//: Since we're tagging arguments with their types, let's start checking these //: argument types for each instruction. void test_check_missing_imm8_argument() { Hide_errors = true; run( "== code 0x1\n" "cd\n" // interrupt ?? ); CHECK_TRACE_CONTENTS( "error: 'cd' (software interrupt): missing imm8 argument\n" ); } :(before "Pack Operands(segment code)") check_arguments(code); if (trace_contains_errors()) return; :(code) void check_arguments(const segment& code) { trace(3, "transform") << "-- check arguments" << end(); for (int i = 0; i < SIZE(code.lines); ++i) { check_arguments(code.lines.at(i)); if (trace_contains_errors()) return; // stop at the first mal-formed instruction } } void check_arguments(const line& inst) { word op = preprocess_op(inst.words.at(0)); if (op.data == "0f") { check_arguments_0f(inst); return; } if (op.data == "f3") { check_arguments_f3(inst); return; } check_arguments(inst, op); } word preprocess_op(word/*copy*/ op) { op.data = tolower(op.data.c_str()); // opcodes can't be negative if (starts_with(op.data, "0x")) op.data = op.data.substr(2); if (SIZE(op.data) == 1) op.data = string("0")+op.data; return op; } void test_preprocess_op() { word w1; w1.data = "0xf"; word w2; w2.data = "0f"; CHECK_EQ(preprocess_op(w1).data, preprocess_op(w2).data); } //: To check the arguments for an opcode, we'll track the permitted arguments //: for each supported opcode in a bitvector. That way we can often compute the //: 'received' argument bitvector for each instruction's arguments and compare //: it with the 'expected' bitvector. //: //: The 'expected' and 'received' bitvectors can be different; the MODRM bit //: in the 'expected' bitvector maps to multiple 'received' argument types in //: an instruction. We deal in expected bitvectors throughout. :(before "End Types") enum expected_argument_type { // start from the least significant bit MODRM, // more complex, may also involve disp8 or disp32 SUBOP, DISP8, DISP16, DISP32, IMM8, IMM32, NUM_OPERAND_TYPES }; :(before "End Globals") vector Operand_type_name; map Operand_type; :(before "End One-time Setup") init_op_types(); :(code) void init_op_types() { assert(NUM_OPERAND_TYPES <= /*bits in a uint8_t*/8); Operand_type_name.resize(NUM_OPERAND_TYPES); #define DEF(type) Operand_type_name.at(type) = tolower(#type), put(Operand_type, tolower(#type), type); DEF(MODRM); DEF(SUBOP); DEF(DISP8); DEF(DISP16); DEF(DISP32); DEF(IMM8); DEF(IMM32); #undef DEF } :(before "End Globals") map Permitted_arguments; const uint8_t INVALID_OPERANDS = 0xff; // no instruction uses all the argument types :(before "End One-time Setup") init_permitted_arguments(); :(code) void init_permitted_arguments() { //// Class A: just op, no arguments // halt put(Permitted_arguments, "f4", 0x00); // inc put(Permitted_arguments, "40", 0x00); put(Permitted_arguments, "41", 0x00); put(Permitted_arguments, "42", 0x00); put(Permitted_arguments, "43", 0x00); put(Permitted_arguments, "44", 0x00); put(Permitted_arguments, "45", 0x00); put(Permitted_arguments, "46", 0x00); put(Permitted_arguments, "47", 0x00); // dec put(Permitted_arguments, "48", 0x00); put(Permitted_arguments, "49", 0x00); put(Permitted_arguments, "4a", 0x00); put(Permitted_arguments, "4b", 0x00); put(Permitted_arguments, "4c", 0x00); put(Permitted_arguments, "4d", 0x00); put(Permitted_arguments, "4e", 0x00); put(Permitted_arguments, "4f", 0x00); // push put(Permitted_arguments, "50", 0x00); put(Permitted_arguments, "51", 0x00); put(Permitted_arguments, "52", 0x00); put(Permitted_arguments, "53", 0x00); put(Permitted_arguments, "54", 0x00); put(Permitted_arguments, "55", 0x00); put(Permitted_arguments, "56", 0x00); put(Permitted_arguments, "57", 0x00); // pop put(Permitted_arguments, "58", 0x00); put(Permitted_arguments, "59", 0x00); put(Permitted_arguments, "5a", 0x00); put(Permitted_arguments, "5b", 0x00); put(Permitted_arguments, "5c", 0x00); put(Permitted_arguments, "5d", 0x00); put(Permitted_arguments, "5e", 0x00); put(Permitted_arguments, "5f", 0x00); // sign-extend EAX into EDX put(Permitted_arguments, "99", 0x00); // return put(Permitted_arguments, "c3", 0x00); // enable/disable interrupts // not really part of SubX; just needed in low-level boot.subx put(Permitted_arguments, "fa", 0x00); put(Permitted_arguments, "fb", 0x00); //// Class B: just op and disp8 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |0 1 0 0 // jump put(Permitted_arguments, "eb", 0x04); put(Permitted_arguments, "72", 0x04); put(Permitted_arguments, "73", 0x04); put(Permitted_arguments, "74", 0x04); put(Permitted_arguments, "75", 0x04); put(Permitted_arguments, "76", 0x04); put(Permitted_arguments, "77", 0x04); put(Permitted_arguments, "7c", 0x04); put(Permitted_arguments, "7d", 0x04); put(Permitted_arguments, "7e", 0x04); put(Permitted_arguments, "7f", 0x04); //// Class D: just op and disp32 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 1 |0 0 0 0 put(Permitted_arguments, "e8", 0x10); // call put(Permitted_arguments, "e9", 0x10); // jump //// Class E: just op and imm8 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 1 0 |0 0 0 0 put(Permitted_arguments, "cd", 0x20); // software interrupt //// Class F: just op and imm32 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 1 0 0 |0 0 0 0 put(Permitted_arguments, "05", 0x40); // add put(Permitted_arguments, "2d", 0x40); // subtract put(Permitted_arguments, "25", 0x40); // and put(Permitted_arguments, "0d", 0x40); // or put(Permitted_arguments, "35", 0x40); // xor put(Permitted_arguments, "3d", 0x40); // compare put(Permitted_arguments, "68", 0x40); // push // copy put(Permitted_arguments, "b8", 0x40); put(Permitted_arguments, "b9", 0x40); put(Permitted_arguments, "ba", 0x40); put(Permitted_arguments, "bb", 0x40); put(Permitted_arguments, "bc", 0x40); put(Permitted_arguments, "bd", 0x40); put(Permitted_arguments, "be", 0x40); put(Permitted_arguments, "bf", 0x40); //// Class M: using ModR/M byte // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |0 0 0 1 // add put(Permitted_arguments, "01", 0x01); put(Permitted_arguments, "03", 0x01); // subtract put(Permitted_arguments, "29", 0x01); put(Permitted_arguments, "2b", 0x01); // and put(Permitted_arguments, "21", 0x01); put(Permitted_arguments, "23", 0x01); // or put(Permitted_arguments, "09", 0x01); put(Permitted_arguments, "0b", 0x01); // xor put(Permitted_arguments, "31", 0x01); put(Permitted_arguments, "33", 0x01); // compare put(Permitted_arguments, "39", 0x01); put(Permitted_arguments, "3b", 0x01); // copy put(Permitted_arguments, "88", 0x01); put(Permitted_arguments, "89", 0x01); put(Permitted_arguments, "8a", 0x01); put(Permitted_arguments, "8b", 0x01); // swap put(Permitted_arguments, "87", 0x01); // copy address (lea) put(Permitted_arguments, "8d", 0x01); //// Class N: op, ModR/M and subop (not r32) // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |0 0 1 1 put(Permitted_arguments, "8f", 0x03); // pop put(Permitted_arguments, "d3", 0x03); // shift put(Permitted_arguments, "f7", 0x03); // test/not/mul/div put(Permitted_arguments, "ff", 0x03); // jump/push/call //// Class O: op, ModR/M, subop (not r32) and imm8 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 1 0 |0 0 1 1 put(Permitted_arguments, "c1", 0x23); // combine put(Permitted_arguments, "c6", 0x23); // copy //// Class P: op, ModR/M, subop (not r32) and imm32 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 1 0 0 |0 0 1 1 put(Permitted_arguments, "81", 0x43); // combine put(Permitted_arguments, "c7", 0x43); // copy //// Class Q: op, ModR/M and imm32 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 1 0 0 |0 0 0 1 put(Permitted_arguments, "69", 0x41); // multiply // End Init Permitted Operands } #define HAS(bitvector, bit) ((bitvector) & (1 << (bit))) #define SET(bitvector, bit) ((bitvector) | (1 << (bit))) #define CLEAR(bitvector, bit) ((bitvector) & (~(1 << (bit)))) void check_arguments(const line& inst, const word& op) { if (!is_hex_byte(op)) return; uint8_t expected_bitvector = get(Permitted_arguments, op.data); if (HAS(expected_bitvector, MODRM)) { check_arguments_modrm(inst, op); compare_bitvector_modrm(inst, expected_bitvector, maybe_name(op)); } else { compare_bitvector(inst, expected_bitvector, maybe_name(op)); } } //: Many instructions can be checked just by comparing bitvectors. void compare_bitvector(const line& inst, uint8_t expected, const string& maybe_op_name) { if (all_hex_bytes(inst) && has_arguments(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere uint8_t bitvector = compute_expected_argument_bitvector(inst); if (trace_contains_errors()) return; // duplicate argument type if (bitvector == expected) return; // all good with this instruction for (int i = 0; i < NUM_OPERAND_TYPES; ++i, bitvector >>= 1, expected >>= 1) { //? cerr << "comparing " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n'; if ((bitvector & 0x1) == (expected & 0x1)) continue; // all good with this argument const string& optype = Operand_type_name.at(i); if ((bitvector & 0x1) > (expected & 0x1)) raise << "'" << to_string(inst) << "'" << maybe_op_name << ": unexpected " << optype << " argument\n" << end(); else raise << "'" << to_string(inst) << "'" << maybe_op_name << ": missing " << optype << " argument\n" << end(); // continue giving all errors for a single instruction } // ignore settings in any unused bits } string maybe_name(const word& op) { if (!is_hex_byte(op)) return ""; if (!contains_key(Name, op.data)) return ""; // strip stuff in parens from the name const string& s = get(Name, op.data); return " ("+s.substr(0, s.find(" ("))+')'; } uint32_t compute_expected_argument_bitvector(const line& inst) { set arguments_found; uint32_t bitvector = 0; for (int i = /*skip op*/1; i < SIZE(inst.words); ++i) { bitvector = bitvector | expected_bit_for_received_argument(inst.words.at(i), arguments_found, inst); if (trace_contains_errors()) return INVALID_OPERANDS; // duplicate argument type } return bitvector; } bool has_arguments(const line& inst) { return SIZE(inst.words) > first_argument(inst); } int first_argument(const line& inst) { if (inst.words.at(0).data == "0f") return 2; if (inst.words.at(0).data == "f2" || inst.words.at(0).data == "f3") { if (inst.words.at(1).data == "0f") return 3; else return 2; } return 1; } // Scan the metadata of 'w' and return the expected bit corresponding to any argument type. // Also raise an error if metadata contains multiple argument types. uint32_t expected_bit_for_received_argument(const word& w, set& instruction_arguments, const line& inst) { uint32_t bv = 0; bool found = false; for (int i = 0; i < SIZE(w.metadata); ++i) { string/*copy*/ curr = w.metadata.at(i); string expected_metadata = curr; if (curr == "mod" || curr == "rm32" || curr == "r32" || curr == "xm32" || curr == "x32" || curr == "scale" || curr == "index" || curr == "base") expected_metadata = "modrm"; else if (!contains_key(Operand_type, curr)) continue; // ignore unrecognized metadata if (found) { raise << "'" << w.original << "' has conflicting argument types; it should have only one\n" << end(); return INVALID_OPERANDS; } if (instruction_arguments.find(curr) != instruction_arguments.end()) { raise << "'" << to_string(inst) << "': duplicate " << curr << " argument\n" << end(); return INVALID_OPERANDS; } instruction_arguments.insert(curr); bv = (1 << get(Operand_type, expected_metadata)); found = true; } return bv; } void test_conflicting_argument_type() { Hide_errors = true; run( "== code 0x1\n" "cd/software-interrupt 80/imm8/imm32\n" ); CHECK_TRACE_CONTENTS( "error: '80/imm8/imm32' has conflicting argument types; it should have only one\n" ); } //: Instructions computing effective addresses have more complex rules, so //: we'll hard-code a common set of instruction-decoding rules. void test_check_missing_mod_argument() { Hide_errors = true; run( "== code 0x1\n" "81 0/add/subop 3/rm32/ebx 1/imm32\n" ); CHECK_TRACE_CONTENTS( "error: '81 0/add/subop 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing mod argument\n" ); } void check_arguments_modrm(const line& inst, const word& op) { if (all_hex_bytes(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere check_argument_metadata_present(inst, "mod", op); if (!has_argument_metadata(inst, "rm32") && !has_argument_metadata(inst, "xm32")) raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing rm32 (or xm32) argument\n" << end(); // no check for r32; some instructions don't use it; just assume it's 0 if missing if (op.data == "81" || op.data == "8f" || op.data == "f7" || op.data == "ff") { // keep sync'd with 'help subop' check_argument_metadata_present(inst, "subop", op); check_argument_metadata_absent(inst, "r32", op, "should be replaced by subop"); check_argument_metadata_absent(inst, "x32", op, "should be replaced by subop"); } if (trace_contains_errors()) return; if (metadata_m32(inst).data != "4") return; // SIB byte checks uint8_t mod = hex_byte(metadata(inst, "mod").data); if (mod != /*direct*/3) { check_argument_metadata_present(inst, "base", op); check_argument_metadata_present(inst, "index", op); // otherwise why go to SIB? } else { check_argument_metadata_absent(inst, "base", op, "direct mode"); check_argument_metadata_absent(inst, "index", op, "direct mode"); } // no check for scale; 0 (2**0 = 1) by default } word metadata_m32(const line& inst) { for (int i = 0; i < SIZE(inst.words); ++i) if (has_argument_metadata(inst.words.at(i), "rm32") || has_argument_metadata(inst.words.at(i), "xm32")) return inst.words.at(i); assert(false); } // same as compare_bitvector, with one additional exception for modrm-based // instructions: they may use an extra displacement on occasion void compare_bitvector_modrm(const line& inst, uint8_t expected, const string& maybe_op_name) { if (all_hex_bytes(inst) && has_arguments(inst)) return; // deliberately programming in raw hex; we'll raise a warning elsewhere uint8_t bitvector = compute_expected_argument_bitvector(inst); if (trace_contains_errors()) return; // duplicate argument type // update 'expected' bitvector for the additional exception if (has_argument_metadata(inst, "mod")) { int32_t mod = parse_int(metadata(inst, "mod").data); switch (mod) { case 0: if (has_argument_metadata(inst, "rm32") && parse_int(metadata(inst, "rm32").data) == 5) expected |= (1<>= 1, expected >>= 1) { //? cerr << "comparing for modrm " << HEXBYTE << NUM(bitvector) << " with " << NUM(expected) << '\n'; if ((bitvector & 0x1) == (expected & 0x1)) continue; // all good with this argument const string& optype = Operand_type_name.at(i); if ((bitvector & 0x1) > (expected & 0x1)) raise << "'" << to_string(inst) << "'" << maybe_op_name << ": unexpected " << optype << " argument\n" << end(); else raise << "'" << to_string(inst) << "'" << maybe_op_name << ": missing " << optype << " argument\n" << end(); // continue giving all errors for a single instruction } // ignore settings in any unused bits } void check_argument_metadata_present(const line& inst, const string& type, const word& op) { if (!has_argument_metadata(inst, type)) raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": missing " << type << " argument\n" << end(); } void check_argument_metadata_absent(const line& inst, const string& type, const word& op, const string& msg) { if (has_argument_metadata(inst, type)) raise << "'" << to_string(inst) << "'" << maybe_name(op) << ": unexpected " << type << " argument (" << msg << ")\n" << end(); } void test_modrm_with_displacement() { Reg[EAX].u = 0x1; transform( "== code 0x1\n" // just avoid null pointer "8b/copy 1/mod/lookup+disp8 0/rm32/EAX 2/r32/EDX 4/disp8\n" // copy *(EAX+4) to EDX ); CHECK_TRACE_COUNT("error", 0); } void test_check_missing_disp8() { Hide_errors = true; transform( "== code 0x1\n" "89/copy 1/mod/lookup+disp8 0/rm32/EAX 1/r32/ECX\n" // missing disp8 ); CHECK_TRACE_CONTENTS( "error: '89/copy 1/mod/lookup+disp8 0/rm32/EAX 1/r32/ECX' (copy r32 to rm32): missing disp8 argument\n" ); } void test_check_missing_disp32() { Hide_errors = true; transform( "== code 0x1\n" "8b/copy 0/mod/indirect 5/rm32/.disp32 2/r32/EDX\n" // missing disp32 ); CHECK_TRACE_CONTENTS( "error: '8b/copy 0/mod/indirect 5/rm32/.disp32 2/r32/EDX' (copy rm32 to r32): missing disp32 argument\n" ); } void test_conflicting_arguments_in_modrm_instruction() { Hide_errors = true; run( "== code 0x1\n" "01/add 0/mod 3/mod\n" ); CHECK_TRACE_CONTENTS( "error: '01/add 0/mod 3/mod' has conflicting mod arguments\n" ); } void test_conflicting_argument_type_modrm() { Hide_errors = true; run( "== code 0x1\n" "01/add 0/mod 3/rm32/r32\n" ); CHECK_TRACE_CONTENTS( "error: '3/rm32/r32' has conflicting argument types; it should have only one\n" ); } void test_check_missing_rm32_argument() { Hide_errors = true; run( "== code 0x1\n" "81 0/add/subop 0/mod 1/imm32\n" ); CHECK_TRACE_CONTENTS( "error: '81 0/add/subop 0/mod 1/imm32' (combine rm32 with imm32 based on subop): missing rm32 (or xm32) argument\n" ); } void test_check_missing_subop_argument() { Hide_errors = true; run( "== code 0x1\n" "81 0/mod 3/rm32/ebx 1/imm32\n" ); CHECK_TRACE_CONTENTS( "error: '81 0/mod 3/rm32/ebx 1/imm32' (combine rm32 with imm32 based on subop): missing subop argument\n" ); } void test_check_missing_base_argument() { Hide_errors = true; run( "== code 0x1\n" "81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32\n" ); CHECK_TRACE_CONTENTS( "error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 1/imm32' (combine rm32 with imm32 based on subop): missing base argument\n" ); } void test_check_missing_index_argument() { Hide_errors = true; run( "== code 0x1\n" "81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32\n" ); CHECK_TRACE_CONTENTS( "error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 0/base 1/imm32' (combine rm32 with imm32 based on subop): missing index argument\n" ); } void test_check_missing_base_argument_2() { Hide_errors = true; run( "== code 0x1\n" "81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32\n" ); CHECK_TRACE_CONTENTS( "error: '81 0/add/subop 0/mod/indirect 4/rm32/use-sib 2/index 3/scale 1/imm32' (combine rm32 with imm32 based on subop): missing base argument\n" ); } void test_check_extra_displacement() { Hide_errors = true; run( "== code 0x1\n" "89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 4/disp8\n" ); CHECK_TRACE_CONTENTS( "error: '89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 4/disp8' (copy r32 to rm32): unexpected disp8 argument\n" ); } void test_check_duplicate_argument() { Hide_errors = true; run( "== code 0x1\n" "89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 1/r32\n" ); CHECK_TRACE_CONTENTS( "error: '89/copy 0/mod/indirect 0/rm32/EAX 1/r32/ECX 1/r32': duplicate r32 argument\n" ); } void test_check_base_argument_not_needed_in_direct_mode() { run( "== code 0x1\n" "81 0/add/subop 3/mod/indirect 4/rm32/use-sib 1/imm32\n" ); CHECK_TRACE_COUNT("error", 0); } void test_extra_modrm() { Hide_errors = true; run( "== code 0x1\n" "59/pop-to-ECX 3/mod/direct 1/rm32/ECX 4/r32/ESP\n" ); CHECK_TRACE_CONTENTS( "error: '59/pop-to-ECX 3/mod/direct 1/rm32/ECX 4/r32/ESP' (pop top of stack to ECX): unexpected modrm argument\n" ); } //:: similarly handle multi-byte opcodes void check_arguments_0f(const line& inst) { assert(inst.words.at(0).data == "0f"); if (SIZE(inst.words) == 1) { raise << "opcode '0f' requires a second opcode\n" << end(); return; } word op = preprocess_op(inst.words.at(1)); if (!contains_key(Name_0f, op.data)) { raise << "unknown 2-byte opcode '0f " << op.data << "'\n" << end(); return; } check_arguments_0f(inst, op); } void check_arguments_f3(const line& inst) { assert(inst.words.at(0).data == "f3"); if (SIZE(inst.words) == 1) { raise << "opcode 'f3' requires a second opcode\n" << end(); return; } word op = preprocess_op(inst.words.at(1)); if (op.data == "0f") { word op2 = preprocess_op(inst.words.at(2)); check_arguments_f3_0f(inst, op2); return; } if (!contains_key(Name_f3, op.data)) { raise << "unknown 2-byte opcode 'f3 " << op.data << "'\n" << end(); return; } check_arguments_f3(inst, op); } void test_check_missing_disp32_argument() { Hide_errors = true; run( "== code 0x1\n" " 0f 84 # jmp if ZF to ??\n" ); CHECK_TRACE_CONTENTS( "error: '0f 84' (jump disp32 bytes away if equal, if ZF is set): missing disp32 argument\n" ); } void test_0f_opcode_with_modrm() { transform( "== code 0x1\n" "0f af/multiply 2/mod/*+disp32 5/rm32/ebp 8/disp32 0/r32\n" ); CHECK_TRACE_DOESNT_CONTAIN_ERRORS(); } :(before "End Globals") map Permitted_arguments_0f; :(before "End Init Permitted Operands") //// Class D: just op and disp32 // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 1 |0 0 0 0 put_new(Permitted_arguments_0f, "82", 0x10); put_new(Permitted_arguments_0f, "83", 0x10); put_new(Permitted_arguments_0f, "84", 0x10); put_new(Permitted_arguments_0f, "85", 0x10); put_new(Permitted_arguments_0f, "86", 0x10); put_new(Permitted_arguments_0f, "87", 0x10); put_new(Permitted_arguments_0f, "8c", 0x10); put_new(Permitted_arguments_0f, "8d", 0x10); put_new(Permitted_arguments_0f, "8e", 0x10); put_new(Permitted_arguments_0f, "8f", 0x10); //// Class M: using ModR/M byte // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |0 0 0 1 put_new(Permitted_arguments_0f, "2f", 0x01); // compare floats put_new(Permitted_arguments_0f, "af", 0x01); // multiply ints // setcc put_new(Permitted_arguments_0f, "92", 0x01); put_new(Permitted_arguments_0f, "93", 0x01); put_new(Permitted_arguments_0f, "94", 0x01); put_new(Permitted_arguments_0f, "95", 0x01); put_new(Permitted_arguments_0f, "96", 0x01); put_new(Permitted_arguments_0f, "97", 0x01); put_new(Permitted_arguments_0f, "9c", 0x01); put_new(Permitted_arguments_0f, "9d", 0x01); put_new(Permitted_arguments_0f, "9e", 0x01); put_new(Permitted_arguments_0f, "9f", 0x01); :(before "End Globals") map Permitted_arguments_f3; map Permitted_arguments_f3_0f; :(before "End Init Permitted Operands") //// Class M: using ModR/M byte // imm32 imm8 disp32 |disp16 disp8 subop modrm // 0 0 0 |0 0 0 1 put_new(Permitted_arguments_f3_0f, "10", 0x01); // copy xm32 to x32 put_new(Permitted_arguments_f3_0f, "11", 0x01); // copy x32 to xm32 put_new(Permitted_arguments_f3_0f, "2a", 0x01); // convert-to-float put_new(Permitted_arguments_f3_0f, "2c", 0x01); // truncate-to-int put_new(Permitted_arguments_f3_0f, "2d", 0x01); // convert-to-int put_new(Permitted_arguments_f3_0f, "51", 0x01); // square root put_new(Permitted_arguments_f3_0f, "52", 0x01); // inverse square root put_new(Permitted_arguments_f3_0f, "53", 0x01); // reciprocal put_new(Permitted_arguments_f3_0f, "58", 0x01); // add floats put_new(Permitted_arguments_f3_0f, "59", 0x01); // multiply floats put_new(Permitted_arguments_f3_0f, "5c", 0x01); // subtract floats put_new(Permitted_arguments_f3_0f, "5d", 0x01); // minimum of floats put_new(Permitted_arguments_f3_0f, "5e", 0x01); // divide floats put_new(Permitted_arguments_f3_0f, "5f", 0x01); // maximum of floats :(code) void check_arguments_0f(const line& inst, const word& op) { uint8_t expected_bitvector = get(Permitted_arguments_0f, op.data); if (HAS(expected_bitvector, MODRM)) { check_arguments_modrm(inst, op); compare_bitvector_modrm(inst, expected_bitvector, maybe_name_0f(op)); } else { compare_bitvector(inst, CLEAR(expected_bitvector, MODRM), maybe_name_0f(op)); } } void check_arguments_f3(const line& inst, const word& op) { uint8_t expected_bitvector = get(Permitted_arguments_f3, op.data); if (HAS(expected_bitvector, MODRM)) { check_arguments_modrm(inst, op); compare_bitvector_modrm(inst, expected_bitvector, maybe_name_f3(op)); } else { compare_bitvector(inst, CLEAR(expected_bitvector, MODRM), maybe_name_f3(op)); } } void check_arguments_f3_0f(const line& inst, const word& op) { uint8_t expected_bitvector = get(Permitted_arguments_f3_0f, op.data); if (HAS(expected_bitvector, MODRM)) { check_arguments_modrm(inst, op); compare_bitvector_modrm(inst, expected_bitvector, maybe_name_f3_0f(op)); } else { compare_bitvector(inst, CLEAR(expected_bitvector, MODRM), maybe_name_f3_0f(op)); } } string maybe_name_0f(const word& op) { if (!is_hex_byte(op)) return ""; if (!contains_key(Name_0f, op.data)) return ""; // strip stuff in parens from the name const string& s = get(Name_0f, op.data); return " ("+s.substr(0, s.find(" ("))+')'; } string maybe_name_f3(const word& op) { if (!is_hex_byte(op)) return ""; if (!contains_key(Name_f3, op.data)) return ""; // strip stuff in parens from the name const string& s = get(Name_f3, op.data); return " ("+s.substr(0, s.find(" ("))+')'; } string maybe_name_f3_0f(const word& op) { if (!is_hex_byte(op)) return ""; if (!contains_key(Name_f3_0f, op.data)) return ""; // strip stuff in parens from the name const string& s = get(Name_f3_0f, op.data); return " ("+s.substr(0, s.find(" ("))+')'; } string tolower(const char* s) { ostringstream out; for (/*nada*/; *s; ++s) out << static_cast(tolower(*s)); return out.str(); } #undef HAS #undef SET #undef CLEAR :(before "End Includes") #include