//: A simple memory allocator to create space for new variables at runtime. :(scenarios run) :(scenario new) # call new two times with identical arguments; you should get back different results recipe main [ 1:address:integer/raw <- new integer:type 2:address:integer/raw <- new integer:type 3:boolean/raw <- equal 1:address:integer/raw, 2:address:integer/raw ] +mem: storing 0 in location 3 :(before "End Globals") size_t Reserved_for_tests = 1000; index_t Memory_allocated_until = Reserved_for_tests; size_t Initial_memory_per_routine = 100000; :(before "End Setup") Memory_allocated_until = Reserved_for_tests; Initial_memory_per_routine = 100000; :(before "End routine Fields") index_t alloc, alloc_max; :(before "End routine Constructor") alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; alloc_max = Memory_allocated_until; trace("new") << "routine allocated memory from " << alloc << " to " << alloc_max; //:: First handle 'type' operands. :(before "End Mu Types Initialization") Type_number["type"] = 0; :(after "Per-recipe Transforms") // replace type names with type_numbers if (inst.operation == Recipe_number["new"]) { // first arg must be of type 'type' assert(inst.ingredients.size() >= 1); //? cout << inst.ingredients[0].to_string() << '\n'; //? 1 assert(isa_literal(inst.ingredients[0])); if (inst.ingredients[0].properties[0].second[0] == "type") { inst.ingredients[0].set_value(Type_number[inst.ingredients[0].name]); } trace("new") << inst.ingredients[0].name << " -> " << inst.ingredients[0].value; } //:: Now implement the primitive recipe. :(before "End Primitive Recipe Declarations") NEW, :(before "End Primitive Recipe Numbers") Recipe_number["new"] = NEW; :(before "End Primitive Recipe Implementations") case NEW: { // compute the space we need size_t size = 0; size_t array_length = 0; { vector type; type.push_back(current_instruction().ingredients[0].value); if (current_instruction().ingredients.size() > 1) { // array vector capacity = read_memory(current_instruction().ingredients[1]); array_length = capacity[0]; trace("mem") << "array size is " << array_length; size = array_length*size_of(type) + /*space for length*/1; } else { // scalar size = size_of(type); } } // compute the resulting location // really crappy at the moment assert(size <= Initial_memory_per_routine); if (Current_routine->alloc + size >= Current_routine->alloc_max) { // waste the remaining space and create a new chunk Current_routine->alloc = Memory_allocated_until; Memory_allocated_until += Initial_memory_per_routine; Current_routine->alloc_max = Memory_allocated_until; trace("new") << "routine allocated memory from " << Current_routine->alloc << " to " << Current_routine->alloc_max; } const index_t result = Current_routine->alloc; trace("mem") << "new alloc: " << result; if (current_instruction().ingredients.size() > 1) { // initialize array Memory[result] = array_length; } // write result to memory vector tmp; tmp.push_back(Current_routine->alloc); write_memory(current_instruction().products[0], tmp); // bump Current_routine->alloc += size; // no support for reclaiming memory assert(Current_routine->alloc <= Current_routine->alloc_max); break; } :(scenario new_array) recipe main [ 1:address:array:integer/raw <- new integer:type, 5:literal 2:address:integer/raw <- new integer:type 3:integer/raw <- subtract 2:address:integer/raw, 1:address:array:integer/raw ] +run: instruction main/0 +mem: array size is 5 +run: instruction main/1 +run: instruction main/2 +mem: storing 6 in location 3 //: Make sure that each routine gets a different alloc to start. :(scenario new_concurrent) recipe f1 [ start-running f2:recipe 1:address:integer/raw <- new integer:type ] recipe f2 [ 2:address:integer/raw <- new integer:type # hack: assumes scheduler implementation 3:boolean/raw <- equal 1:address:integer/raw, 2:address:integer/raw ] +mem: storing 0 in location 3 //: If a routine runs out of its initial allocation, it should allocate more. :(scenario new_overflow) % Initial_memory_per_routine = 2; recipe main [ 1:address:integer/raw <- new integer:type 2:address:point/raw <- new point:type # not enough room in initial page ] +new: routine allocated memory from 1000 to 1002 +new: routine allocated memory from 1002 to 1004 //:: Next, extend 'new' to handle a string literal argument. :(scenario new_string) recipe main [ 1:address:array:character <- new [abc def] 2:character <- index 1:address:array:character/deref, 5:literal ] # integer code for 'e' +mem: storing 101 in location 2 :(after "case NEW" following "Primitive Recipe Implementations") if (current_instruction().ingredients[0].properties[0].second[0] == "literal-string") { // allocate an array just large enough for it vector result; result.push_back(Current_routine->alloc); write_memory(current_instruction().products[0], result); // assume that all characters fit in a single location //? cout << "new string literal: " << current_instruction().ingredients[0].name << '\n'; //? 1 Memory[Current_routine->alloc++] = current_instruction().ingredients[0].name.size(); for (index_t i = 0; i < current_instruction().ingredients[0].name.size(); ++i) { Memory[Current_routine->alloc++] = current_instruction().ingredients[0].name[i]; } // mu strings are not null-terminated in memory break; }