mu/056shape_shifting_recipe.cc
Kartik Agaram 4a943d4ed3 5001 - drop the :(scenario) DSL
I've been saying for a while[1][2][3] that adding extra abstractions makes
things harder for newcomers, and adding new notations doubly so. And then
I notice this DSL in my own backyard. Makes me feel like a hypocrite.

[1] https://news.ycombinator.com/item?id=13565743#13570092
[2] https://lobste.rs/s/to8wpr/configuration_files_are_canary_warning
[3] https://lobste.rs/s/mdmcdi/little_languages_by_jon_bentley_1986#c_3miuf2

The implementation of the DSL was also highly hacky:

a) It was happening in the tangle/ tool, but was utterly unrelated to tangling
layers.

b) There were several persnickety constraints on the different kinds of
lines and the specific order they were expected in. I kept finding bugs
where the translator would silently do the wrong thing. Or the error messages
sucked, and readers may be stuck looking at the generated code to figure
out what happened. Fixing error messages would require a lot more code,
which is one of my arguments against DSLs in the first place: they may
be easy to implement, but they're hard to design to go with the grain of
the underlying platform. They require lots of iteration. Is that effort
worth prioritizing in this project?

On the other hand, the DSL did make at least some readers' life easier,
the ones who weren't immediately put off by having to learn a strange syntax.
There were fewer quotes to parse, fewer backslash escapes.

Anyway, since there are also people who dislike having to put up with strange
syntaxes, we'll call that consideration a wash and tear this DSL out.

---

This commit was sheer drudgery. Hopefully it won't need to be redone with
a new DSL because I grow sick of backslashes.
2019-03-12 19:14:12 -07:00

1308 lines
42 KiB
C++

//:: Like container definitions, recipes too can contain type parameters.
void test_shape_shifting_recipe() {
run(
"def main [\n"
" 10:point <- merge 14, 15\n"
" 12:point <- foo 10:point\n"
"]\n"
// non-matching variant
"def foo a:num -> result:num [\n"
" local-scope\n"
" load-ingredients\n"
" result <- copy 34\n"
"]\n"
// matching shape-shifting variant
"def foo a:_t -> result:_t [\n"
" local-scope\n"
" load-ingredients\n"
" result <- copy a\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 14 in location 12\n"
"mem: storing 15 in location 13\n"
);
}
//: Before anything else, disable transforms for shape-shifting recipes and
//: make sure we never try to actually run a shape-shifting recipe. We should
//: be rewriting such instructions to *specializations* with the type
//: ingredients filled in.
//: One exception (and this makes things very ugly): we need to expand type
//: abbreviations in shape-shifting recipes because we need them types for
//: deciding which variant to specialize.
:(before "End Transform Checks")
r.transformed_until = t;
if (Transform.at(t) != static_cast<transform_fn>(expand_type_abbreviations) && any_type_ingredient_in_header(/*recipe_ordinal*/p->first)) continue;
:(after "Running One Instruction")
if (Current_routine->calls.front().running_step_index == 0
&& any_type_ingredient_in_header(Current_routine->calls.front().running_recipe)) {
//? DUMP("");
raise << "ran into unspecialized shape-shifting recipe " << current_recipe_name() << '\n' << end();
//? exit(0);
}
//: Make sure we don't match up literals with type ingredients without
//: specialization.
:(before "End Matching Types For Literal(to)")
if (contains_type_ingredient_name(to)) return false;
:(after "Static Dispatch Phase 2")
candidates = strictly_matching_shape_shifting_variants(inst, variants);
if (!candidates.empty()) {
recipe_ordinal exemplar = best_shape_shifting_variant(inst, candidates);
trace(102, "transform") << "found variant to specialize: " << exemplar << ' ' << get(Recipe, exemplar).name << end();
string new_recipe_name = insert_new_variant(exemplar, inst, caller_recipe);
if (new_recipe_name != "") {
trace(102, "transform") << "new specialization: " << new_recipe_name << end();
return new_recipe_name;
}
}
//: before running Mu programs, make sure no unspecialized shape-shifting
//: recipes can be called
:(before "End Instruction Operation Checks")
if (contains_key(Recipe, inst.operation) && !is_primitive(inst.operation)
&& any_type_ingredient_in_header(inst.operation)) {
raise << maybe(caller.name) << "instruction '" << inst.name << "' has no valid specialization\n" << end();
return;
}
:(code)
// phase 3 of static dispatch
vector<recipe_ordinal> strictly_matching_shape_shifting_variants(const instruction& inst, const vector<recipe_ordinal>& variants) {
vector<recipe_ordinal> result;
for (int i = 0; i < SIZE(variants); ++i) {
if (variants.at(i) == -1) continue;
if (!any_type_ingredient_in_header(variants.at(i))) continue;
if (!all_concrete_header_reagents_strictly_match(inst, get(Recipe, variants.at(i)))) continue;
result.push_back(variants.at(i));
}
return result;
}
bool all_concrete_header_reagents_strictly_match(const instruction& inst, const recipe& variant) {
for (int i = 0; i < min(SIZE(inst.ingredients), SIZE(variant.ingredients)); ++i) {
if (!concrete_type_names_strictly_match(variant.ingredients.at(i), inst.ingredients.at(i))) {
trace(103, "transform") << "concrete-type match failed: ingredient " << i << end();
return false;
}
}
for (int i = 0; i < min(SIZE(inst.products), SIZE(variant.products)); ++i) {
if (is_dummy(inst.products.at(i))) continue;
if (!concrete_type_names_strictly_match(variant.products.at(i), inst.products.at(i))) {
trace(103, "transform") << "concrete-type match failed: product " << i << end();
return false;
}
}
return true;
}
// manual prototype
vector<recipe_ordinal> keep_max(const instruction&, const vector<recipe_ordinal>&,
int (*)(const instruction&, recipe_ordinal));
// tie-breaker for phase 3
recipe_ordinal best_shape_shifting_variant(const instruction& inst, const vector<recipe_ordinal>& candidates) {
assert(!candidates.empty());
if (SIZE(candidates) == 1) return candidates.at(0);
//? cerr << "A picking shape-shifting variant:\n";
vector<recipe_ordinal> result1 = keep_max(inst, candidates, number_of_concrete_type_names);
assert(!result1.empty());
if (SIZE(result1) == 1) return result1.at(0);
//? cerr << "B picking shape-shifting variant:\n";
vector<recipe_ordinal> result2 = keep_max(inst, result1, arity_fit);
assert(!result2.empty());
if (SIZE(result2) == 1) return result2.at(0);
//? cerr << "C picking shape-shifting variant:\n";
vector<recipe_ordinal> result3 = keep_max(inst, result2, number_of_type_ingredients);
if (SIZE(result3) > 1) {
raise << "\nCouldn't decide the best shape-shifting variant for instruction '" << to_original_string(inst) << "'\n" << end();
cerr << "This is a hole in Mu. Please copy the following candidates into an email to Kartik Agaram <mu@akkartik.com>\n";
for (int i = 0; i < SIZE(candidates); ++i)
cerr << " " << header_label(get(Recipe, candidates.at(i))) << '\n';
}
return result3.at(0);
}
vector<recipe_ordinal> keep_max(const instruction& inst, const vector<recipe_ordinal>& in,
int (*scorer)(const instruction&, recipe_ordinal)) {
assert(!in.empty());
vector<recipe_ordinal> out;
out.push_back(in.at(0));
int best_score = (*scorer)(inst, in.at(0));
//? cerr << best_score << " " << header_label(get(Recipe, in.at(0))) << '\n';
for (int i = 1; i < SIZE(in); ++i) {
int score = (*scorer)(inst, in.at(i));
//? cerr << score << " " << header_label(get(Recipe, in.at(i))) << '\n';
if (score == best_score) {
out.push_back(in.at(i));
}
else if (score > best_score) {
best_score = score;
out.clear();
out.push_back(in.at(i));
}
}
return out;
}
int arity_fit(const instruction& inst, recipe_ordinal candidate) {
const recipe& r = get(Recipe, candidate);
return (SIZE(inst.products) - SIZE(r.products))
+ (SIZE(r.ingredients) - SIZE(inst.ingredients));
}
bool any_type_ingredient_in_header(recipe_ordinal variant) {
const recipe& caller = get(Recipe, variant);
for (int i = 0; i < SIZE(caller.ingredients); ++i) {
if (contains_type_ingredient_name(caller.ingredients.at(i)))
return true;
}
for (int i = 0; i < SIZE(caller.products); ++i) {
if (contains_type_ingredient_name(caller.products.at(i)))
return true;
}
return false;
}
bool concrete_type_names_strictly_match(reagent/*copy*/ to, reagent/*copy*/ from) {
canonize_type(to);
canonize_type(from);
return concrete_type_names_strictly_match(to.type, from.type, from);
}
bool concrete_type_names_strictly_match(const type_tree* to, const type_tree* from, const reagent& rhs_reagent) {
if (!to) return !from;
if (!from) return !to;
if (to->atom && is_type_ingredient_name(to->name)) return true; // type ingredient matches anything
if (!to->atom && to->right == NULL && to->left != NULL && to->left->atom && is_type_ingredient_name(to->left->name)) return true;
if (from->atom && is_mu_address(to))
return from->name == "literal-address" && rhs_reagent.name == "null";
if (!from->atom && !to->atom)
return concrete_type_names_strictly_match(to->left, from->left, rhs_reagent)
&& concrete_type_names_strictly_match(to->right, from->right, rhs_reagent);
if (from->atom != to->atom) return false;
// both from and to are atoms
if (from->name == "literal")
return Literal_type_names.find(to->name) != Literal_type_names.end();
if (to->name == "literal")
return Literal_type_names.find(from->name) != Literal_type_names.end();
return to->name == from->name;
}
bool contains_type_ingredient_name(const reagent& x) {
return contains_type_ingredient_name(x.type);
}
bool contains_type_ingredient_name(const type_tree* type) {
if (!type) return false;
if (is_type_ingredient_name(type->name)) return true;
return contains_type_ingredient_name(type->left) || contains_type_ingredient_name(type->right);
}
int number_of_concrete_type_names(const instruction& /*unused*/, recipe_ordinal r) {
const recipe& caller = get(Recipe, r);
int result = 0;
for (int i = 0; i < SIZE(caller.ingredients); ++i)
result += number_of_concrete_type_names(caller.ingredients.at(i).type);
for (int i = 0; i < SIZE(caller.products); ++i)
result += number_of_concrete_type_names(caller.products.at(i).type);
return result;
}
int number_of_concrete_type_names(const type_tree* type) {
if (!type) return 0;
if (type->atom)
return is_type_ingredient_name(type->name) ? 0 : 1;
return number_of_concrete_type_names(type->left)
+ number_of_concrete_type_names(type->right);
}
int number_of_type_ingredients(const instruction& /*unused*/, recipe_ordinal r) {
const recipe& caller = get(Recipe, r);
int result = 0;
for (int i = 0; i < SIZE(caller.ingredients); ++i)
result += number_of_type_ingredients(caller.ingredients.at(i).type);
for (int i = 0; i < SIZE(caller.products); ++i)
result += number_of_type_ingredients(caller.products.at(i).type);
return result;
}
int number_of_type_ingredients(const type_tree* type) {
if (!type) return 0;
if (type->atom)
return is_type_ingredient_name(type->name) ? 1 : 0;
return number_of_type_ingredients(type->left)
+ number_of_type_ingredients(type->right);
}
// returns name of new variant
string insert_new_variant(recipe_ordinal exemplar, const instruction& inst, const recipe& caller_recipe) {
string new_name = next_unused_recipe_name(inst.name);
assert(!contains_key(Recipe_ordinal, new_name));
recipe_ordinal new_recipe_ordinal = put(Recipe_ordinal, new_name, Next_recipe_ordinal++);
// make a copy
assert(contains_key(Recipe, exemplar));
assert(!contains_key(Recipe, new_recipe_ordinal));
put(Recipe, new_recipe_ordinal, /*copy*/get(Recipe, exemplar));
recipe& new_recipe = get(Recipe, new_recipe_ordinal);
new_recipe.name = new_name;
new_recipe.ordinal = new_recipe_ordinal;
new_recipe.is_autogenerated = true;
trace(103, "transform") << "switching " << inst.name << " to specialized " << header_label(new_recipe) << end();
trace(102, "transform") << "transforming new specialization: " << new_recipe.name << end();
trace(102, "transform") << new_recipe.name << ": performing transforms until check_or_set_types_by_name" << end();
int transform_index = 0;
for (transform_index = 0; transform_index < SIZE(Transform); ++transform_index) {
if (Transform.at(transform_index) == check_or_set_types_by_name) break;
(*Transform.at(transform_index))(new_recipe_ordinal);
}
new_recipe.transformed_until = transform_index-1;
trace(102, "transform") << new_recipe.name << ": performing type-ingredient-aware version of transform check_or_set_types_by_name" << end();
compute_type_names(new_recipe);
new_recipe.transformed_until++;
trace(102, "transform") << new_recipe.name << ": replacing type ingredients" << end();
{
map<string, const type_tree*> mappings;
bool error = false;
compute_type_ingredient_mappings(get(Recipe, exemplar), inst, mappings, caller_recipe, &error);
if (!error) error = (SIZE(mappings) != type_ingredient_count_in_header(exemplar));
if (!error) replace_type_ingredients(new_recipe, mappings);
for (map<string, const type_tree*>::iterator p = mappings.begin(); p != mappings.end(); ++p)
delete p->second;
if (error) return "";
}
ensure_all_concrete_types(new_recipe, get(Recipe, exemplar));
trace(102, "transform") << new_recipe.name << ": recording the new variant before recursively calling resolve_ambiguous_calls" << end();
get(Recipe_variants, inst.name).push_back(new_recipe_ordinal);
trace(102, "transform") << new_recipe.name << ": performing remaining transforms (including resolve_ambiguous_calls)" << end();
for (/*nada*/; transform_index < SIZE(Transform); ++transform_index)
(*Transform.at(transform_index))(new_recipe_ordinal);
new_recipe.transformed_until = SIZE(Transform)-1;
return new_recipe.name;
}
void compute_type_names(recipe& variant) {
trace(103, "transform") << "-- compute type names: " << variant.name << end();
map<string, type_tree*> type_names;
for (int i = 0; i < SIZE(variant.ingredients); ++i)
save_or_deduce_type_name(variant.ingredients.at(i), type_names, variant, "");
for (int i = 0; i < SIZE(variant.products); ++i)
save_or_deduce_type_name(variant.products.at(i), type_names, variant, "");
for (int i = 0; i < SIZE(variant.steps); ++i) {
instruction& inst = variant.steps.at(i);
trace(103, "transform") << " instruction: " << to_string(inst) << end();
for (int in = 0; in < SIZE(inst.ingredients); ++in)
save_or_deduce_type_name(inst.ingredients.at(in), type_names, variant, " in '" + to_original_string(inst) + "'");
for (int out = 0; out < SIZE(inst.products); ++out)
save_or_deduce_type_name(inst.products.at(out), type_names, variant, " in '" + to_original_string(inst) + "'");
}
}
void save_or_deduce_type_name(reagent& x, map<string, type_tree*>& type, const recipe& variant, const string& context) {
trace(104, "transform") << " checking " << to_string(x) << ": " << names_to_string(x.type) << end();
if (!x.type && contains_key(type, x.name)) {
x.type = new type_tree(*get(type, x.name));
trace(104, "transform") << " deducing type to " << names_to_string(x.type) << end();
return;
}
// Type Check in Type-ingredient-aware check_or_set_types_by_name
// This is different from check_or_set_types_by_name.
// We've found it useful in the past for tracking down bugs in
// specialization.
if (!x.type) {
raise << maybe(variant.original_name) << "unknown type for '" << x.original_string << "'" << context << " (check the name for typos)\n" << end();
return;
}
if (contains_key(type, x.name)) return;
if (x.type->name == "offset" || x.type->name == "variant") return; // special-case for container-access instructions
put(type, x.name, x.type);
trace(103, "transform") << "type of '" << x.name << "' is " << names_to_string(x.type) << end();
}
void compute_type_ingredient_mappings(const recipe& exemplar, const instruction& inst, map<string, const type_tree*>& mappings, const recipe& caller_recipe, bool* error) {
int limit = min(SIZE(inst.ingredients), SIZE(exemplar.ingredients));
for (int i = 0; i < limit; ++i) {
const reagent& exemplar_reagent = exemplar.ingredients.at(i);
reagent/*copy*/ ingredient = inst.ingredients.at(i);
canonize_type(ingredient);
if (is_mu_address(exemplar_reagent) && ingredient.name == "null") continue; // assume it matches
accumulate_type_ingredients(exemplar_reagent, ingredient, mappings, exemplar, inst, caller_recipe, error);
}
limit = min(SIZE(inst.products), SIZE(exemplar.products));
for (int i = 0; i < limit; ++i) {
const reagent& exemplar_reagent = exemplar.products.at(i);
reagent/*copy*/ product = inst.products.at(i);
if (is_dummy(product)) continue;
canonize_type(product);
accumulate_type_ingredients(exemplar_reagent, product, mappings, exemplar, inst, caller_recipe, error);
}
}
void accumulate_type_ingredients(const reagent& exemplar_reagent, reagent& refinement, map<string, const type_tree*>& mappings, const recipe& exemplar, const instruction& call_instruction, const recipe& caller_recipe, bool* error) {
assert(refinement.type);
accumulate_type_ingredients(exemplar_reagent.type, refinement.type, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error);
}
void accumulate_type_ingredients(const type_tree* exemplar_type, const type_tree* refinement_type, map<string, const type_tree*>& mappings, const recipe& exemplar, const reagent& exemplar_reagent, const instruction& call_instruction, const recipe& caller_recipe, bool* error) {
if (!exemplar_type) return;
if (!refinement_type) {
// probably a bug in mu
// todo: make this smarter; only flag an error if exemplar_type contains some *new* type ingredient
raise << maybe(exemplar.name) << "missing type ingredient for " << exemplar_reagent.original_string << '\n' << end();
raise << " (called from '" << to_original_string(call_instruction) << "')\n" << end();
return;
}
if (!exemplar_type->atom && exemplar_type->right == NULL && !refinement_type->atom && refinement_type->right != NULL) {
exemplar_type = exemplar_type->left;
assert_for_now(exemplar_type->atom);
}
if (exemplar_type->atom) {
if (is_type_ingredient_name(exemplar_type->name)) {
const type_tree* curr_refinement_type = NULL; // temporary heap allocation; must always be deleted before it goes out of scope
if (exemplar_type->atom)
curr_refinement_type = new type_tree(*refinement_type);
else {
assert(!refinement_type->atom);
curr_refinement_type = new type_tree(*refinement_type->left);
}
if (!contains_key(mappings, exemplar_type->name)) {
trace(103, "transform") << "adding mapping from " << exemplar_type->name << " to " << to_string(curr_refinement_type) << end();
put(mappings, exemplar_type->name, new type_tree(*curr_refinement_type));
}
else {
if (!deeply_equal_type_names(get(mappings, exemplar_type->name), curr_refinement_type)) {
raise << maybe(caller_recipe.name) << "no call found for '" << to_original_string(call_instruction) << "'\n" << end();
*error = true;
delete curr_refinement_type;
return;
}
if (get(mappings, exemplar_type->name)->name == "literal") {
delete get(mappings, exemplar_type->name);
put(mappings, exemplar_type->name, new type_tree(*curr_refinement_type));
}
}
delete curr_refinement_type;
}
}
else {
accumulate_type_ingredients(exemplar_type->left, refinement_type->left, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error);
accumulate_type_ingredients(exemplar_type->right, refinement_type->right, mappings, exemplar, exemplar_reagent, call_instruction, caller_recipe, error);
}
}
void replace_type_ingredients(recipe& new_recipe, const map<string, const type_tree*>& mappings) {
// update its header
if (mappings.empty()) return;
trace(103, "transform") << "replacing in recipe header ingredients" << end();
for (int i = 0; i < SIZE(new_recipe.ingredients); ++i)
replace_type_ingredients(new_recipe.ingredients.at(i), mappings, new_recipe);
trace(103, "transform") << "replacing in recipe header products" << end();
for (int i = 0; i < SIZE(new_recipe.products); ++i)
replace_type_ingredients(new_recipe.products.at(i), mappings, new_recipe);
// update its body
for (int i = 0; i < SIZE(new_recipe.steps); ++i) {
instruction& inst = new_recipe.steps.at(i);
trace(103, "transform") << "replacing in instruction '" << to_string(inst) << "'" << end();
for (int j = 0; j < SIZE(inst.ingredients); ++j)
replace_type_ingredients(inst.ingredients.at(j), mappings, new_recipe);
for (int j = 0; j < SIZE(inst.products); ++j)
replace_type_ingredients(inst.products.at(j), mappings, new_recipe);
// special-case for new: replace type ingredient in first ingredient *value*
if (inst.name == "new" && inst.ingredients.at(0).type->name != "literal-string") {
type_tree* type = parse_type_tree(inst.ingredients.at(0).name);
replace_type_ingredients(type, mappings);
inst.ingredients.at(0).name = inspect(type);
delete type;
}
}
}
void replace_type_ingredients(reagent& x, const map<string, const type_tree*>& mappings, const recipe& caller) {
string before = to_string(x);
trace(103, "transform") << "replacing in ingredient " << x.original_string << end();
if (!x.type) {
raise << "specializing " << caller.original_name << ": missing type for '" << x.original_string << "'\n" << end();
return;
}
replace_type_ingredients(x.type, mappings);
}
void replace_type_ingredients(type_tree* type, const map<string, const type_tree*>& mappings) {
if (!type) return;
if (!type->atom) {
if (type->right == NULL && type->left != NULL && type->left->atom && contains_key(mappings, type->left->name) && !get(mappings, type->left->name)->atom && get(mappings, type->left->name)->right != NULL) {
*type = *get(mappings, type->left->name);
return;
}
replace_type_ingredients(type->left, mappings);
replace_type_ingredients(type->right, mappings);
return;
}
if (contains_key(Type_ordinal, type->name)) // todo: ugly side effect
type->value = get(Type_ordinal, type->name);
if (!contains_key(mappings, type->name))
return;
const type_tree* replacement = get(mappings, type->name);
trace(103, "transform") << type->name << " => " << names_to_string(replacement) << end();
if (replacement->atom) {
if (!contains_key(Type_ordinal, replacement->name)) {
// error in program; should be reported elsewhere
return;
}
type->name = (replacement->name == "literal") ? "number" : replacement->name;
type->value = get(Type_ordinal, type->name);
}
else {
*type = *replacement;
}
}
int type_ingredient_count_in_header(recipe_ordinal variant) {
const recipe& caller = get(Recipe, variant);
set<string> type_ingredients;
for (int i = 0; i < SIZE(caller.ingredients); ++i)
accumulate_type_ingredients(caller.ingredients.at(i).type, type_ingredients);
for (int i = 0; i < SIZE(caller.products); ++i)
accumulate_type_ingredients(caller.products.at(i).type, type_ingredients);
return SIZE(type_ingredients);
}
void accumulate_type_ingredients(const type_tree* type, set<string>& out) {
if (!type) return;
if (is_type_ingredient_name(type->name)) out.insert(type->name);
accumulate_type_ingredients(type->left, out);
accumulate_type_ingredients(type->right, out);
}
type_tree* parse_type_tree(const string& s) {
string_tree* s2 = parse_string_tree(s);
type_tree* result = new_type_tree(s2);
delete s2;
return result;
}
string inspect(const type_tree* x) {
ostringstream out;
dump_inspect(x, out);
return out.str();
}
void dump_inspect(const type_tree* x, ostream& out) {
if (!x->left && !x->right) {
out << x->name;
return;
}
out << '(';
for (const type_tree* curr = x; curr; curr = curr->right) {
if (curr != x) out << ' ';
if (curr->left)
dump_inspect(curr->left, out);
else
out << curr->name;
}
out << ')';
}
void ensure_all_concrete_types(/*const*/ recipe& new_recipe, const recipe& exemplar) {
trace(103, "transform") << "-- ensure all concrete types in recipe " << new_recipe.name << end();
for (int i = 0; i < SIZE(new_recipe.ingredients); ++i)
ensure_all_concrete_types(new_recipe.ingredients.at(i), exemplar);
for (int i = 0; i < SIZE(new_recipe.products); ++i)
ensure_all_concrete_types(new_recipe.products.at(i), exemplar);
for (int i = 0; i < SIZE(new_recipe.steps); ++i) {
instruction& inst = new_recipe.steps.at(i);
for (int j = 0; j < SIZE(inst.ingredients); ++j)
ensure_all_concrete_types(inst.ingredients.at(j), exemplar);
for (int j = 0; j < SIZE(inst.products); ++j)
ensure_all_concrete_types(inst.products.at(j), exemplar);
}
}
void ensure_all_concrete_types(/*const*/ reagent& x, const recipe& exemplar) {
if (!x.type || contains_type_ingredient_name(x.type)) {
raise << maybe(exemplar.name) << "failed to map a type to " << x.original_string << '\n' << end();
if (!x.type) x.type = new type_tree("added_by_ensure_all_concrete_types", 0); // just to prevent crashes later
return;
}
if (x.type->value == -1) {
raise << maybe(exemplar.name) << "failed to map a type to the unknown " << x.original_string << '\n' << end();
return;
}
}
void test_shape_shifting_recipe_2() {
run(
"def main [\n"
" 10:point <- merge 14, 15\n"
" 12:point <- foo 10:point\n"
"]\n"
// non-matching shape-shifting variant
"def foo a:_t, b:_t -> result:num [\n"
" local-scope\n"
" load-ingredients\n"
" result <- copy 34\n"
"]\n"
// matching shape-shifting variant
"def foo a:_t -> result:_t [\n"
" local-scope\n"
" load-ingredients\n"
" result <- copy a\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 14 in location 12\n"
"mem: storing 15 in location 13\n"
);
}
void test_shape_shifting_recipe_nonroot() {
run(
"def main [\n"
" 10:foo:point <- merge 14, 15, 16\n"
" 20:point <- bar 10:foo:point\n"
"]\n"
// shape-shifting recipe with type ingredient following some other type
"def bar a:foo:_t -> result:_t [\n"
" local-scope\n"
" load-ingredients\n"
" result <- get a, x:offset\n"
"]\n"
"container foo:_t [\n"
" x:_t\n"
" y:num\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 14 in location 20\n"
"mem: storing 15 in location 21\n"
);
}
void test_shape_shifting_recipe_nested() {
run(
"container c:_a:_b [\n"
" a:_a\n"
" b:_b\n"
"]\n"
"def main [\n"
" s:text <- new [abc]\n"
" {x: (c (address array character) number)} <- merge s, 34\n"
" foo x\n"
"]\n"
"def foo x:c:_bar:_baz [\n"
" local-scope\n"
" load-ingredients\n"
"]\n"
);
// no errors
}
void test_shape_shifting_recipe_type_deduction_ignores_offsets() {
run(
"def main [\n"
" 10:foo:point <- merge 14, 15, 16\n"
" 20:point <- bar 10:foo:point\n"
"]\n"
"def bar a:foo:_t -> result:_t [\n"
" local-scope\n"
" load-ingredients\n"
" x:num <- copy 1\n"
" result <- get a, x:offset # shouldn't collide with other variable\n"
"]\n"
"container foo:_t [\n"
" x:_t\n"
" y:num\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 14 in location 20\n"
"mem: storing 15 in location 21\n"
);
}
void test_shape_shifting_recipe_empty() {
run(
"def main [\n"
" foo 1\n"
"]\n"
// shape-shifting recipe with no body
"def foo a:_t [\n"
"]\n"
);
// shouldn't crash
}
void test_shape_shifting_recipe_handles_shape_shifting_new_ingredient() {
run(
"def main [\n"
" 1:&:foo:point <- bar 3\n"
" 11:foo:point <- copy *1:&:foo:point\n"
"]\n"
"container foo:_t [\n"
" x:_t\n"
" y:num\n"
"]\n"
"def bar x:num -> result:&:foo:_t [\n"
" local-scope\n"
" load-ingredients\n"
// new refers to _t in its ingredient *value*
" result <- new {(foo _t) : type}\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 0 in location 11\n"
"mem: storing 0 in location 12\n"
"mem: storing 0 in location 13\n"
);
}
void test_shape_shifting_recipe_handles_shape_shifting_new_ingredient_2() {
run(
"def main [\n"
" 1:&:foo:point <- bar 3\n"
" 11:foo:point <- copy *1:&:foo:point\n"
"]\n"
"def bar x:num -> result:&:foo:_t [\n"
" local-scope\n"
" load-ingredients\n"
// new refers to _t in its ingredient *value*
" result <- new {(foo _t) : type}\n"
"]\n"
// container defined after use
"container foo:_t [\n"
" x:_t\n"
" y:num\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 0 in location 11\n"
"mem: storing 0 in location 12\n"
"mem: storing 0 in location 13\n"
);
}
void test_shape_shifting_recipe_called_with_dummy() {
run(
"def main [\n"
" _ <- bar 34\n"
"]\n"
"def bar x:_t -> result:&:_t [\n"
" local-scope\n"
" load-ingredients\n"
" result <- copy null\n"
"]\n"
);
CHECK_TRACE_COUNT("error", 0);
}
// this one needs a little more fine-grained control
void test_shape_shifting_new_ingredient_does_not_pollute_global_namespace() {
// if you specialize a shape-shifting recipe that allocates a type-ingredient..
transform("def barz x:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" y:&:num <- new _elem:type\n"
"]\n"
"def fooz [\n"
" local-scope\n"
" barz 34\n"
"]\n");
// ..and if you then try to load a new shape-shifting container with that
// type-ingredient
run("container foo:_elem [\n"
" x:_elem\n"
" y:num\n"
"]\n");
// then it should work as usual
reagent callsite("x:foo:point");
reagent element = element_type(callsite.type, 0);
CHECK_EQ(element.name, "x");
CHECK_EQ(element.type->name, "point");
CHECK(!element.type->right);
}
//: specializing a type ingredient with a compound type
void test_shape_shifting_recipe_supports_compound_types() {
run(
"def main [\n"
" 1:&:point <- new point:type\n"
" *1:&:point <- put *1:&:point, y:offset, 34\n"
" 3:&:point <- bar 1:&:point # specialize _t to address:point\n"
" 5:point <- copy *3:&:point\n"
"]\n"
"def bar a:_t -> result:_t [\n"
" local-scope\n"
" load-ingredients\n"
" result <- copy a\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 6\n"
);
}
//: specializing a type ingredient with a compound type -- while *inside* another compound type
void test_shape_shifting_recipe_supports_compound_types_2() {
run(
"container foo:_t [\n"
" value:_t\n"
"]\n"
"def bar x:&:foo:_t -> result:_t [\n"
" local-scope\n"
" load-ingredients\n"
" result <- get *x, value:offset\n"
"]\n"
"def main [\n"
" 1:&:foo:&:point <- new {(foo address point): type}\n"
" 2:&:point <- bar 1:&:foo:&:point\n"
"]\n"
);
// no errors; call to 'bar' successfully specialized
}
void test_shape_shifting_recipe_error() {
Hide_errors = true;
run(
"def main [\n"
" a:num <- copy 3\n"
" b:&:num <- foo a\n"
"]\n"
"def foo a:_t -> b:_t [\n"
" load-ingredients\n"
" b <- copy a\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: no call found for 'b:&:num <- foo a'\n"
);
}
void test_specialize_inside_recipe_without_header() {
run(
"def main [\n"
" foo 3\n"
"]\n"
"def foo [\n"
" local-scope\n"
" x:num <- next-ingredient # ensure no header\n"
" 1:num/raw <- bar x # call a shape-shifting recipe\n"
"]\n"
"def bar x:_elem -> y:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" y <- add x, 1\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 4 in location 1\n"
);
}
void test_specialize_with_literal() {
run(
"def main [\n"
" local-scope\n"
// permit literal to map to number
" 1:num/raw <- foo 3\n"
"]\n"
"def foo x:_elem -> y:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" y <- add x, 1\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 4 in location 1\n"
);
}
void test_specialize_with_literal_2() {
run(
"def main [\n"
" local-scope\n"
// permit literal to map to character
" 1:char/raw <- foo 3\n"
"]\n"
"def foo x:_elem -> y:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" y <- add x, 1\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 4 in location 1\n"
);
}
void test_specialize_with_literal_3() {
run(
"def main [\n"
" local-scope\n"
// permit '0' to map to address to shape-shifting type-ingredient
" 1:&:char/raw <- foo null\n"
"]\n"
"def foo x:&:_elem -> y:&:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" y <- copy x\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 0 in location 1\n"
);
CHECK_TRACE_COUNT("error", 0);
}
void test_specialize_with_literal_4() {
Hide_errors = true;
run(
"def main [\n"
" local-scope\n"
// ambiguous call: what's the type of its ingredient?!
" foo 0\n"
"]\n"
"def foo x:&:_elem -> y:&:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" y <- copy x\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: main: instruction 'foo' has no valid specialization\n"
);
}
void test_specialize_with_literal_5() {
run(
"def main [\n"
" foo 3, 4\n" // recipe mapping two variables to literals
"]\n"
"def foo x:_elem, y:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" 1:num/raw <- add x, y\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 7 in location 1\n"
);
}
void test_multiple_shape_shifting_variants() {
run(
// try to call two different shape-shifting recipes with the same name
"def main [\n"
" e1:d1:num <- merge 3\n"
" e2:d2:num <- merge 4, 5\n"
" 1:num/raw <- foo e1\n"
" 2:num/raw <- foo e2\n"
"]\n"
// the two shape-shifting definitions
"def foo a:d1:_elem -> b:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
"def foo a:d2:_elem -> b:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
// the shape-shifting containers they use
"container d1:_elem [\n"
" x:_elem\n"
"]\n"
"container d2:_elem [\n"
" x:num\n"
" y:_elem\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 1\n"
"mem: storing 35 in location 2\n"
);
}
void test_multiple_shape_shifting_variants_2() {
run(
// static dispatch between shape-shifting variants, _including pointer lookups_
"def main [\n"
" e1:d1:num <- merge 3\n"
" e2:&:d2:num <- new {(d2 number): type}\n"
" 1:num/raw <- foo e1\n"
" 2:num/raw <- foo *e2\n" // different from previous scenario
"]\n"
"def foo a:d1:_elem -> b:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
"def foo a:d2:_elem -> b:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
"container d1:_elem [\n"
" x:_elem\n"
"]\n"
"container d2:_elem [\n"
" x:num\n"
" y:_elem\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 1\n"
"mem: storing 35 in location 2\n"
);
}
void test_missing_type_in_shape_shifting_recipe() {
Hide_errors = true;
run(
"def main [\n"
" a:d1:num <- merge 3\n"
" foo a\n"
"]\n"
"def foo a:d1:_elem -> b:num [\n"
" local-scope\n"
" load-ingredients\n"
" copy e\n" // no such variable
" return 34\n"
"]\n"
"container d1:_elem [\n"
" x:_elem\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: foo: unknown type for 'e' in 'copy e' (check the name for typos)\n"
"error: specializing foo: missing type for 'e'\n"
);
// and it doesn't crash
}
void test_missing_type_in_shape_shifting_recipe_2() {
Hide_errors = true;
run(
"def main [\n"
" a:d1:num <- merge 3\n"
" foo a\n"
"]\n"
"def foo a:d1:_elem -> b:num [\n"
" local-scope\n"
" load-ingredients\n"
" get e, x:offset\n" // unknown variable in a 'get', which does some extra checking
" return 34\n"
"]\n"
"container d1:_elem [\n"
" x:_elem\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"error: foo: unknown type for 'e' in 'get e, x:offset' (check the name for typos)\n"
"error: specializing foo: missing type for 'e'\n"
);
// and it doesn't crash
}
void test_specialize_recursive_shape_shifting_recipe() {
transform(
"def main [\n"
" 1:num <- copy 34\n"
" 2:num <- foo 1:num\n"
"]\n"
"def foo x:_elem -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" {\n"
" break\n"
" y:num <- foo x\n"
" }\n"
" return y\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"transform: new specialization: foo_2\n"
);
// transform terminates
}
void test_specialize_most_similar_variant() {
run(
"def main [\n"
" 1:&:num <- new number:type\n"
" 10:num <- foo 1:&:num\n"
"]\n"
"def foo x:_elem -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
"def foo x:&:_elem -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 35 in location 10\n"
);
}
void test_specialize_most_similar_variant_2() {
run(
// version with headers padded with lots of unrelated concrete types
"def main [\n"
" 1:num <- copy 23\n"
" 2:&:@:num <- copy null\n"
" 4:num <- foo 2:&:@:num, 1:num\n"
"]\n"
// variant with concrete type
"def foo dummy:&:@:num, x:num -> y:num, dummy:&:@:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
// shape-shifting variant
"def foo dummy:&:@:num, x:_elem -> y:num, dummy:&:@:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
);
// prefer the concrete variant
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 4\n"
);
}
void test_specialize_most_similar_variant_3() {
run(
"def main [\n"
" 1:text <- new [abc]\n"
" foo 1:text\n"
"]\n"
"def foo x:text [\n"
" 10:num <- copy 34\n"
"]\n"
"def foo x:&:_elem [\n"
" 10:num <- copy 35\n"
"]\n"
);
// make sure the more precise version was used
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 10\n"
);
}
void test_specialize_literal_as_number() {
run(
"def main [\n"
" 1:num <- foo 23\n"
"]\n"
"def foo x:_elem -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
"def foo x:char -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 1\n"
);
}
void test_specialize_literal_as_number_2() {
run(
// version calling with literal
"def main [\n"
" 1:num <- foo 0\n"
"]\n"
// variant with concrete type
"def foo x:num -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
// shape-shifting variant
"def foo x:&:_elem -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
);
// prefer the concrete variant, ignore concrete types in scoring the shape-shifting variant
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 1\n"
);
}
void test_specialize_literal_as_address() {
run(
"def main [\n"
" 1:num <- foo null\n"
"]\n"
// variant with concrete address type
"def foo x:&:num -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 34\n"
"]\n"
// shape-shifting variant
"def foo x:&:_elem -> y:num [\n"
" local-scope\n"
" load-ingredients\n"
" return 35\n"
"]\n"
);
// prefer the concrete variant, ignore concrete types in scoring the shape-shifting variant
CHECK_TRACE_CONTENTS(
"mem: storing 34 in location 1\n"
);
}
void test_missing_type_during_specialization() {
Hide_errors = true;
run(
// define a shape-shifting recipe
"def foo a:_elem [\n"
"]\n"
// define a container with field 'z'
"container foo2 [\n"
" z:num\n"
"]\n"
"def main [\n"
" local-scope\n"
" x:foo2 <- merge 34\n"
" y:num <- get x, z:offse # typo in 'offset'\n"
// define a variable with the same name 'z'
" z:num <- copy 34\n"
" foo z\n"
"]\n"
);
// shouldn't crash
}
void test_missing_type_during_specialization2() {
Hide_errors = true;
run(
// define a shape-shifting recipe
"def foo a:_elem [\n"
"]\n"
// define a container with field 'z'
"container foo2 [\n"
" z:num\n"
"]\n"
"def main [\n"
" local-scope\n"
" x:foo2 <- merge 34\n"
" y:num <- get x, z:offse # typo in 'offset'\n"
// define a variable with the same name 'z'
" z:&:num <- copy 34\n"
// trigger specialization of the shape-shifting recipe
" foo *z\n"
"]\n"
);
// shouldn't crash
}
void test_tangle_shape_shifting_recipe() {
run(
// shape-shifting recipe
"def foo a:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" <label1>\n"
"]\n"
// tangle some code that refers to the type ingredient
"after <label1> [\n"
" b:_elem <- copy a\n"
"]\n"
// trigger specialization
"def main [\n"
" local-scope\n"
" foo 34\n"
"]\n"
);
CHECK_TRACE_COUNT("error", 0);
}
void test_tangle_shape_shifting_recipe_with_type_abbreviation() {
run(
// shape-shifting recipe
"def foo a:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" <label1>\n"
"]\n"
// tangle some code that refers to the type ingredient
"after <label1> [\n"
" b:bool <- copy false\n" // type abbreviation
"]\n"
// trigger specialization
"def main [\n"
" local-scope\n"
" foo 34\n"
"]\n"
);
CHECK_TRACE_COUNT("error", 0);
}
void test_shape_shifting_recipe_coexists_with_primitive() {
run(
// recipe overloading a primitive with a generic type
"def add a:&:foo:_elem [\n"
" assert 0, [should not get here]\n"
"]\n"
"def main [\n"
// call primitive add with literal 0
" add 0, 0\n"
"]\n"
);
CHECK_TRACE_COUNT("error", 0);
}
void test_specialization_heuristic_test_1() {
run(
// modeled on the 'buffer' container in text.mu
"container foo_buffer:_elem [\n"
" x:num\n"
"]\n"
"def main [\n"
" append 1:&:foo_buffer:char/raw, 2:text/raw\n"
"]\n"
"def append buf:&:foo_buffer:_elem, x:_elem -> buf:&:foo_buffer:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" stash 34\n"
"]\n"
"def append buf:&:foo_buffer:char, x:_elem -> buf:&:foo_buffer:char [\n"
" local-scope\n"
" load-ingredients\n"
" stash 35\n"
"]\n"
"def append buf:&:foo_buffer:_elem, x:&:@:_elem -> buf:&:foo_buffer:_elem [\n"
" local-scope\n"
" load-ingredients\n"
" stash 36\n"
"]\n"
);
CHECK_TRACE_CONTENTS(
"app: 36\n"
);
}