//: The bedrock level 1 of abstraction is now done, and we're going to start //: building levels above it that make programming in x86 machine code a //: little more ergonomic. //: //: All levels will be "pass through by default". Whatever they don't //: understand they will silently pass through to lower levels. //: //: Since raw hex bytes of machine code are always possible to inject, SubX is //: not a language, and we aren't building a compiler. This is something //: deliberately leakier. Levels are more for improving auditing, checks and //: error messages rather than for hiding low-level details. //: Translator workflow: read 'source' file. Run a series of transforms on it, //: each passing through what it doesn't understand. The final program should //: be just machine code, suitable to write to an ELF binary. //: //: Higher levels usually transform code on the basis of metadata. :(before "End Main") if (is_equal(argv[1], "translate")) { START_TRACING_UNTIL_END_OF_SCOPE; reset(); // Begin subx translate program p; string output_filename; for (int i = /*skip 'subx translate'*/2; i < argc; ++i) { if (is_equal(argv[i], "-o")) { ++i; if (i >= argc) { print_translate_usage(); cerr << "'-o' must be followed by a filename to write results to\n"; exit(1); } output_filename = argv[i]; } else { trace(2, "parse") << argv[i] << end(); ifstream fin(argv[i]); if (!fin) { cerr << "could not open " << argv[i] << '\n'; return 1; } parse(fin, p); if (trace_contains_errors()) return 1; } } if (p.segments.empty()) { print_translate_usage(); cerr << "nothing to do; must provide at least one file to read\n"; exit(1); } if (output_filename.empty()) { print_translate_usage(); cerr << "must provide a filename to write to using '-o'\n"; exit(1); } trace(2, "transform") << "begin" << end(); transform(p); if (trace_contains_errors()) return 1; trace(2, "translate") << "begin" << end(); save_elf(p, output_filename); if (trace_contains_errors()) { unlink(output_filename.c_str()); return 1; } // End subx translate return 0; } :(code) void print_translate_usage() { cerr << "Usage: subx translate file1 file2 ... -o output\n"; } // write out a program to a bare-bones ELF file void save_elf(const program& p, const string& filename) { ofstream out(filename.c_str(), ios::binary); save_elf(p, out); out.close(); } void save_elf(const program& p, ostream& out) { // validation: stay consistent with the self-hosted translator if (p.entry == 0) { raise << "no 'Entry' label found\n" << end(); return; } if (find(p, "data") == NULL) { raise << "must include a 'data' segment\n" << end(); return; } // processing write_elf_header(out, p); for (size_t i = 0; i < p.segments.size(); ++i) write_segment(p.segments.at(i), out); } void write_elf_header(ostream& out, const program& p) { char c = '\0'; #define O(X) c = (X); out.write(&c, sizeof(c)) // host is required to be little-endian #define emit(X) out.write(reinterpret_cast(&X), sizeof(X)) //// ehdr // e_ident O(0x7f); O(/*E*/0x45); O(/*L*/0x4c); O(/*F*/0x46); O(0x1); // 32-bit format O(0x1); // little-endian O(0x1); O(0x0); for (size_t i = 0; i < 8; ++i) { O(0x0); } // e_type O(0x02); O(0x00); // e_machine O(0x03); O(0x00); // e_version O(0x01); O(0x00); O(0x00); O(0x00); // e_entry uint32_t e_entry = p.entry; // Override e_entry emit(e_entry); // e_phoff -- immediately after ELF header uint32_t e_phoff = 0x34; emit(e_phoff); // e_shoff; unused uint32_t dummy32 = 0; emit(dummy32); // e_flags; unused emit(dummy32); // e_ehsize uint16_t e_ehsize = 0x34; emit(e_ehsize); // e_phentsize uint16_t e_phentsize = 0x20; emit(e_phentsize); // e_phnum uint16_t e_phnum = SIZE(p.segments); emit(e_phnum); // e_shentsize uint16_t dummy16 = 0x0; emit(dummy16); // e_shnum emit(dummy16); // e_shstrndx emit(dummy16); uint32_t p_offset = /*size of ehdr*/0x34 + SIZE(p.segments)*0x20/*size of each phdr*/; for (int i = 0; i < SIZE(p.segments); ++i) { const segment& curr = p.segments.at(i); //// phdr // p_type uint32_t p_type = 0x1; emit(p_type); // p_offset emit(p_offset); // p_vaddr uint32_t p_start = curr.start; emit(p_start); // p_paddr emit(p_start); // p_filesz uint32_t size = num_words(curr); assert(p_offset + size < SEGMENT_ALIGNMENT); emit(size); // p_memsz emit(size); // p_flags uint32_t p_flags = (curr.name == "code") ? /*r-x*/0x5 : /*rw-*/0x6; emit(p_flags); // p_align // "As the system creates or augments a process image, it logically copies // a file's segment to a virtual memory segment. When—and if— the system // physically reads the file depends on the program's execution behavior, // system load, and so on. A process does not require a physical page // unless it references the logical page during execution, and processes // commonly leave many pages unreferenced. Therefore delaying physical // reads frequently obviates them, improving system performance. To obtain // this efficiency in practice, executable and shared object files must // have segment images whose file offsets and virtual addresses are // congruent, modulo the page size." -- http://refspecs.linuxbase.org/elf/elf.pdf (page 95) uint32_t p_align = 0x1000; // default page size on linux emit(p_align); if (p_offset % p_align != p_start % p_align) { raise << "segment starting at 0x" << HEXWORD << p_start << " is improperly aligned; alignment for p_offset " << p_offset << " should be " << (p_offset % p_align) << " but is " << (p_start % p_align) << '\n' << end(); return; } // prepare for next segment p_offset += size; } #undef O #undef emit } void write_segment(const segment& s, ostream& out) { for (int i = 0; i < SIZE(s.lines); ++i) { const vector& w = s.lines.at(i).words; for (int j = 0; j < SIZE(w); ++j) { uint8_t x = hex_byte(w.at(j).data); // we're done with metadata by this point out.write(reinterpret_cast(&x), /*sizeof(byte)*/1); } } } uint32_t num_words(const segment& s) { uint32_t sum = 0; for (int i = 0; i < SIZE(s.lines); ++i) sum += SIZE(s.lines.at(i).words); return sum; } :(before "End Includes") using std::ios;