mu/cpp/012run

149 lines
3.7 KiB
Plaintext

:(scenarios run)
:(scenario copy_literal)
recipe main [
1:integer <- copy 23:literal
]
+run: instruction main/0
+run: ingredient 0 is 23
+mem: storing in location 1
:(scenario copy)
recipe main [
1:integer <- copy 23:literal
2:integer <- copy 1:integer
]
+run: instruction main/1
+run: ingredient 0 is 1
+mem: location 1 is 23
+mem: storing in location 2
:(before "End Types")
// Book-keeping while running a recipe.
//: Later layers will change this.
struct routine {
recipe_number running_recipe;
size_t running_at;
routine(recipe_number r) :running_recipe(r), running_at(0) {}
};
:(code)
void run(recipe_number r) {
run(routine(r));
}
void run(routine rr) {
while (!done(rr)) {
vector<instruction>& instructions = steps(rr);
size_t& pc = running_at(rr);
// Running one instruction.
trace("run") << "instruction " << recipe_name(rr) << '/' << pc;
switch (instructions[pc].operation) {
// Primitive Recipe Implementations.
case COPY: {
trace("run") << "ingredient 0 is " << instructions[pc].ingredients[0].name;
vector<int> data = read_memory(instructions[pc].ingredients[0]);
write_memory(instructions[pc].products[0], data);
break;
}
// End Primitive Recipe Implementations.
default: {
cout << "not a primitive op: " << instructions[pc].operation << '\n';
}
}
++pc;
}
}
//: Some helpers.
//: We'll need to override these later as we change the definition of routine.
//: Important that they return referrences into the routine.
inline size_t& running_at(routine& rr) {
return rr.running_at;
}
inline string recipe_name(routine& rr) {
return Recipe[rr.running_recipe].name;
}
inline vector<instruction>& steps(routine& rr) {
return Recipe[rr.running_recipe].steps;
}
inline bool done(routine& rr) {
return running_at(rr) >= steps(rr).size();
}
:(before "End Main")
if (argc > 1) {
setup();
for (int i = 1; i < argc; ++i) {
ifstream fin(argv[i]);
while (!fin.eof()) add_recipe(fin);
fin.close();
}
recipe_number r = Recipe_number[string("main")];
if (r) run(r);
dump_memory();
}
//: helper for tests
:(before "End Globals")
vector<recipe_number> recipes_added_by_test;
:(code)
void run(string form) {
vector<recipe_number> tmp = add_recipes(form);
recipes_added_by_test.insert(recipes_added_by_test.end(), tmp.begin(), tmp.end());
run(recipes_added_by_test.front());
}
:(before "End Setup")
for (size_t i = 0; i < recipes_added_by_test.size(); ++i) {
Recipe_number.erase(Recipe[recipes_added_by_test[i]].name);
Recipe.erase(recipes_added_by_test[i]);
}
recipes_added_by_test.clear();
:(code)
vector<int> read_memory(reagent x) {
//? cout << "read_memory: " << x.to_string() << '\n'; //? 1
vector<int> result;
if (x.types[0] == 0) { // literal
result.push_back(to_int(x.name));
return result;
}
int base = to_int(x.name);
for (size_t offset = 0; offset < Type[x.types[0]].size; ++offset) {
int val = Memory[base+offset];
trace("mem") << "location " << base+offset << " is " << val;
result.push_back(val);
}
return result;
}
void write_memory(reagent x, vector<int> data) {
int base = to_int(x.name);
size_t size = size_of(x);
if (size != data.size()) raise << "size mismatch in storing to " << x.to_string();
for (size_t offset = 0; offset < size; ++offset) {
trace("mem") << "storing in location " << base+offset;
Memory[base+offset] = data[offset];
}
}
:(code)
int to_int(string n) {
char* end = NULL;
int result = strtol(n.c_str(), &end, /*any base*/0);
assert(*end == '\0');
return result;
}
size_t size_of(reagent r) {
type_info t = Type[r.types[0]];
if (!t.is_record && !t.is_array) return t.size;
return t.size; // TODO
}