//: operating directly on a register :(before "End Initialize Op Names") put_new(Name, "01", "add r32 to rm32 (add)"); :(code) void test_add_r32_to_r32() { Reg[EAX].i = 0x10; Reg[EBX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 d8 \n" // add EBX to EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x00000011\n" ); } :(before "End Single-Byte Opcodes") case 0x01: { // add r32 to r/m32 uint8_t modrm = next(); uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "add " << rname(arg2) << " to r/m32" << end(); int32_t* signed_arg1 = effective_address(modrm); int32_t signed_result = *signed_arg1 + Reg[arg2].i; SF = (signed_result < 0); ZF = (signed_result == 0); int64_t signed_full_result = static_cast(*signed_arg1) + Reg[arg2].i; OF = (signed_result != signed_full_result); // set CF uint32_t unsigned_arg1 = static_cast(*signed_arg1); uint32_t unsigned_result = unsigned_arg1 + Reg[arg2].u; uint64_t unsigned_full_result = static_cast(unsigned_arg1) + Reg[arg2].u; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); *signed_arg1 = signed_result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); break; } :(code) void test_add_r32_to_r32_signed_overflow() { Reg[EAX].i = 0x7fffffff; // largest positive signed integer Reg[EBX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 d8 \n" // add EBX to EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=0; OF=1\n" "run: storing 0x80000000\n" ); } void test_add_r32_to_r32_unsigned_overflow() { Reg[EAX].u = 0xffffffff; // largest unsigned number Reg[EBX].u = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 d8 \n" // add EBX to EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=1; CF=1; OF=0\n" "run: storing 0x00000000\n" ); } void test_add_r32_to_r32_unsigned_and_signed_overflow() { Reg[EAX].u = Reg[EBX].u = 0x80000000; // smallest negative signed integer run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 01 d8 \n" // add EBX to EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: add EBX to r/m32\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=1; CF=1; OF=1\n" "run: storing 0x00000000\n" ); } :(code) // Implement tables 2-2 and 2-3 in the Intel manual, Volume 2. // We return a pointer so that instructions can write to multiple bytes in // 'Mem' at once. // beware: will eventually have side-effects int32_t* effective_address(uint8_t modrm) { const uint8_t mod = (modrm>>6); // ignore middle 3 'reg opcode' bits const uint8_t rm = modrm & 0x7; if (mod == 3) { // mod 3 is just register direct addressing trace(Callstack_depth+1, "run") << "r/m32 is " << rname(rm) << end(); return &Reg[rm].i; } uint32_t addr = effective_address_number(modrm); trace(Callstack_depth+1, "run") << "effective address contains " << read_mem_i32(addr) << end(); return mem_addr_i32(addr); } // beware: will eventually have side-effects uint32_t effective_address_number(uint8_t modrm) { const uint8_t mod = (modrm>>6); // ignore middle 3 'reg opcode' bits const uint8_t rm = modrm & 0x7; uint32_t addr = 0; switch (mod) { case 3: // mod 3 is just register direct addressing raise << "unexpected direct addressing mode\n" << end(); return 0; // End Mod Special-cases(addr) default: cerr << "unrecognized mod bits: " << NUM(mod) << '\n'; exit(1); } //: other mods are indirect, and they'll set addr appropriately // Found effective_address(addr) return addr; } string rname(uint8_t r) { switch (r) { case 0: return "EAX"; case 1: return "ECX"; case 2: return "EDX"; case 3: return "EBX"; case 4: return "ESP"; case 5: return "EBP"; case 6: return "ESI"; case 7: return "EDI"; default: raise << "invalid register " << r << '\n' << end(); return ""; } } //:: subtract :(before "End Initialize Op Names") put_new(Name, "29", "subtract r32 from rm32 (sub)"); :(code) void test_subtract_r32_from_r32() { Reg[EAX].i = 10; Reg[EBX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 29 d8 \n" // subtract EBX from EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: subtract EBX from r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x00000009\n" ); } :(before "End Single-Byte Opcodes") case 0x29: { // subtract r32 from r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "subtract " << rname(arg2) << " from r/m32" << end(); int32_t* signed_arg1 = effective_address(modrm); int32_t signed_result = *signed_arg1 - Reg[arg2].i; SF = (signed_result < 0); ZF = (signed_result == 0); int64_t signed_full_result = static_cast(*signed_arg1) - Reg[arg2].i; OF = (signed_result != signed_full_result); // set CF uint32_t unsigned_arg1 = static_cast(*signed_arg1); uint32_t unsigned_result = unsigned_arg1 - Reg[arg2].u; uint64_t unsigned_full_result = static_cast(unsigned_arg1) - Reg[arg2].u; CF = (unsigned_result != unsigned_full_result); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); *signed_arg1 = signed_result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); break; } :(code) void test_subtract_r32_from_r32_signed_overflow() { Reg[EAX].i = 0x80000000; // smallest negative signed integer Reg[EBX].i = 0x7fffffff; // largest positive signed integer run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 29 d8 \n" // subtract EBX from EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: subtract EBX from r/m32\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=0; CF=0; OF=1\n" "run: storing 0x00000001\n" ); } void test_subtract_r32_from_r32_unsigned_overflow() { Reg[EAX].i = 0; Reg[EBX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 29 d8 \n" // subtract EBX from EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: subtract EBX from r/m32\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=0\n" "run: storing 0xffffffff\n" ); } void test_subtract_r32_from_r32_signed_and_unsigned_overflow() { Reg[EAX].i = 0; Reg[EBX].i = 0x80000000; // smallest negative signed integer run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 29 d8 \n" // subtract EBX from EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: subtract EBX from r/m32\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=1\n" "run: storing 0x80000000\n" ); } //:: multiply :(before "End Initialize Op Names") put_new(Name, "f7", "negate/multiply/divide rm32 (with EAX and EDX if necessary) depending on subop (neg/mul/idiv)"); :(code) void test_multiply_EAX_by_r32() { Reg[EAX].i = 4; Reg[ECX].i = 3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 e1 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 100 (subop mul) 001 (src ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: multiply EAX by r/m32\n" "run: storing 0x0000000c\n" ); } :(before "End Single-Byte Opcodes") case 0xf7: { const uint8_t modrm = next(); trace(Callstack_depth+1, "run") << "operate on r/m32" << end(); int32_t* arg1 = effective_address(modrm); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 4: { // mul unsigned EAX by r/m32 trace(Callstack_depth+1, "run") << "subop: multiply EAX by r/m32" << end(); const uint64_t result = static_cast(Reg[EAX].u) * static_cast(*arg1); Reg[EAX].u = result & 0xffffffff; Reg[EDX].u = result >> 32; OF = (Reg[EDX].u != 0); CF = OF; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[EAX].u << end(); break; } // End Op f7 Subops default: cerr << "unrecognized subop for opcode f7: " << NUM(subop) << '\n'; exit(1); } break; } //: :(before "End Initialize Op Names") put_new(Name_0f, "af", "multiply rm32 into r32 (imul)"); :(code) void test_multiply_r32_into_r32() { Reg[EAX].i = 4; Reg[EBX].i = 2; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 0f af d8 \n" // subtract EBX into EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: multiply EBX by r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x00000008\n" ); } :(before "End Two-Byte Opcodes Starting With 0f") case 0xaf: { // multiply r32 by r/m32 const uint8_t modrm = next(); const uint8_t arg1 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "multiply " << rname(arg1) << " by r/m32" << end(); const int32_t* arg2 = effective_address(modrm); int32_t result = Reg[arg1].i * (*arg2); SF = (Reg[arg1].i < 0); ZF = (Reg[arg1].i == 0); int64_t full_result = static_cast(Reg[arg1].i) * (*arg2); OF = (Reg[arg1].i != full_result); CF = OF; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); Reg[arg1].i = result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[arg1].i << end(); break; } //:: negate :(code) void test_negate_r32() { Reg[EBX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 db \n" // negate EBX // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: negate\n" "run: storing 0xffffffff\n" ); } :(before "End Op f7 Subops") case 3: { // negate r/m32 trace(Callstack_depth+1, "run") << "subop: negate" << end(); // one case that can overflow if (static_cast(*arg1) == 0x80000000) { trace(Callstack_depth+1, "run") << "overflow" << end(); SF = true; ZF = false; OF = true; break; } int32_t result = -(*arg1); SF = (result >> 31); ZF = (result == 0); OF = false; CF = (*arg1 != 0); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); *arg1 = result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) // negate can overflow in exactly one situation void test_negate_can_overflow() { Reg[EBX].i = 0x80000000; // INT_MIN run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 db \n" // negate EBX // ModR/M in binary: 11 (direct mode) 011 (subop negate) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: negate\n" "run: overflow\n" ); } //:: divide with remainder void test_divide_EAX_by_rm32() { Reg[EAX].u = 7; Reg[EDX].u = 0; Reg[ECX].i = 3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0x00000002\n" "run: remainder: 0x00000001\n" ); } :(before "End Op f7 Subops") case 7: { // divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX trace(Callstack_depth+1, "run") << "subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX" << end(); int64_t dividend = static_cast((static_cast(Reg[EDX].u) << 32) | Reg[EAX].u); int32_t divisor = *arg1; assert(divisor != 0); Reg[EAX].i = dividend/divisor; // quotient Reg[EDX].i = dividend%divisor; // remainder // flag state undefined trace(Callstack_depth+1, "run") << "quotient: 0x" << HEXWORD << Reg[EAX].i << end(); trace(Callstack_depth+1, "run") << "remainder: 0x" << HEXWORD << Reg[EDX].i << end(); break; } :(code) void test_divide_EAX_by_negative_rm32() { Reg[EAX].u = 7; Reg[EDX].u = 0; Reg[ECX].i = -3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0xfffffffe\n" // -2 "run: remainder: 0x00000001\n" ); } void test_divide_negative_EAX_by_rm32() { Reg[EAX].i = -7; Reg[EDX].i = -1; // sign extend Reg[ECX].i = 3; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0xfffffffe\n" // -2 "run: remainder: 0xffffffff\n" // -1, same sign as divident (EDX:EAX) ); } void test_divide_negative_EDX_EAX_by_rm32() { Reg[EAX].i = 0; // lower 32 bits are clear Reg[EDX].i = -7; Reg[ECX].i = 0x40000000; // 2^30 (largest positive power of 2) run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 f9 \n" // multiply EAX by ECX // ModR/M in binary: 11 (direct mode) 111 (subop idiv) 001 (divisor ECX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is ECX\n" "run: subop: divide EDX:EAX by r/m32, storing quotient in EAX and remainder in EDX\n" "run: quotient: 0xffffffe4\n" // (-7 << 32) / (1 << 30) = -7 << 2 = -28 "run: remainder: 0x00000000\n" ); } //:: shift left :(before "End Initialize Op Names") put_new(Name, "d3", "shift rm32 by CL bits depending on subop (sal/sar/shl/shr)"); :(code) void test_shift_left_r32_with_cl() { Reg[EBX].i = 13; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 e3 \n" // shift EBX left by CL bits // ModR/M in binary: 11 (direct mode) 100 (subop shift left) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift left by CL bits\n" "run: storing 0x0000001a\n" ); } :(before "End Single-Byte Opcodes") case 0xd3: { const uint8_t modrm = next(); trace(Callstack_depth+1, "run") << "operate on r/m32" << end(); int32_t* arg1 = effective_address(modrm); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 4: { // shift left r/m32 by CL trace(Callstack_depth+1, "run") << "subop: shift left by CL bits" << end(); uint8_t count = Reg[ECX].u & 0x1f; // OF is only defined if count is 1 if (count == 1) { bool msb = (*arg1 & 0x80000000) >> 1; bool pnsb = (*arg1 & 0x40000000); OF = (msb != pnsb); } int32_t result = (*arg1 << count); ZF = (result == 0); SF = (result < 0); CF = (*arg1 << (count-1)) & 0x80000000; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); *arg1 = result; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } // End Op d3 Subops default: cerr << "unrecognized subop for opcode d3: " << NUM(subop) << '\n'; exit(1); } break; } //:: shift right arithmetic :(code) void test_shift_right_arithmetic_r32_with_cl() { Reg[EBX].i = 26; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 fb \n" // shift EBX right by CL bits, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" "run: storing 0x0000000d\n" ); } :(before "End Op d3 Subops") case 7: { // shift right r/m32 by CL, preserving sign trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while preserving sign" << end(); uint8_t count = Reg[ECX].u & 0x1f; *arg1 = (*arg1 >> count); ZF = (*arg1 == 0); SF = (*arg1 < 0); // OF is only defined if count is 1 if (count == 1) OF = false; // CF undefined trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) void test_shift_right_arithmetic_odd_r32_with_cl() { Reg[EBX].i = 27; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 fb \n" // shift EBX right by CL bits, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" // result: 13 "run: storing 0x0000000d\n" ); } void test_shift_right_arithmetic_negative_r32_with_cl() { Reg[EBX].i = 0xfffffffd; // -3 Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 fb \n" // shift EBX right by CL bits, while preserving sign // ModR/M in binary: 11 (direct mode) 111 (subop shift right arithmetic) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while preserving sign\n" // result: -2 "run: storing 0xfffffffe\n" ); } //:: shift right logical :(code) void test_shift_right_logical_r32_with_cl() { Reg[EBX].i = 26; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 eb \n" // shift EBX right by CL bits, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" // result: 13 "run: storing 0x0000000d\n" ); } :(before "End Op d3 Subops") case 5: { // shift right r/m32 by CL, padding zeroes trace(Callstack_depth+1, "run") << "subop: shift right by CL bits, while padding zeroes" << end(); uint8_t count = Reg[ECX].u & 0x1f; // OF is only defined if count is 1 if (count == 1) { bool msb = (*arg1 & 0x80000000) >> 1; bool pnsb = (*arg1 & 0x40000000); OF = (msb != pnsb); } uint32_t* uarg1 = reinterpret_cast(arg1); *uarg1 = (*uarg1 >> count); ZF = (*uarg1 == 0); // result is always positive by definition SF = false; // CF undefined trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); break; } :(code) void test_shift_right_logical_odd_r32_with_cl() { Reg[EBX].i = 27; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 eb \n" // shift EBX right by CL bits, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" // result: 13 "run: storing 0x0000000d\n" ); } void test_shift_right_logical_negative_r32_with_cl() { Reg[EBX].i = 0xfffffffd; Reg[ECX].i = 1; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " d3 eb \n" // shift EBX right by CL bits, while padding zeroes // ModR/M in binary: 11 (direct mode) 101 (subop shift right logical) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: shift right by CL bits, while padding zeroes\n" "run: storing 0x7ffffffe\n" ); } //:: and :(before "End Initialize Op Names") put_new(Name, "21", "rm32 = bitwise AND of r32 with rm32 (and)"); :(code) void test_and_r32_with_r32() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0x000000ff; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 21 d8 \n" // and EBX with destination EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: and EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x0000000d\n" ); } :(before "End Single-Byte Opcodes") case 0x21: { // and r32 with r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "and " << rname(arg2) << " with r/m32" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference int32_t* signed_arg1 = effective_address(modrm); *signed_arg1 &= Reg[arg2].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: or :(before "End Initialize Op Names") put_new(Name, "09", "rm32 = bitwise OR of r32 with rm32 (or)"); :(code) void test_or_r32_with_r32() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0xa0b0c0d0; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 09 d8 \n" // or EBX with destination EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: or EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0xaabbccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x09: { // or r32 with r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "or " << rname(arg2) << " with r/m32" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference int32_t* signed_arg1 = effective_address(modrm); *signed_arg1 |= Reg[arg2].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: xor :(before "End Initialize Op Names") put_new(Name, "31", "rm32 = bitwise XOR of r32 with rm32 (xor)"); :(code) void test_xor_r32_with_r32() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0xaabbc0d0; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 31 d8 \n" // xor EBX with destination EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: xor EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0xa0b0ccdd\n" ); } :(before "End Single-Byte Opcodes") case 0x31: { // xor r32 with r/m32 const uint8_t modrm = next(); const uint8_t arg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "xor " << rname(arg2) << " with r/m32" << end(); // bitwise ops technically operate on unsigned numbers, but it makes no // difference int32_t* signed_arg1 = effective_address(modrm); *signed_arg1 ^= Reg[arg2].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *signed_arg1 << end(); SF = (*signed_arg1 >> 31); ZF = (*signed_arg1 == 0); CF = false; OF = false; trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } //:: not :(code) void test_not_r32() { Reg[EBX].i = 0x0f0f00ff; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " f7 d3 \n" // not EBX // ModR/M in binary: 11 (direct mode) 010 (subop not) 011 (dest EBX) ); CHECK_TRACE_CONTENTS( "run: operate on r/m32\n" "run: r/m32 is EBX\n" "run: subop: not\n" "run: storing 0xf0f0ff00\n" ); } :(before "End Op f7 Subops") case 2: { // not r/m32 trace(Callstack_depth+1, "run") << "subop: not" << end(); *arg1 = ~(*arg1); trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << end(); // no flags affected break; } //:: compare (cmp) :(before "End Initialize Op Names") put_new(Name, "39", "compare: set SF if rm32 < r32 (cmp)"); :(code) void test_compare_r32_with_r32_greater() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0x0a0b0c07; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=0; CF=0; OF=0\n" ); } :(before "End Single-Byte Opcodes") case 0x39: { // set SF if r/m32 < r32 const uint8_t modrm = next(); const uint8_t reg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "compare r/m32 with " << rname(reg2) << end(); const int32_t* signed_arg1 = effective_address(modrm); const int32_t signed_difference = *signed_arg1 - Reg[reg2].i; SF = (signed_difference < 0); ZF = (signed_difference == 0); const int64_t signed_full_difference = static_cast(*signed_arg1) - Reg[reg2].i; OF = (signed_difference != signed_full_difference); // set CF const uint32_t unsigned_arg1 = static_cast(*signed_arg1); const uint32_t unsigned_difference = unsigned_arg1 - Reg[reg2].u; const uint64_t unsigned_full_difference = static_cast(unsigned_arg1) - Reg[reg2].u; CF = (unsigned_difference != unsigned_full_difference); trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end(); break; } :(code) void test_compare_r32_with_r32_lesser_unsigned_and_signed() { Reg[EAX].i = 0x0a0b0c07; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=0\n" ); } void test_compare_r32_with_r32_lesser_unsigned_and_signed_due_to_overflow() { Reg[EAX].i = 0x7fffffff; // largest positive signed integer Reg[EBX].i = 0x80000000; // smallest negative signed integer run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=1; OF=1\n" ); } void test_compare_r32_with_r32_lesser_signed() { Reg[EAX].i = 0xffffffff; // -1 Reg[EBX].i = 0x00000001; // 1 run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=1; ZF=0; CF=0; OF=0\n" ); } void test_compare_r32_with_r32_lesser_unsigned() { Reg[EAX].i = 0x00000001; // 1 Reg[EBX].i = 0xffffffff; // -1 run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX with EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=0; CF=1; OF=0\n" ); } void test_compare_r32_with_r32_equal() { Reg[EAX].i = 0x0a0b0c0d; Reg[EBX].i = 0x0a0b0c0d; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 39 d8 \n" // compare EAX and EBX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: compare r/m32 with EBX\n" "run: r/m32 is EAX\n" "run: SF=0; ZF=1; CF=0; OF=0\n" ); } //:: copy (mov) :(before "End Initialize Op Names") put_new(Name, "89", "copy r32 to rm32 (mov)"); :(code) void test_copy_r32_to_r32() { Reg[EBX].i = 0xaf; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 89 d8 \n" // copy EBX to EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: copy EBX to r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x000000af\n" ); } :(before "End Single-Byte Opcodes") case 0x89: { // copy r32 to r/m32 const uint8_t modrm = next(); const uint8_t rsrc = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "copy " << rname(rsrc) << " to r/m32" << end(); int32_t* dest = effective_address(modrm); *dest = Reg[rsrc].i; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *dest << end(); break; } //:: xchg :(before "End Initialize Op Names") put_new(Name, "87", "swap the contents of r32 and rm32 (xchg)"); :(code) void test_xchg_r32_with_r32() { Reg[EBX].i = 0xaf; Reg[EAX].i = 0x2e; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 87 d8 \n" // exchange EBX with EAX // ModR/M in binary: 11 (direct mode) 011 (src EBX) 000 (dest EAX) ); CHECK_TRACE_CONTENTS( "run: exchange EBX with r/m32\n" "run: r/m32 is EAX\n" "run: storing 0x000000af in r/m32\n" "run: storing 0x0000002e in EBX\n" ); } :(before "End Single-Byte Opcodes") case 0x87: { // exchange r32 with r/m32 const uint8_t modrm = next(); const uint8_t reg2 = (modrm>>3)&0x7; trace(Callstack_depth+1, "run") << "exchange " << rname(reg2) << " with r/m32" << end(); int32_t* arg1 = effective_address(modrm); const int32_t tmp = *arg1; *arg1 = Reg[reg2].i; Reg[reg2].i = tmp; trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << *arg1 << " in r/m32" << end(); trace(Callstack_depth+1, "run") << "storing 0x" << HEXWORD << Reg[reg2].i << " in " << rname(reg2) << end(); break; } //:: increment :(before "End Initialize Op Names") put_new(Name, "40", "increment EAX (inc)"); put_new(Name, "41", "increment ECX (inc)"); put_new(Name, "42", "increment EDX (inc)"); put_new(Name, "43", "increment EBX (inc)"); put_new(Name, "44", "increment ESP (inc)"); put_new(Name, "45", "increment EBP (inc)"); put_new(Name, "46", "increment ESI (inc)"); put_new(Name, "47", "increment EDI (inc)"); :(code) void test_increment_r32() { Reg[ECX].u = 0x1f; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 41 \n" // increment ECX ); CHECK_TRACE_CONTENTS( "run: increment ECX\n" "run: storing value 0x00000020\n" ); } :(before "End Single-Byte Opcodes") case 0x40: case 0x41: case 0x42: case 0x43: case 0x44: case 0x45: case 0x46: case 0x47: { // increment r32 const uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "increment " << rname(reg) << end(); ++Reg[reg].u; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end(); break; } :(before "End Initialize Op Names") put_new(Name, "ff", "increment/decrement/jump/push/call rm32 based on subop (inc/dec/jmp/push/call)"); :(code) void test_increment_rm32() { Reg[EAX].u = 0x20; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " ff c0 \n" // increment EAX // ModR/M in binary: 11 (direct mode) 000 (subop inc) 000 (EAX) ); CHECK_TRACE_CONTENTS( "run: increment r/m32\n" "run: r/m32 is EAX\n" "run: storing value 0x00000021\n" ); } :(before "End Single-Byte Opcodes") case 0xff: { const uint8_t modrm = next(); const uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits switch (subop) { case 0: { // increment r/m32 trace(Callstack_depth+1, "run") << "increment r/m32" << end(); int32_t* arg = effective_address(modrm); ++*arg; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end(); break; } default: cerr << "unrecognized subop for ff: " << HEXBYTE << NUM(subop) << '\n'; exit(1); // End Op ff Subops } break; } //:: decrement :(before "End Initialize Op Names") put_new(Name, "48", "decrement EAX (dec)"); put_new(Name, "49", "decrement ECX (dec)"); put_new(Name, "4a", "decrement EDX (dec)"); put_new(Name, "4b", "decrement EBX (dec)"); put_new(Name, "4c", "decrement ESP (dec)"); put_new(Name, "4d", "decrement EBP (dec)"); put_new(Name, "4e", "decrement ESI (dec)"); put_new(Name, "4f", "decrement EDI (dec)"); :(code) void test_decrement_r32() { Reg[ECX].u = 0x1f; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 49 \n" // decrement ECX ); CHECK_TRACE_CONTENTS( "run: decrement ECX\n" "run: storing value 0x0000001e\n" ); } :(before "End Single-Byte Opcodes") case 0x48: case 0x49: case 0x4a: case 0x4b: case 0x4c: case 0x4d: case 0x4e: case 0x4f: { // decrement r32 const uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "decrement " << rname(reg) << end(); --Reg[reg].u; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << Reg[reg].u << end(); break; } :(code) void test_decrement_rm32() { Reg[EAX].u = 0x20; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " ff c8 \n" // decrement EAX // ModR/M in binary: 11 (direct mode) 001 (subop inc) 000 (EAX) ); CHECK_TRACE_CONTENTS( "run: decrement r/m32\n" "run: r/m32 is EAX\n" "run: storing value 0x0000001f\n" ); } :(before "End Op ff Subops") case 1: { // decrement r/m32 trace(Callstack_depth+1, "run") << "decrement r/m32" << end(); int32_t* arg = effective_address(modrm); --*arg; trace(Callstack_depth+1, "run") << "storing value 0x" << HEXWORD << *arg << end(); break; } //:: push :(before "End Initialize Op Names") put_new(Name, "50", "push EAX to stack (push)"); put_new(Name, "51", "push ECX to stack (push)"); put_new(Name, "52", "push EDX to stack (push)"); put_new(Name, "53", "push EBX to stack (push)"); put_new(Name, "54", "push ESP to stack (push)"); put_new(Name, "55", "push EBP to stack (push)"); put_new(Name, "56", "push ESI to stack (push)"); put_new(Name, "57", "push EDI to stack (push)"); :(code) void test_push_r32() { Mem.push_back(vma(0xbd000000)); // manually allocate memory Reg[ESP].u = 0xbd000008; Reg[EBX].i = 0x0000000a; run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 53 \n" // push EBX to stack ); CHECK_TRACE_CONTENTS( "run: push EBX\n" "run: decrementing ESP to 0xbd000004\n" "run: pushing value 0x0000000a\n" ); } :(before "End Single-Byte Opcodes") case 0x50: case 0x51: case 0x52: case 0x53: case 0x54: case 0x55: case 0x56: case 0x57: { // push r32 to stack uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "push " << rname(reg) << end(); //? cerr << "push: " << NUM(reg) << ": " << Reg[reg].u << " => " << Reg[ESP].u << '\n'; push(Reg[reg].u); break; } //:: pop :(before "End Initialize Op Names") put_new(Name, "58", "pop top of stack to EAX (pop)"); put_new(Name, "59", "pop top of stack to ECX (pop)"); put_new(Name, "5a", "pop top of stack to EDX (pop)"); put_new(Name, "5b", "pop top of stack to EBX (pop)"); put_new(Name, "5c", "pop top of stack to ESP (pop)"); put_new(Name, "5d", "pop top of stack to EBP (pop)"); put_new(Name, "5e", "pop top of stack to ESI (pop)"); put_new(Name, "5f", "pop top of stack to EDI (pop)"); :(code) void test_pop_r32() { Mem.push_back(vma(0xbd000000)); // manually allocate memory Reg[ESP].u = 0xbd000008; write_mem_i32(0xbd000008, 0x0000000a); // ..before this write run( "== code 0x1\n" // code segment // op ModR/M SIB displacement immediate " 5b \n" // pop stack to EBX "== data 0x2000\n" // data segment "0a 00 00 00\n" // 0x0000000a ); CHECK_TRACE_CONTENTS( "run: pop into EBX\n" "run: popping value 0x0000000a\n" "run: incrementing ESP to 0xbd00000c\n" ); } :(before "End Single-Byte Opcodes") case 0x58: case 0x59: case 0x5a: case 0x5b: case 0x5c: case 0x5d: case 0x5e: case 0x5f: { // pop stack into r32 const uint8_t reg = op & 0x7; trace(Callstack_depth+1, "run") << "pop into " << rname(reg) << end(); //? cerr << "pop from " << Reg[ESP].u << '\n'; Reg[reg].u = pop(); //? cerr << "=> " << NUM(reg) << ": " << Reg[reg].u << '\n'; break; } :(code) uint32_t pop() { const uint32_t result = read_mem_u32(Reg[ESP].u); trace(Callstack_depth+1, "run") << "popping value 0x" << HEXWORD << result << end(); Reg[ESP].u += 4; trace(Callstack_depth+1, "run") << "incrementing ESP to 0x" << HEXWORD << Reg[ESP].u << end(); assert(Reg[ESP].u < AFTER_STACK); return result; }