZE(inst.words) == 1) {
raise << "no 2-byte opcode specified starting with '0f'\n" << end();
return;
}
uint8_t op = hex_byte(inst.words.at(1).data);
if (!contains_key(name_0f, op)) {
raise << "unknown 2-byte opcode '0f " << HEXBYTE << NUM(op) << "'\n" << end();
return;
}
check_operands_0f(op, inst);
}
void check_operands_f3(const line& /*unused*/) {
raise << "no supported opcodes starting with f3\n" << end();
}
void check_operands_0f(uint8_t /*op*/, const line& /*inst*/) {
}
string to_string(const line& inst) {
ostringstream out;
for (int i = 0; i < SIZE(inst.words); ++i) {
if (i > 0) out << ' ';
out << inst.words.at(i).original;
}
return out.str();
}
string tolower(const char* s) {
ostringstream out;
for (/*nada*/; *s; ++s)
out << static_cast<char>(tolower(*s));
return out.str();
}
//:: docs on each operand type
:(before "End Help Texts")
init_operand_type_help();
:(code)
void init_operand_type_help() {
put(Help, "mod",
"2-bit operand controlling the _addressing mode_ of many instructions,\n"
"to determine how to compute the _effective address_ to look up memory at\n"
"based on the 'rm32' operand and potentially others.\n"
"\n"
"If mod = 3, just operate on the contents of the register specified by rm32 (direct mode).\n"
"If mod = 2, effective address is usually* rm32 + disp32 (indirect mode with displacement).\n"
"If mod = 1, effective address is usually* rm32 + disp8 (indirect mode with displacement).\n"
"If mod = 0, effective address is usually* rm32 (indirect mode).\n"
"(* - The exception is when rm32 is '4'. Register 4 is the stack pointer (ESP). Using it as an address gets more involved.\n"
" For more details, try reading the help pages for 'base', 'index' and 'scale'.)\n"
"\n"
"For complete details consult the IA-32 software developer's manual, table 2-2,\n"
"\"32-bit addressing forms with the ModR/M byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "subop",
"Additional 3-bit operand for determining the instruction when the opcode is 81, 8f or ff.\n"
"Can't coexist with operand of type 'r32' in a single instruction, because the two use the same bits.\n"
);
put(Help, "r32",
"3-bit operand specifying a register operand used directly, without any further addressing modes.\n"
);
put(Help, "rm32",
"3-bit operand specifying a register operand whose precise interpretation interacts with 'mod'.\n"
"For complete details consult the IA-32 software developer's manual, table 2-2,\n"
"\"32-bit addressing forms with the ModR/M byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "base",
"Additional 3-bit operand (when 'rm32' is 4 unless 'mod' is 3) specifying the register containing an address to look up.\n"
"This address may be further modified by 'index' and 'scale' operands.\n"
" effective address = base + index*scale + displacement (disp8 or disp32)\n"
"For complete details consult the IA-32 software developer's manual, table 2-3,\n"
"\"32-bit addressing forms with the SIB byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "index",
"Optional 3-bit operand (when 'rm32' is 4 unless 'mod' is 3) that can be added to the 'base' operand to compute the 'effective address' at which to look up memory.\n"
" effective address = base + index*scale + displacement (disp8 or disp32)\n"
"For complete details consult the IA-32 software developer's manual, table 2-3,\n"
"\"32-bit addressing forms with the SIB byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "scale",
"Optional 2-bit operand (when 'rm32' is 4 unless 'mod' is 3) that can be multiplied to the 'index' operand before adding the result to the 'base' operand to compute the _effective address_ to operate on.\n"
" effective address = base + index * scale + displacement (disp8 or disp32)\n"
"For complete details consult the IA-32 software developer's manual, table 2-3,\n"
"\"32-bit addressing forms with the SIB byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "disp8",
"8-bit value to be added in many instructions.\n"
);
put(Help, "disp16",
"16-bit value to be added in many instructions.\n"
);
put(Help, "disp32",
"32-bit value to be added in many instructions.\n"
);
put(Help, "imm8",
"8-bit value for many instructions.\n"
);
put(Help, "imm32",
"32-bit value for many instructions.\n"
);
}
:(before "End Includes")
#include<cctype>