4385 - online help on addressing modes

This commit is contained in:
Kartik Agaram 2018-07-21 21:17:01 -07:00
parent 82a24dfc1f
commit 5af1b6a46a
2 changed files with 87 additions and 1 deletions

View File

@ -206,7 +206,7 @@ if (key == "opcodes") {
cerr << " f3 " << HEXBYTE << NUM(p->first) << ": " << p->second << '\n';
for (map<uint8_t, string>::iterator p = name_f3_0f.begin(); p != name_f3_0f.end(); ++p)
cerr << " f3 0f " << HEXBYTE << NUM(p->first) << ": " << p->second << '\n';
cerr << "Coming soon: `subx help operands` for details on words like 'r32' and 'disp8'.\n";
cerr << "Run `subx help instructions` for details on words like 'r32' and 'disp8'.\n";
return 0;
}
:(before "End Help Contents")

View File

@ -0,0 +1,86 @@
//: Catch instructions with the wrong size or type (metadata) of operands.
:(before "End Help Texts")
put(Help, "instructions",
"Each x86 instruction consists of an instruction or opcode and some number of operands.\n"
"Each operand has a type. An instruction won't have more than one of any type.\n"
"Each instruction has some set of allowed operand types. It'll reject others.\n"
"The complete list of operand types: mod, subop, r32 (register), rm32 (register or memory), scale, index, base, disp8, disp16, disp32, imm8, imm32.\n"
"Each of these has its own help page. Try reading 'subx help mod' next.\n"
);
:(before "End Help Contents")
cerr << " instructions\n";
//:: docs on each operand type
:(before "End Help Texts")
init_operand_type_help();
:(code)
void init_operand_type_help() {
put(Help, "mod",
"2-bit operand controlling the _addressing mode_ of many instructions,\n"
"to determine how to compute the _effective address_ to look up memory at\n"
"based on the 'rm32' operand and potentially others.\n"
"\n"
"If mod = 3, just operate on the contents of the register specified by rm32 (direct mode).\n"
"If mod = 2, effective address is usually* rm32 + disp32 (indirect mode with displacement).\n"
"If mod = 1, effective address is usually* rm32 + disp8 (indirect mode with displacement).\n"
"If mod = 0, effective address is usually* rm32 (indirect mode).\n"
"(* - The exception is when rm32 is '4'. Register 4 is the stack pointer (ESP). Using it as an address gets more involved.\n"
" For more details, try reading the help pages for 'base', 'index' and 'scale'.)\n"
"\n"
"For complete details consult the IA-32 software developer's manual, table 2-2,\n"
"\"32-bit addressing forms with the ModR/M byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "subop",
"Additional 3-bit operand for determining the instruction when the opcode is 81, 8f or ff.\n"
"Can't coexist with operand of type 'r32' in a single instruction, because the two use the same bits.\n"
);
put(Help, "r32",
"3-bit operand specifying a register operand used directly, without any further addressing modes.\n"
);
put(Help, "rm32",
"3-bit operand specifying a register operand whose precise interpretation interacts with 'mod'.\n"
"For complete details consult the IA-32 software developer's manual, table 2-2,\n"
"\"32-bit addressing forms with the ModR/M byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "base",
"Additional 3-bit operand (when 'rm32' is 4 unless 'mod' is 3) specifying the register containing an address to look up.\n"
"This address may be further modified by 'index' and 'scale' operands.\n"
" effective address = base + index*scale + displacement (disp8 or disp32)\n"
"For complete details consult the IA-32 software developer's manual, table 2-3,\n"
"\"32-bit addressing forms with the SIB byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "index",
"Optional 3-bit operand (when 'rm32' is 4 unless 'mod' is 3) that can be added to the 'base' operand to compute the 'effective address' at which to look up memory.\n"
" effective address = base + index*scale + displacement (disp8 or disp32)\n"
"For complete details consult the IA-32 software developer's manual, table 2-3,\n"
"\"32-bit addressing forms with the SIB byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "scale",
"Optional 2-bit operand (when 'rm32' is 4 unless 'mod' is 3) that can be multiplied to the 'index' operand before adding the result to the 'base' operand to compute the _effective address_ to operate on.\n"
" effective address = base + index * scale + displacement (disp8 or disp32)\n"
"For complete details consult the IA-32 software developer's manual, table 2-3,\n"
"\"32-bit addressing forms with the SIB byte\".\n"
" https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf\n"
);
put(Help, "disp8",
"8-bit value to be added in many instructions.\n"
);
put(Help, "disp16",
"16-bit value to be added in many instructions.\n"
);
put(Help, "disp32",
"32-bit value to be added in many instructions.\n"
);
put(Help, "imm8",
"8-bit value for many instructions.\n"
);
put(Help, "imm32",
"32-bit value for many instructions.\n"
);
}