# quick-n-dirty way to print out floats in hex # https://www.exploringbinary.com/hexadecimal-floating-point-constants # example: # 0.5 = 0x3f000000 = 0011| 1111 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 # = 0 | 01111110 | 00000000000000000000000 # + exponent mantissa # = 0 | 00000000000000000000000 | 01111110 # mantissa exponent # = 0 | 000000000000000000000000 | 01111110 # zero-pad mantissa exponent # = +1.000000 P -01 fn test-print-float-hex-normal { var screen-on-stack: screen var screen/esi: (addr screen) <- address screen-on-stack initialize-screen screen, 5, 0x20 # 32 columns should be more than enough # 0.5 var half/xmm0: float <- rational 1, 2 print-float-hex screen, half check-screen-row screen, 1, "1.000000P-01 ", "F - test-print-float-hex-normal 0.5" # 0.25 clear-screen screen var quarter/xmm0: float <- rational 1, 4 print-float-hex screen, quarter check-screen-row screen, 1, "1.000000P-02 ", "F - test-print-float-hex-normal 0.25" # 0.75 clear-screen screen var three-quarters/xmm0: float <- rational 3, 4 print-float-hex screen, three-quarters check-screen-row screen, 1, "1.800000P-01 ", "F - test-print-float-hex-normal 0.75" # 0.1 clear-screen screen var tenth/xmm0: float <- rational 1, 0xa print-float-hex screen, tenth check-screen-row screen, 1, "1.99999aP-04 ", "F - test-print-float-hex-normal 0.1" } fn test-print-float-hex-integer { var screen-on-stack: screen var screen/esi: (addr screen) <- address screen-on-stack initialize-screen screen, 5, 0x20 # 32 columns should be more than enough # 1 var one-f/xmm0: float <- rational 1, 1 print-float-hex screen, one-f check-screen-row screen, 1, "1.000000P00 ", "F - test-print-float-hex-integer 1" # 2 clear-screen screen var two-f/xmm0: float <- rational 2, 1 print-float-hex screen, two-f check-screen-row screen, 1, "1.000000P01 ", "F - test-print-float-hex-integer 2" # 10 clear-screen screen var ten-f/xmm0: float <- rational 0xa, 1 print-float-hex screen, ten-f check-screen-row screen, 1, "1.400000P03 ", "F - test-print-float-hex-integer 10" # -10 clear-screen screen var minus-ten-f/xmm0: float <- rational -0xa, 1 print-float-hex screen, minus-ten-f check-screen-row screen, 1, "-1.400000P03 ", "F - test-print-float-hex-integer -10" } fn test-print-float-hex-zero { var screen-on-stack: screen var screen/esi: (addr screen) <- address screen-on-stack initialize-screen screen, 5, 0x20 # 32 columns should be more than enough var zero: float print-float-hex screen, zero check-screen-row screen, 1, "0 ", "F - test-print-float-hex-zero" } fn test-print-float-hex-negative-zero { var screen-on-stack: screen var screen/esi: (addr screen) <- address screen-on-stack initialize-screen screen, 5, 0x20 # 32 columns should be more than enough var n: int copy-to n, 0x80000000 var negative-zero/xmm0: float <- reinterpret n print-float-hex screen, negative-zero check-screen-row screen, 1, "-0 ", "F - test-print-float-hex-negative-zero" } fn test-print-float-hex-infinity { var screen-on-stack: screen var screen/esi: (addr screen) <- address screen-on-stack initialize-screen screen, 5, 0x20 # 32 columns should be more than enough var n: int # 0|11111111|00000000000000000000000 # 0111|1111|1000|0000|0000|0000|0000|0000 copy-to n, 0x7f800000 var infinity/xmm0: float <- reinterpret n print-float-hex screen, infinity check-screen-row screen, 1, "Inf ", "F - test-print-float-hex-infinity" } fn test-print-float-hex-negative-infinity { var screen-on-stack: screen var screen/esi: (addr screen) <- address screen-on-stack initialize-screen screen, 5, 0x20 # 32 columns should be more than enough var n: int copy-to n, 0xff800000 var negative-infinity/xmm0: float <- reinterpret n print-float-hex screen, negative-infinity check-screen-row screen, 1, "-Inf ", "F - test-print-float-hex-negative-infinity" } fn test-print-float-hex-not-a-number { var screen-on-stack: screen var screen/esi: (addr screen) <- address screen-on-stack initialize-screen screen, 5, 0x20 # 32 columns should be more than enough var n: int copy-to n, 0xffffffff # exponent must be all 1's, and mantissa must be non-zero var negative-infinity/xmm0: float <- reinterpret n print-float-hex screen, negative-infinity check-screen-row screen, 1, "NaN ", "F - test-print-float-hex-not-a-number" } fn print-float-hex screen: (addr screen), n: float { # - special names var bits/eax: int <- reinterpret n compare bits, 0 { break-if-!= print-string screen, "0" return } compare bits, 0x80000000 { break-if-!= print-string screen, "-0" return } compare bits, 0x7f800000 { break-if-!= print-string screen, "Inf" return } compare bits, 0xff800000 { break-if-!= print-string screen, "-Inf" return } var exponent/ecx: int <- copy bits exponent <- shift-right 0x17 # 23 bits of mantissa exponent <- and 0xff exponent <- subtract 0x7f compare exponent, 0x80 { break-if-!= print-string screen, "NaN" return } # - regular numbers var sign/edx: int <- copy bits sign <- shift-right 0x1f { compare sign, 1 break-if-!= print-string screen, "-" } $print-float-hex:leading-digit: { # check for subnormal numbers compare exponent, -0x7f { break-if-!= print-string screen, "0." exponent <- increment break $print-float-hex:leading-digit } # normal numbers print-string screen, "1." } var mantissa/ebx: int <- copy bits mantissa <- and 0x7fffff mantissa <- shift-left 1 # pad to whole nibbles print-int32-hex-bits screen, mantissa, 0x18 # print exponent print-string screen, "P" compare exponent, 0 { break-if->= print-string screen, "-" } var exp-magnitude/eax: int <- abs exponent print-int32-hex-bits screen, exp-magnitude, 8 } #? fn main -> _/ebx: int { #? run-tests #? #? test-print-float-hex-negative-zero #? #? print-int32-hex 0, 0 #? #? test-print-float-hex-normal #? return 0 #? }