6160 - plan for safe heap access

Based on apps/handle.subx (commit 4894), but we're able to simplify it
further now that we know more about the situation we find ourselves in.
6 instructions, zero pushes or pops.

Before I can start building this, I need to reorganize my use of handles.
They're going to be fat pointers so we can't store them in registers anymore.
This commit is contained in:
Kartik Agaram 2020-03-21 21:22:20 -07:00
parent fa80585024
commit 0ef7f1d2d6
2 changed files with 55 additions and 2 deletions

View File

@ -157,7 +157,7 @@ Address operations
var/reg: (addr T) <- address var: T
=> "8d/copy-address *(ebp+" var.stack-offset ") " reg "/r32"
Array operations
Array operations (TODO: bounds-checking)
var/reg <- length arr/reg2: (addr array T)
=> "8b/-> *" reg2 " " reg "/r32"
@ -187,4 +187,33 @@ var/reg: (addr T_f) <- get var2/reg2: (addr F), f
var/reg: (addr T_f) <- get var2: (addr F), f
=> "8d/copy-address *(ebp+" var2.stack-offset "+" offset(f) ") " reg "/r32"
vim:ft=mu:nowrap:tw&
Handles for safe access to the heap
copy-handle-to dest: (handle T), src: (handle T)
=> "50/push-eax"
"8b/-> *(ebp+" src.stack-offset ") 0/r32/eax"
"89/<- *(ebp+" dest.stack-offset ") 0/r32/eax"
"8b/-> *(ebp+" src.stack-offset+4 ") 0/r32/eax"
"89/<- *(ebp+" dest.stack-offset+4 ") 0/r32/eax"
"58/pop-to-eax"
copy-handle-to *dest/reg: (addr handle T), src: (handle T)
=> "50/push-eax"
"8b/-> *(ebp+" src.stack-offset ") 0/r32/eax"
"89/<- *" reg " 0/r32/eax"
"8b/-> *(ebp+" src.stack-offset+4 ") 0/r32/eax"
"89/<- *(" reg "+4) 0/r32/eax"
"58/pop-to-eax"
out/reg: (addr T) <- lookup in: (handle T)
=> # payload_allocid = in->address->allocid
"8b/-> *(epb+" (in.stack-offset+4) ") " reg "/r32"
"8b/-> *" reg " " reg "/r32"
# if (payload_allocid != handle->allocid) abort
"39/compare *(ebp+" in.stack-offset ") " reg "/r32"
"0f 85/jump-if-!= $lookup:abort/disp32"
# return payload
"8b/-> *(epb+" (in.stack-offset+4) ") " reg "/r32"
"81 0/subop/add %" reg " 4/imm32" # skip payload->allocid
vim:ft=mu:nowrap:textwidth=0

View File

@ -216,3 +216,27 @@ Similarly, conditional loops:
var/reg: (addr T_f) <- get var/reg: (addr T), f
where record (product) type T has elements a, b, c, ... of types T_a, T_b, T_c, ...
var/reg: (addr T_f) <- get var: (addr T), f
## Handles for safe access to the heap
Say we created a handle like this on the stack (it can't be in a register)
var x: (handle T)
allocate Heap, T, x
You can copy handles to another variable on the stack like this:
var y: (handle T)
copy-handle-to y, x
You can also save handles inside other user-defined types like this:
var y/reg: (addr handle T_f) <- get var: (addr T), f
copy-handle-to *y, x
Or this:
var y/reg: (addr handle T) <- index arr: (addr array handle T), n
copy-handle-to *y, x
Handles can be converted into addresses like this:
var y/reg: (addr T) <- lookup x
It's illegal to continue to use this addr after a function that reclaims heap
memory. You have to repeat the lookup.