mu/030container.cc
Kartik Agaram 4a943d4ed3 5001 - drop the :(scenario) DSL
I've been saying for a while[1][2][3] that adding extra abstractions makes
things harder for newcomers, and adding new notations doubly so. And then
I notice this DSL in my own backyard. Makes me feel like a hypocrite.

[1] https://news.ycombinator.com/item?id=13565743#13570092
[2] https://lobste.rs/s/to8wpr/configuration_files_are_canary_warning
[3] https://lobste.rs/s/mdmcdi/little_languages_by_jon_bentley_1986#c_3miuf2

The implementation of the DSL was also highly hacky:

a) It was happening in the tangle/ tool, but was utterly unrelated to tangling
layers.

b) There were several persnickety constraints on the different kinds of
lines and the specific order they were expected in. I kept finding bugs
where the translator would silently do the wrong thing. Or the error messages
sucked, and readers may be stuck looking at the generated code to figure
out what happened. Fixing error messages would require a lot more code,
which is one of my arguments against DSLs in the first place: they may
be easy to implement, but they're hard to design to go with the grain of
the underlying platform. They require lots of iteration. Is that effort
worth prioritizing in this project?

On the other hand, the DSL did make at least some readers' life easier,
the ones who weren't immediately put off by having to learn a strange syntax.
There were fewer quotes to parse, fewer backslash escapes.

Anyway, since there are also people who dislike having to put up with strange
syntaxes, we'll call that consideration a wash and tear this DSL out.

---

This commit was sheer drudgery. Hopefully it won't need to be redone with
a new DSL because I grow sick of backslashes.
2019-03-12 19:14:12 -07:00

820 lines
27 KiB
C++

//: Containers contain a fixed number of elements of different types.
:(before "End Mu Types Initialization")
//: We'll use this container as a running example in scenarios below.
type_ordinal point = put(Type_ordinal, "point", Next_type_ordinal++);
get_or_insert(Type, point); // initialize
get(Type, point).kind = CONTAINER;
get(Type, point).name = "point";
get(Type, point).elements.push_back(reagent("x:number"));
get(Type, point).elements.push_back(reagent("y:number"));
//: Containers can be copied around with a single instruction just like
//: numbers, no matter how large they are.
//: Tests in this layer often explicitly set up memory before reading it as a
//: container. Don't do this in general. I'm tagging such cases with /unsafe;
//: they'll be exceptions to later checks.
:(code)
void test_copy_multiple_locations() {
run(
"def main [\n"
" 1:num <- copy 34\n"
" 2:num <- copy 35\n"
" 3:point <- copy 1:point/unsafe\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 3\n"
"mem: storing 35 in location 4\n"
);
}
//: trying to copy to a differently-typed destination will fail
void test_copy_checks_size() {
Hide_errors = true;
run(
"def main [\n"
" 2:point <- copy 1:num\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: can't copy '1:num' to '2:point'; types don't match\n"
);
}
:(before "End Mu Types Initialization")
// A more complex example container, containing another container as one of
// its elements.
type_ordinal point_number = put(Type_ordinal, "point-number", Next_type_ordinal++);
get_or_insert(Type, point_number); // initialize
get(Type, point_number).kind = CONTAINER;
get(Type, point_number).name = "point-number";
get(Type, point_number).elements.push_back(reagent("xy:point"));
get(Type, point_number).elements.push_back(reagent("z:number"));
:(code)
void test_copy_handles_nested_container_elements() {
run(
"def main [\n"
" 12:num <- copy 34\n"
" 13:num <- copy 35\n"
" 14:num <- copy 36\n"
" 15:point-number <- copy 12:point-number/unsafe\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 36 in location 17\n"
);
}
//: products of recipes can include containers
void test_return_container() {
run(
"def main [\n"
" 3:point <- f 2\n"
"]\n"
"def f [\n"
" 12:num <- next-ingredient\n"
" 13:num <- copy 35\n"
" return 12:point/raw\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"run: result 0 is [2, 35]\n"
"mem: storing 2 in location 3\n"
"mem: storing 35 in location 4\n"
);
}
//: Containers can be checked for equality with a single instruction just like
//: numbers, no matter how large they are.
void test_compare_multiple_locations() {
run(
"def main [\n"
" 1:num <- copy 34\n" // first
" 2:num <- copy 35\n"
" 3:num <- copy 36\n"
" 4:num <- copy 34\n" // second
" 5:num <- copy 35\n"
" 6:num <- copy 36\n"
" 7:bool <- equal 1:point-number/raw, 4:point-number/unsafe\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 1 in location 7\n"
);
}
void test_compare_multiple_locations_2() {
run(
"def main [\n"
" 1:num <- copy 34\n" // first
" 2:num <- copy 35\n"
" 3:num <- copy 36\n"
" 4:num <- copy 34\n" // second
" 5:num <- copy 35\n"
" 6:num <- copy 37\n" // different
" 7:bool <- equal 1:point-number/raw, 4:point-number/unsafe\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 0 in location 7\n"
);
}
:(before "End size_of(type) Special-cases")
if (type->value == -1) return 1; // error value, but we'll raise it elsewhere
if (type->value == 0) return 1;
if (!contains_key(Type, type->value)) {
raise << "no such type " << type->value << '\n' << end();
return 0;
}
type_info t = get(Type, type->value);
if (t.kind == CONTAINER) {
// size of a container is the sum of the sizes of its elements
int result = 0;
for (int i = 0; i < SIZE(t.elements); ++i) {
// todo: strengthen assertion to disallow mutual type recursion
if (t.elements.at(i).type->value == type->value) {
raise << "container " << t.name << " can't include itself as a member\n" << end();
return 0;
}
result += size_of(element_type(type, i));
}
return result;
}
:(code)
void test_stash_container() {
run(
"def main [\n"
" 1:num <- copy 34\n" // first
" 2:num <- copy 35\n"
" 3:num <- copy 36\n"
" stash [foo:], 1:point-number/raw\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"app: foo: 34 35 36\n"
);
}
//:: To access elements of a container, use 'get'
//: 'get' takes a 'base' container and an 'offset' into it and returns the
//: appropriate element of the container value.
void test_get() {
run(
"def main [\n"
" 12:num <- copy 34\n"
" 13:num <- copy 35\n"
" 15:num <- get 12:point/raw, 1:offset\n" // unsafe
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 35 in location 15\n"
);
}
:(before "End Primitive Recipe Declarations")
GET,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "get", GET);
:(before "End Primitive Recipe Checks")
case GET: {
if (SIZE(inst.ingredients) != 2) {
raise << maybe(get(Recipe, r).name) << "'get' expects exactly 2 ingredients in '" << to_original_string(inst) << "'\n" << end();
break;
}
reagent/*copy*/ base = inst.ingredients.at(0); // new copy for every invocation
// Update GET base in Check
if (!base.type) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'get' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
const type_tree* base_type = base.type;
// Update GET base_type in Check
if (!base_type->atom || base_type->value == 0 || !contains_key(Type, base_type->value) || get(Type, base_type->value).kind != CONTAINER) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'get' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
const reagent& offset = inst.ingredients.at(1);
if (!is_literal(offset) || !is_mu_scalar(offset)) {
raise << maybe(get(Recipe, r).name) << "second ingredient of 'get' should have type 'offset', but got '" << inst.ingredients.at(1).original_string << "'\n" << end();
break;
}
int offset_value = 0;
if (is_integer(offset.name)) {
offset_value = to_integer(offset.name);
}
// End update GET offset_value in Check
if (offset_value < 0 || offset_value >= SIZE(get(Type, base_type->value).elements)) {
raise << maybe(get(Recipe, r).name) << "invalid offset '" << offset_value << "' for '" << get(Type, base_type->value).name << "'\n" << end();
break;
}
if (inst.products.empty()) break;
reagent/*copy*/ product = inst.products.at(0);
// Update GET product in Check
//: use base.type rather than base_type because later layers will introduce compound types
const reagent/*copy*/ element = element_type(base.type, offset_value);
if (!types_coercible(product, element)) {
raise << maybe(get(Recipe, r).name) << "'get " << base.original_string << ", " << offset.original_string << "' should write to " << names_to_string_without_quotes(element.type) << " but '" << product.name << "' has type " << names_to_string_without_quotes(product.type) << '\n' << end();
break;
}
break;
}
:(before "End Primitive Recipe Implementations")
case GET: {
reagent/*copy*/ base = current_instruction().ingredients.at(0);
// Update GET base in Run
int base_address = base.value;
if (base_address == 0) {
raise << maybe(current_recipe_name()) << "tried to access location 0 in '" << to_original_string(current_instruction()) << "'\n" << end();
break;
}
const type_tree* base_type = base.type;
// Update GET base_type in Run
int offset = ingredients.at(1).at(0);
if (offset < 0 || offset >= SIZE(get(Type, base_type->value).elements)) break; // copied from Check above
int src = base_address;
for (int i = 0; i < offset; ++i)
src += size_of(element_type(base.type, i));
trace(Callstack_depth+1, "run") << "address to copy is " << src << end();
//: use base.type rather than base_type because later layers will introduce compound types
reagent/*copy*/ element = element_type(base.type, offset);
element.set_value(src);
trace(Callstack_depth+1, "run") << "its type is " << names_to_string(element.type) << end();
// Read element
products.push_back(read_memory(element));
break;
}
:(code)
const reagent element_type(const type_tree* type, int offset_value) {
assert(offset_value >= 0);
const type_tree* base_type = type;
// Update base_type in element_type
assert(contains_key(Type, base_type->value));
assert(!get(Type, base_type->value).name.empty());
const type_info& info = get(Type, base_type->value);
assert(info.kind == CONTAINER);
if (offset_value >= SIZE(info.elements)) return reagent(); // error handled elsewhere
reagent/*copy*/ element = info.elements.at(offset_value);
// End element_type Special-cases
return element;
}
void test_get_handles_nested_container_elements() {
run(
"def main [\n"
" 12:num <- copy 34\n"
" 13:num <- copy 35\n"
" 14:num <- copy 36\n"
" 15:num <- get 12:point-number/raw, 1:offset\n" // unsafe
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 36 in location 15\n"
);
}
void test_get_out_of_bounds() {
Hide_errors = true;
run(
"def main [\n"
" 12:num <- copy 34\n"
" 13:num <- copy 35\n"
" 14:num <- copy 36\n"
" get 12:point-number/raw, 2:offset\n" // point-number occupies 3 locations but has only 2 fields; out of bounds
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: invalid offset '2' for 'point-number'\n"
);
}
void test_get_out_of_bounds_2() {
Hide_errors = true;
run(
"def main [\n"
" 12:num <- copy 34\n"
" 13:num <- copy 35\n"
" 14:num <- copy 36\n"
" get 12:point-number/raw, -1:offset\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: invalid offset '-1' for 'point-number'\n"
);
}
void test_get_product_type_mismatch() {
Hide_errors = true;
run(
"def main [\n"
" 12:num <- copy 34\n"
" 13:num <- copy 35\n"
" 14:num <- copy 36\n"
" 15:&:num <- get 12:point-number/raw, 1:offset\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: 'get 12:point-number/raw, 1:offset' should write to number but '15' has type (address number)\n"
);
}
//: we might want to call 'get' without saving the results, say in a sandbox
void test_get_without_product() {
run(
"def main [\n"
" 12:num <- copy 34\n"
" 13:num <- copy 35\n"
" get 12:point/raw, 1:offset\n" // unsafe
"]\n"
);
// just don't die
}
//:: To write to elements of containers, use 'put'.
void test_put() {
run(
"def main [\n"
" 12:num <- copy 34\n"
" 13:num <- copy 35\n"
" $clear-trace\n"
" 12:point <- put 12:point, 1:offset, 36\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 36 in location 13"
);
CHECK_TRACE_DOESNT_CONTAIN("mem: storing 34 in location 12");
}
:(before "End Primitive Recipe Declarations")
PUT,
:(before "End Primitive Recipe Numbers")
put(Recipe_ordinal, "put", PUT);
:(before "End Primitive Recipe Checks")
case PUT: {
if (SIZE(inst.ingredients) != 3) {
raise << maybe(get(Recipe, r).name) << "'put' expects exactly 3 ingredients in '" << to_original_string(inst) << "'\n" << end();
break;
}
reagent/*copy*/ base = inst.ingredients.at(0);
// Update PUT base in Check
if (!base.type) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'put' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
const type_tree* base_type = base.type;
// Update PUT base_type in Check
if (!base_type->atom || base_type->value == 0 || !contains_key(Type, base_type->value) || get(Type, base_type->value).kind != CONTAINER) {
raise << maybe(get(Recipe, r).name) << "first ingredient of 'put' should be a container, but got '" << inst.ingredients.at(0).original_string << "'\n" << end();
break;
}
reagent/*copy*/ offset = inst.ingredients.at(1);
// Update PUT offset in Check
if (!is_literal(offset) || !is_mu_scalar(offset)) {
raise << maybe(get(Recipe, r).name) << "second ingredient of 'put' should have type 'offset', but got '" << inst.ingredients.at(1).original_string << "'\n" << end();
break;
}
int offset_value = 0;
//: later layers will permit non-integer offsets
if (is_integer(offset.name)) {
offset_value = to_integer(offset.name);
if (offset_value < 0 || offset_value >= SIZE(get(Type, base_type->value).elements)) {
raise << maybe(get(Recipe, r).name) << "invalid offset '" << offset_value << "' for '" << get(Type, base_type->value).name << "'\n" << end();
break;
}
}
else {
offset_value = offset.value;
}
const reagent& value = inst.ingredients.at(2);
//: use base.type rather than base_type because later layers will introduce compound types
const reagent& element = element_type(base.type, offset_value);
if (!types_coercible(element, value)) {
raise << maybe(get(Recipe, r).name) << "'put " << base.original_string << ", " << offset.original_string << "' should write to " << names_to_string_without_quotes(element.type) << " but '" << value.name << "' has type " << names_to_string_without_quotes(value.type) << '\n' << end();
break;
}
if (inst.products.empty()) break; // no more checks necessary
if (inst.products.at(0).name != inst.ingredients.at(0).name) {
raise << maybe(get(Recipe, r).name) << "product of 'put' must be first ingredient '" << inst.ingredients.at(0).original_string << "', but got '" << inst.products.at(0).original_string << "'\n" << end();
break;
}
// End PUT Product Checks
break;
}
:(before "End Primitive Recipe Implementations")
case PUT: {
reagent/*copy*/ base = current_instruction().ingredients.at(0);
// Update PUT base in Run
int base_address = base.value;
if (base_address == 0) {
raise << maybe(current_recipe_name()) << "tried to access location 0 in '" << to_original_string(current_instruction()) << "'\n" << end();
break;
}
const type_tree* base_type = base.type;
// Update PUT base_type in Run
int offset = ingredients.at(1).at(0);
if (offset < 0 || offset >= SIZE(get(Type, base_type->value).elements)) break; // copied from Check above
int address = base_address;
for (int i = 0; i < offset; ++i)
address += size_of(element_type(base.type, i));
trace(Callstack_depth+1, "run") << "address to copy to is " << address << end();
// optimization: directly write the element rather than updating 'product'
// and writing the entire container
// Write Memory in PUT in Run
write_products = false;
for (int i = 0; i < SIZE(ingredients.at(2)); ++i) {
trace(Callstack_depth+1, "mem") << "storing " << no_scientific(ingredients.at(2).at(i)) << " in location " << address+i << end();
put(Memory, address+i, ingredients.at(2).at(i));
}
break;
}
:(code)
void test_put_product_error() {
Hide_errors = true;
run(
"def main [\n"
" local-scope\n"
" load-ingredients\n"
" 1:point <- merge 34, 35\n"
" 3:point <- put 1:point, x:offset, 36\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: product of 'put' must be first ingredient '1:point', but got '3:point'\n"
);
}
//:: Allow containers to be defined in Mu code.
void test_container() {
load(
"container foo [\n"
" x:num\n"
" y:num\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"parse: --- defining container foo\n"
"parse: element: {x: \"number\"}\n"
"parse: element: {y: \"number\"}\n"
);
}
void test_container_use_before_definition() {
load(
"container foo [\n"
" x:num\n"
" y:bar\n"
"]\n"
"container bar [\n"
" x:num\n"
" y:num\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"parse: --- defining container foo\n"
"parse: type number: 1000\n"
"parse: element: {x: \"number\"}\n"
// todo: brittle
// type bar is unknown at this point, but we assign it a number
"parse: element: {y: \"bar\"}\n"
// later type bar gets a definition
"parse: --- defining container bar\n"
"parse: type number: 1001\n"
"parse: element: {x: \"number\"}\n"
"parse: element: {y: \"number\"}\n"
);
}
//: if a container is defined again, the new fields add to the original definition
void test_container_extend() {
run(
"container foo [\n"
" x:num\n"
"]\n"
"container foo [\n" // add to previous definition
" y:num\n"
"]\n"
"def main [\n"
" 1:num <- copy 34\n"
" 2:num <- copy 35\n"
" 3:num <- get 1:foo, 0:offset\n"
" 4:num <- get 1:foo, 1:offset\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 3\n"
"mem: storing 35 in location 4\n"
);
}
:(before "End Command Handlers")
else if (command == "container") {
insert_container(command, CONTAINER, in);
}
//: Even though we allow containers to be extended, we don't allow this after
//: a call to transform_all. But we do want to detect this situation and raise
//: an error. This field will help us raise such errors.
:(before "End type_info Fields")
int Num_calls_to_transform_all_at_first_definition;
:(before "End type_info Constructor")
Num_calls_to_transform_all_at_first_definition = -1;
:(code)
void insert_container(const string& command, kind_of_type kind, istream& in) {
skip_whitespace_but_not_newline(in);
string name = next_word(in);
if (name.empty()) {
assert(!has_data(in));
raise << "incomplete container definition at end of file (0)\n" << end();
return;
}
// End container Name Refinements
trace(101, "parse") << "--- defining " << command << ' ' << name << end();
if (!contains_key(Type_ordinal, name)
|| get(Type_ordinal, name) == 0) {
put(Type_ordinal, name, Next_type_ordinal++);
}
trace(102, "parse") << "type number: " << get(Type_ordinal, name) << end();
skip_bracket(in, "'"+command+"' must begin with '['");
type_info& info = get_or_insert(Type, get(Type_ordinal, name));
if (info.Num_calls_to_transform_all_at_first_definition == -1) {
// initial definition of this container
info.Num_calls_to_transform_all_at_first_definition = Num_calls_to_transform_all;
}
else if (info.Num_calls_to_transform_all_at_first_definition != Num_calls_to_transform_all) {
// extension after transform_all
raise << "there was a call to transform_all() between the definition of container '" << name << "' and a subsequent extension. This is not supported, since any recipes that used '" << name << "' values have already been transformed and \"frozen\".\n" << end();
return;
}
info.name = name;
info.kind = kind;
while (has_data(in)) {
skip_whitespace_and_comments(in);
string element = next_word(in);
if (element.empty()) {
assert(!has_data(in));
raise << "incomplete container definition at end of file (1)\n" << end();
return;
}
if (element == "]") break;
if (in.peek() != '\n') {
raise << command << " '" << name << "' contains multiple elements on a single line. Containers and exclusive containers must only contain elements, one to a line, no code.\n" << end();
// skip rest of container declaration
while (has_data(in)) {
skip_whitespace_and_comments(in);
if (next_word(in) == "]") break;
}
break;
}
info.elements.push_back(reagent(element));
expand_type_abbreviations(info.elements.back().type); // todo: use abbreviation before declaration
replace_unknown_types_with_unique_ordinals(info.elements.back().type, info);
trace(103, "parse") << " element: " << to_string(info.elements.back()) << end();
// End Load Container Element Definition
}
}
void replace_unknown_types_with_unique_ordinals(type_tree* type, const type_info& info) {
if (!type) return;
if (!type->atom) {
replace_unknown_types_with_unique_ordinals(type->left, info);
replace_unknown_types_with_unique_ordinals(type->right, info);
return;
}
assert(!type->name.empty());
if (contains_key(Type_ordinal, type->name)) {
type->value = get(Type_ordinal, type->name);
}
// End insert_container Special-cases
else if (type->name != "->") { // used in recipe types
put(Type_ordinal, type->name, Next_type_ordinal++);
type->value = get(Type_ordinal, type->name);
}
}
void skip_bracket(istream& in, string message) {
skip_whitespace_and_comments(in);
if (in.get() != '[')
raise << message << '\n' << end();
}
void test_multi_word_line_in_container_declaration() {
Hide_errors = true;
run(
"container foo [\n"
" x:num y:num\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: container 'foo' contains multiple elements on a single line. Containers and exclusive containers must only contain elements, one to a line, no code.\n"
);
}
//: support type abbreviations in container definitions
void test_type_abbreviations_in_containers() {
run(
"type foo = number\n"
"container bar [\n"
" x:foo\n"
"]\n"
"def main [\n"
" 1:num <- copy 34\n"
" 2:foo <- get 1:bar/unsafe, 0:offset\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 2\n"
);
}
:(after "Transform.push_back(expand_type_abbreviations)")
Transform.push_back(expand_type_abbreviations_in_containers); // idempotent
:(code)
// extremely inefficient; we process all types over and over again, once for every single recipe
// but it doesn't seem to cause any noticeable slowdown
void expand_type_abbreviations_in_containers(const recipe_ordinal /*unused*/) {
for (map<type_ordinal, type_info>::iterator p = Type.begin(); p != Type.end(); ++p) {
for (int i = 0; i < SIZE(p->second.elements); ++i)
expand_type_abbreviations(p->second.elements.at(i).type);
}
}
//: ensure scenarios are consistent by always starting new container
//: declarations at the same type number
:(before "End Reset") //: for tests
Next_type_ordinal = 1000;
:(before "End Test Run Initialization")
assert(Next_type_ordinal < 1000);
:(code)
void test_error_on_transform_all_between_container_definition_and_extension() {
// define a container
run("container foo [\n"
" a:num\n"
"]\n");
// try to extend the container after transform
transform_all();
CHECK_TRACE_DOESNT_CONTAIN_ERRORS();
Hide_errors = true;
run("container foo [\n"
" b:num\n"
"]\n");
CHECK_TRACE_CONTAINS_ERRORS();
}
//:: Allow container definitions anywhere in the codebase, but complain if you
//:: can't find a definition at the end.
void test_run_complains_on_unknown_types() {
Hide_errors = true;
run(
"def main [\n"
" 1:integer <- copy 0\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: unknown type integer in '1:integer <- copy 0'\n"
);
}
void test_run_allows_type_definition_after_use() {
run(
"def main [\n"
" 1:bar <- copy 0/unsafe\n"
"]\n"
"container bar [\n"
" x:num\n"
"]\n"
);
CHECK_TRACE_COUNT("error", 0);
}
:(before "End Type Modifying Transforms")
Transform.push_back(check_or_set_invalid_types); // idempotent
:(code)
void check_or_set_invalid_types(const recipe_ordinal r) {
recipe& caller = get(Recipe, r);
trace(101, "transform") << "--- check for invalid types in recipe " << caller.name << end();
for (int index = 0; index < SIZE(caller.steps); ++index) {
instruction& inst = caller.steps.at(index);
for (int i = 0; i < SIZE(inst.ingredients); ++i)
check_or_set_invalid_types(inst.ingredients.at(i), caller, inst);
for (int i = 0; i < SIZE(inst.products); ++i)
check_or_set_invalid_types(inst.products.at(i), caller, inst);
}
// End check_or_set_invalid_types
}
void check_or_set_invalid_types(reagent& r, const recipe& caller, const instruction& inst) {
// Begin check_or_set_invalid_types(r)
check_or_set_invalid_types(r.type, maybe(caller.name), "'"+to_original_string(inst)+"'");
}
void check_or_set_invalid_types(type_tree* type, const string& location_for_error_messages, const string& name_for_error_messages) {
if (!type) return;
// End Container Type Checks
if (!type->atom) {
check_or_set_invalid_types(type->left, location_for_error_messages, name_for_error_messages);
check_or_set_invalid_types(type->right, location_for_error_messages, name_for_error_messages);
return;
}
if (type->value == 0) return;
if (!contains_key(Type, type->value)) {
assert(!type->name.empty());
if (contains_key(Type_ordinal, type->name))
type->value = get(Type_ordinal, type->name);
else
raise << location_for_error_messages << "unknown type " << type->name << " in " << name_for_error_messages << '\n' << end();
}
}
void test_container_unknown_field() {
Hide_errors = true;
run(
"container foo [\n"
" x:num\n"
" y:bar\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: foo: unknown type in y\n"
);
}
void test_read_container_with_bracket_in_comment() {
run(
"container foo [\n"
" x:num\n"
" # ']' in comment\n"
" y:num\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"parse: --- defining container foo\n"
"parse: element: {x: \"number\"}\n"
"parse: element: {y: \"number\"}\n"
);
}
void test_container_with_compound_field_type() {
run(
"container foo [\n"
" {x: (address array (address array character))}\n"
"]\n"
);
CHECK_TRACE_COUNT("error", 0);
}
:(before "End transform_all")
check_container_field_types();
:(code)
void check_container_field_types() {
for (map<type_ordinal, type_info>::iterator p = Type.begin(); p != Type.end(); ++p) {
const type_info& info = p->second;
// Check Container Field Types(info)
for (int i = 0; i < SIZE(info.elements); ++i)
check_invalid_types(info.elements.at(i).type, maybe(info.name), info.elements.at(i).name);
}
}
void check_invalid_types(const type_tree* type, const string& location_for_error_messages, const string& name_for_error_messages) {
if (!type) return; // will throw a more precise error elsewhere
if (!type->atom) {
check_invalid_types(type->left, location_for_error_messages, name_for_error_messages);
check_invalid_types(type->right, location_for_error_messages, name_for_error_messages);
return;
}
if (type->value != 0) { // value 0 = compound types (layer parse_tree) or type ingredients (layer shape_shifting_container)
if (!contains_key(Type, type->value))
raise << location_for_error_messages << "unknown type in " << name_for_error_messages << '\n' << end();
}
}
string to_original_string(const type_ordinal t) {
ostringstream out;
if (!contains_key(Type, t)) return out.str();
const type_info& info = get(Type, t);
if (info.kind == PRIMITIVE) return out.str();
out << (info.kind == CONTAINER ? "container" : "exclusive-container") << " " << info.name << " [\n";
for (int i = 0; i < SIZE(info.elements); ++i) {
out << " " << info.elements.at(i).original_string << "\n";
}
out << "]\n";
return out.str();
}