mu/linux/409print-float-hex.mu
Kartik K. Agaram 71e4f38129 7842 - new directory organization
Baremetal is now the default build target and therefore has its sources
at the top-level. Baremetal programs build using the phase-2 Mu toolchain
that requires a Linux kernel. This phase-2 codebase which used to be at
the top-level is now under the linux/ directory. Finally, the phase-2 toolchain,
while self-hosting, has a way to bootstrap from a C implementation, which
is now stored in linux/bootstrap. The bootstrap C implementation uses some
literate programming tools that are now in linux/bootstrap/tools.

So the whole thing has gotten inverted. Each directory should build one
artifact and include the main sources (along with standard library). Tools
used for building it are relegated to sub-directories, even though those
tools are often useful in their own right, and have had lots of interesting
programs written using them.

A couple of things have gotten dropped in this process:
  - I had old ways to run on just a Linux kernel, or with a Soso kernel.
    No more.
  - I had some old tooling for running a single test at the cursor. I haven't
    used that lately. Maybe I'll bring it back one day.

The reorg isn't done yet. Still to do:
  - redo documentation everywhere. All the README files, all other markdown,
    particularly vocabulary.md.
  - clean up how-to-run comments at the start of programs everywhere
  - rethink what to do with the html/ directory. Do we even want to keep
    supporting it?

In spite of these shortcomings, all the scripts at the top-level, linux/
and linux/bootstrap are working. The names of the scripts also feel reasonable.
This is a good milestone to take stock at.
2021-03-03 22:21:03 -08:00

197 lines
6.2 KiB
Forth

# quick-n-dirty way to print out floats in hex
# https://www.exploringbinary.com/hexadecimal-floating-point-constants
# example:
# 0.5 = 0x3f000000 = 0011| 1111 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000
# = 0 | 01111110 | 00000000000000000000000
# + exponent mantissa
# = 0 | 00000000000000000000000 | 01111110
# mantissa exponent
# = 0 | 000000000000000000000000 | 01111110
# zero-pad mantissa exponent
# = +1.000000 P -01
fn test-print-float-hex-normal {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# 0.5
var half/xmm0: float <- rational 1, 2
print-float-hex screen, half
check-screen-row screen, 1, "1.000000P-01 ", "F - test-print-float-hex-normal 0.5"
# 0.25
clear-screen screen
var quarter/xmm0: float <- rational 1, 4
print-float-hex screen, quarter
check-screen-row screen, 1, "1.000000P-02 ", "F - test-print-float-hex-normal 0.25"
# 0.75
clear-screen screen
var three-quarters/xmm0: float <- rational 3, 4
print-float-hex screen, three-quarters
check-screen-row screen, 1, "1.800000P-01 ", "F - test-print-float-hex-normal 0.75"
# 0.1
clear-screen screen
var tenth/xmm0: float <- rational 1, 0xa
print-float-hex screen, tenth
check-screen-row screen, 1, "1.99999aP-04 ", "F - test-print-float-hex-normal 0.1"
}
fn test-print-float-hex-integer {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
# 1
var one-f/xmm0: float <- rational 1, 1
print-float-hex screen, one-f
check-screen-row screen, 1, "1.000000P00 ", "F - test-print-float-hex-integer 1"
# 2
clear-screen screen
var two-f/xmm0: float <- rational 2, 1
print-float-hex screen, two-f
check-screen-row screen, 1, "1.000000P01 ", "F - test-print-float-hex-integer 2"
# 10
clear-screen screen
var ten-f/xmm0: float <- rational 0xa, 1
print-float-hex screen, ten-f
check-screen-row screen, 1, "1.400000P03 ", "F - test-print-float-hex-integer 10"
# -10
clear-screen screen
var minus-ten-f/xmm0: float <- rational -0xa, 1
print-float-hex screen, minus-ten-f
check-screen-row screen, 1, "-1.400000P03 ", "F - test-print-float-hex-integer -10"
}
fn test-print-float-hex-zero {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
var zero: float
print-float-hex screen, zero
check-screen-row screen, 1, "0 ", "F - test-print-float-hex-zero"
}
fn test-print-float-hex-negative-zero {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
var n: int
copy-to n, 0x80000000
var negative-zero/xmm0: float <- reinterpret n
print-float-hex screen, negative-zero
check-screen-row screen, 1, "-0 ", "F - test-print-float-hex-negative-zero"
}
fn test-print-float-hex-infinity {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
var n: int
# 0|11111111|00000000000000000000000
# 0111|1111|1000|0000|0000|0000|0000|0000
copy-to n, 0x7f800000
var infinity/xmm0: float <- reinterpret n
print-float-hex screen, infinity
check-screen-row screen, 1, "Inf ", "F - test-print-float-hex-infinity"
}
fn test-print-float-hex-negative-infinity {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
var n: int
copy-to n, 0xff800000
var negative-infinity/xmm0: float <- reinterpret n
print-float-hex screen, negative-infinity
check-screen-row screen, 1, "-Inf ", "F - test-print-float-hex-negative-infinity"
}
fn test-print-float-hex-not-a-number {
var screen-on-stack: screen
var screen/esi: (addr screen) <- address screen-on-stack
initialize-screen screen, 5, 0x20 # 32 columns should be more than enough
var n: int
copy-to n, 0xffffffff # exponent must be all 1's, and mantissa must be non-zero
var negative-infinity/xmm0: float <- reinterpret n
print-float-hex screen, negative-infinity
check-screen-row screen, 1, "NaN ", "F - test-print-float-hex-not-a-number"
}
fn print-float-hex screen: (addr screen), n: float {
# - special names
var bits/eax: int <- reinterpret n
compare bits, 0
{
break-if-!=
print-string screen, "0"
return
}
compare bits, 0x80000000
{
break-if-!=
print-string screen, "-0"
return
}
compare bits, 0x7f800000
{
break-if-!=
print-string screen, "Inf"
return
}
compare bits, 0xff800000
{
break-if-!=
print-string screen, "-Inf"
return
}
var exponent/ecx: int <- copy bits
exponent <- shift-right 0x17 # 23 bits of mantissa
exponent <- and 0xff
exponent <- subtract 0x7f
compare exponent, 0x80
{
break-if-!=
print-string screen, "NaN"
return
}
# - regular numbers
var sign/edx: int <- copy bits
sign <- shift-right 0x1f
{
compare sign, 1
break-if-!=
print-string screen, "-"
}
$print-float-hex:leading-digit: {
# check for subnormal numbers
compare exponent, -0x7f
{
break-if-!=
print-string screen, "0."
exponent <- increment
break $print-float-hex:leading-digit
}
# normal numbers
print-string screen, "1."
}
var mantissa/ebx: int <- copy bits
mantissa <- and 0x7fffff
mantissa <- shift-left 1 # pad to whole nibbles
print-int32-hex-bits screen, mantissa, 0x18
# print exponent
print-string screen, "P"
compare exponent, 0
{
break-if->=
print-string screen, "-"
}
var exp-magnitude/eax: int <- abs exponent
print-int32-hex-bits screen, exp-magnitude, 8
}
#? fn main -> _/ebx: int {
#? run-tests
#? #? test-print-float-hex-negative-zero
#? #? print-int32-hex 0, 0
#? #? test-print-float-hex-normal
#? return 0
#? }