mu/cpp/literate/010vm

115 lines
3.4 KiB
Plaintext
Raw Normal View History

2015-02-18 01:14:53 +00:00
// A mu program is a book of recipes (functions)
:(after "Types")
typedef int recipe_number;
:(before "End Globals")
unordered_map<string, recipe_number> Recipe_number;
unordered_map<recipe_number, recipe> Recipe;
int Next_recipe_number = 1;
:(before "End Types")
// Recipes are lists of instructions. Recipes are 'run' by running their
// instructions.
struct recipe {
vector<instruction> step;
};
const int idle = 0; // always the first entry in the recipe book
:(before "struct recipe")
// Each instruction is either of the form:
// product1, product2, product3, ... <- operation ingredient1, ingredient2, ingredient3, ...
// or just a single 'label' followed by a colon
// label:
struct instruction {
bool is_label;
string label; // only if is_label
recipe_number operation; // only if !is_label
vector<reagent> ingredients; // only if !is_label
vector<reagent> products; // only if !is_label
instruction();
void clear();
};
:(before "struct instruction")
// Ingredients and products all the same kind of 'thing' -- a reagent.
// Reagents refer either to numbers or to locations in memory along with
// 'type' tags telling us how to interpret them. They also can contain
// arbitrary other lists of properties besides types, but we're getting ahead
// of ourselves.
struct reagent {
string name;
vector<type_number> types;
vector<pair<string, property> > properties;
reagent(string s);
string to_string();
};
:(before "struct reagent")
struct property {
vector<string> values;
};
:(before "End Globals")
// Locations refer to a common 'memory'. Each location can store a number.
unordered_map<int, int> Memory;
:(after "Types")
// Types encode how the numbers stored in different parts of memory are
// interpreted. A location tagged as a 'character' type will interpret the
// number 97 as the letter 'a', while a different location of type 'integer'
// would not.
//
// Unlike most computers today, mu stores types in a single big table, shared
// by all the mu programs on the computer. This is useful in providing a
// seamless experience to help understand arbitrary mu programs.
typedef int type_number;
:(before "End Globals")
unordered_map<string, type_number> Type_number;
unordered_map<type_number, type_info> Type;
int Next_type_number = 1;
:(before "End Types")
// You can construct arbitrary new types. Types are either 'records', containing
// 'fields' of other types, 'array's of a single type repeated over and over,
// or 'addresses' pointing at a location elsewhere in memory.
struct type_info {
int size;
bool is_address;
bool is_record;
bool is_array;
vector<type_number> target; // only if is_address
vector<vector<type_number> > elements; // only if is_record or is_array
type_info() :size(0) {}
};
:(code)
// Helpers
instruction::instruction() :is_label(false), operation(idle) {}
void instruction::clear() { is_label=false; label.clear(); operation=idle; ingredients.clear(); products.clear(); }
reagent::reagent(string s) {
istringstream in(s);
name = slurp_until(in, ':');
types.push_back(Type_number[slurp_until(in, '/')]); // todo: multiple types
}
string reagent::to_string() {
ostringstream out;
out << "{name: \"" << name << "\", type: " << types[0] << "}"; // todo: properties
return out.str();
}
string slurp_until(istream& in, char delim) {
ostringstream out;
char c;
while (in >> c) {
if (c == delim) {
break;
}
out << c;
}
return out.str();
}