mu/linux/bootstrap/022float.cc

520 lines
15 KiB
C++

//: floating-point operations
//:: copy
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "10", "copy xm32 to x32 (movss)");
put_new(Name_f3_0f, "11", "copy x32 to xm32 (movss)");
:(code)
void test_copy_x32_to_x32() {
Xmm[3] = 0.5;
run(
"== code 0x1\n" // code segment
// op ModR/M SIB displacement immediate
"f3 0f 11 d8 \n" // copy XMM3 to XMM0
// ModR/M in binary: 11 (direct mode) 011 (src XMM3) 000 (dest XMM0)
);
CHECK_TRACE_CONTENTS(
"run: copy XMM3 to x/m32\n"
"run: x/m32 is XMM0\n"
"run: storing 0.5\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x10: { // copy x/m32 to x32
const uint8_t modrm = next();
const uint8_t rdest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "copy x/m32 to " << Xname[rdest] << end();
float* src = effective_address_float(modrm);
Xmm[rdest] = *src; // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(float) == 4 on the host as well.
trace(Callstack_depth+1, "run") << "storing " << Xmm[rdest] << end();
break;
}
case 0x11: { // copy x32 to x/m32
const uint8_t modrm = next();
const uint8_t rsrc = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "copy " << Xname[rsrc] << " to x/m32" << end();
float* dest = effective_address_float(modrm);
*dest = Xmm[rsrc]; // Write multiple elements of vector<uint8_t> at once. Assumes sizeof(float) == 4 on the host as well.
trace(Callstack_depth+1, "run") << "storing " << *dest << end();
break;
}
:(code)
void test_copy_x32_to_mem_at_xm32() {
Xmm[3] = 0.5;
Reg[EAX].i = 0x60;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 11 18 \n" // copy XMM3 to *EAX
// ModR/M in binary: 00 (indirect mode) 011 (src XMM3) 000 (dest EAX)
);
CHECK_TRACE_CONTENTS(
"run: copy XMM3 to x/m32\n"
"run: effective address is 0x00000060 (EAX)\n"
"run: storing 0.5\n"
);
}
void test_copy_mem_at_xm32_to_x32() {
Reg[EAX].i = 0x2000;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 10 18 \n" // copy *EAX to XMM3
"== data 0x2000\n"
"00 00 00 3f\n" // 0x3f000000 = 0.5
);
CHECK_TRACE_CONTENTS(
"run: copy x/m32 to XMM3\n"
"run: effective address is 0x00002000 (EAX)\n"
"run: storing 0.5\n"
);
}
//:: convert to floating point
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "2a", "convert integer to floating-point (cvtsi2ss)");
:(code)
void test_cvtsi2ss() {
Reg[EAX].i = 10;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 2a c0 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 000 (EAX)
);
CHECK_TRACE_CONTENTS(
"run: convert r/m32 to XMM0\n"
"run: r/m32 is EAX\n"
"run: XMM0 is now 10\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x2a: { // convert integer to float
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "convert r/m32 to " << Xname[dest] << end();
const int32_t* src = effective_address(modrm);
Xmm[dest] = *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: convert floating point to int
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "2d", "convert floating-point to int (cvtss2si)");
put_new(Name_f3_0f, "2c", "truncate floating-point to int (cvttss2si)");
:(code)
void test_cvtss2si() {
Xmm[0] = 9.8;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 2d c0 \n"
// ModR/M in binary: 11 (direct mode) 000 (EAX) 000 (XMM0)
);
CHECK_TRACE_CONTENTS(
"run: convert x/m32 to EAX\n"
"run: x/m32 is XMM0\n"
"run: EAX is now 0x0000000a\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x2d: { // convert float to integer
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "convert x/m32 to " << rname(dest) << end();
const float* src = effective_address_float(modrm);
Reg[dest].i = round(*src);
trace(Callstack_depth+1, "run") << rname(dest) << " is now 0x" << HEXWORD << Reg[dest].i << end();
break;
}
:(code)
void test_cvttss2si() {
Xmm[0] = 9.8;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 2c c0 \n"
// ModR/M in binary: 11 (direct mode) 000 (EAX) 000 (XMM0)
);
CHECK_TRACE_CONTENTS(
"run: truncate x/m32 to EAX\n"
"run: x/m32 is XMM0\n"
"run: EAX is now 0x00000009\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x2c: { // truncate float to integer
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "truncate x/m32 to " << rname(dest) << end();
const float* src = effective_address_float(modrm);
Reg[dest].i = trunc(*src);
trace(Callstack_depth+1, "run") << rname(dest) << " is now 0x" << HEXWORD << Reg[dest].i << end();
break;
}
//:: add
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "58", "add floats (addss)");
:(code)
void test_addss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 58 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: add x/m32 to XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 5\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x58: { // add x/m32 to x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "add x/m32 to " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] += *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: subtract
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "5c", "subtract floats (subss)");
:(code)
void test_subss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 5c c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: subtract x/m32 from XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 1\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x5c: { // subtract x/m32 from x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "subtract x/m32 from " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] -= *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: multiply
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "59", "multiply floats (mulss)");
:(code)
void test_mulss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 59 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: multiply XMM0 by x/m32\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 6\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x59: { // multiply x32 by x/m32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "multiply " << Xname[dest] << " by x/m32" << end();
const float* src = effective_address_float(modrm);
Xmm[dest] *= *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: divide
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "5e", "divide floats (divss)");
:(code)
void test_divss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 5e c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: divide XMM0 by x/m32\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 1.5\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x5e: { // divide x32 by x/m32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "divide " << Xname[dest] << " by x/m32" << end();
const float* src = effective_address_float(modrm);
Xmm[dest] /= *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: min
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "5d", "minimum of two floats (minss)");
:(code)
void test_minss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 5d c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: minimum of XMM0 and x/m32\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 2\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x5d: { // minimum of x32, x/m32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "minimum of " << Xname[dest] << " and x/m32" << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = min(Xmm[dest], *src);
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: max
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "5f", "maximum of two floats (maxss)");
:(code)
void test_maxss() {
Xmm[0] = 3.0;
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 5f c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: maximum of XMM0 and x/m32\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 3\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x5f: { // maximum of x32, x/m32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "maximum of " << Xname[dest] << " and x/m32" << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = max(Xmm[dest], *src);
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: reciprocal
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "53", "reciprocal of float (rcpss)");
:(code)
void test_rcpss() {
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 53 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: reciprocal of x/m32 into XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 0.5\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x53: { // reciprocal of x/m32 into x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "reciprocal of x/m32 into " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = 1.0 / *src;
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
//:: square root
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "51", "square root of float (sqrtss)");
:(code)
void test_sqrtss() {
Xmm[1] = 2.0;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 51 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: square root of x/m32 into XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 1.41421\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x51: { // square root of x/m32 into x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "square root of x/m32 into " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = sqrt(*src);
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
:(before "End Includes")
#include <math.h>
//:: inverse square root
:(before "End Initialize Op Names")
put_new(Name_f3_0f, "52", "inverse square root of float (rsqrtss)");
:(code)
void test_rsqrtss() {
Xmm[1] = 0.01;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
"f3 0f 52 c1 \n"
// ModR/M in binary: 11 (direct mode) 000 (XMM0) 001 (XMM1)
);
CHECK_TRACE_CONTENTS(
"run: inverse square root of x/m32 into XMM0\n"
"run: x/m32 is XMM1\n"
"run: XMM0 is now 10\n"
);
}
:(before "End Three-Byte Opcodes Starting With f3 0f")
case 0x52: { // inverse square root of x/m32 into x32
const uint8_t modrm = next();
const uint8_t dest = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "inverse square root of x/m32 into " << Xname[dest] << end();
const float* src = effective_address_float(modrm);
Xmm[dest] = 1.0 / sqrt(*src);
trace(Callstack_depth+1, "run") << Xname[dest] << " is now " << Xmm[dest] << end();
break;
}
:(code)
float* effective_address_float(uint8_t modrm) {
const uint8_t mod = (modrm>>6);
// ignore middle 3 'reg opcode' bits
const uint8_t rm = modrm & 0x7;
if (mod == 3) {
// mod 3 is just register direct addressing
trace(Callstack_depth+1, "run") << "x/m32 is " << Xname[rm] << end();
return &Xmm[rm];
}
uint32_t addr = effective_address_number(modrm);
trace(Callstack_depth+1, "run") << "effective address contains " << read_mem_f32(addr) << end();
return mem_addr_f32(addr);
}
//: compare
:(before "End Initialize Op Names")
put_new(Name_0f, "2f", "compare: set CF if x32 < xm32 (comiss)");
:(code)
void test_compare_x32_with_mem_at_rm32() {
Reg[EAX].i = 0x2000;
Xmm[3] = 0.5;
run(
"== code 0x1\n"
// op ModR/M SIB displacement immediate
" 0f 2f 18 \n" // compare XMM3 with *EAX
// ModR/M in binary: 00 (indirect mode) 011 (lhs XMM3) 000 (rhs EAX)
"== data 0x2000\n"
"00 00 00 00\n" // 0x00000000 = 0.0
);
CHECK_TRACE_CONTENTS(
"run: compare XMM3 with x/m32\n"
"run: effective address is 0x00002000 (EAX)\n"
"run: SF=0; ZF=0; CF=0; OF=0\n"
);
}
:(before "End Two-Byte Opcodes Starting With 0f")
case 0x2f: { // set CF if x32 < x/m32
const uint8_t modrm = next();
const uint8_t reg1 = (modrm>>3)&0x7;
trace(Callstack_depth+1, "run") << "compare " << Xname[reg1] << " with x/m32" << end();
const float* arg2 = effective_address_float(modrm);
// Flag settings carefully copied from the Intel manual.
// See also https://stackoverflow.com/questions/7057501/x86-assembler-floating-point-compare/7057771#7057771
SF = ZF = CF = OF = false;
if (Xmm[reg1] == *arg2) ZF = true;
if (Xmm[reg1] < *arg2) CF = true;
trace(Callstack_depth+1, "run") << "SF=" << SF << "; ZF=" << ZF << "; CF=" << CF << "; OF=" << OF << end();
break;
}