audacia/src/TrackArtist.cpp

2950 lines
98 KiB
C++
Raw Normal View History

/**********************************************************************
Audacity: A Digital Audio Editor
TrackArtist.cpp
Dominic Mazzoni
*******************************************************************//*!
\class TrackArtist
\brief This class handles the actual rendering of WaveTracks (both
waveforms and spectra), NoteTracks, LabelTracks and TimeTracks.
It's actually a little harder than it looks, because for
waveforms at least it needs to cache the samples that are
currently on-screen.
*//*******************************************************************/
#include "Audacity.h"
#include "AudacityApp.h"
#include "TrackArtist.h"
#include "float_cast.h"
#include <math.h>
#include <float.h>
#include <wx/brush.h>
#include <wx/colour.h>
#include <wx/dc.h>
#include <wx/dcmemory.h>
#include <wx/gdicmn.h>
#include <wx/image.h>
#include <wx/pen.h>
#include <wx/log.h>
#include <wx/datetime.h>
#ifdef USE_MIDI
#include "NoteTrack.h"
#endif // USE_MIDI
#include "AColor.h"
#include "BlockFile.h"
#include "Envelope.h"
#include "Track.h"
#include "WaveTrack.h"
#include "LabelTrack.h"
#include "TimeTrack.h"
#include "Prefs.h"
#include "Sequence.h"
#include "Spectrum.h"
#include "ViewInfo.h"
#include "widgets/Ruler.h"
#include "Theme.h"
#include "AllThemeResources.h"
#undef PROFILE_WAVEFORM
#ifdef PROFILE_WAVEFORM
#ifdef __WXMSW__
#include <time.h>
#else
#include <sys/time.h>
#endif
double gWaveformTimeTotal = 0;
int gWaveformTimeCount = 0;
#endif
#ifdef USE_MIDI
/*
const int octaveHeight = 62;
const int blackPos[5] = { 6, 16, 32, 42, 52 };
const int whitePos[7] = { 0, 9, 17, 26, 35, 44, 53 };
const int notePos[12] = { 1, 6, 11, 16, 21, 27,
32, 37, 42, 47, 52, 57 };
// map pitch number to window coordinate of the *top* of the note
// Note the "free" variable bottom, which is assumed to be a local
// variable set to the offset of pitch 0 relative to the window
#define IPITCH_TO_Y(t, p) (bottom - ((p) / 12) * octaveHeight - \
notePos[(p) % 12] - (t)->GetPitchHeight())
// GetBottom is called from a couple of places to compute the hypothetical
// coordinate of the bottom of pitch 0 in window coordinates. See
// IPITCH_TO_Y above, which computes coordinates relative to GetBottom()
// Note the -NOTE_MARGIN, which leaves a little margin to draw notes that
// are out of bounds. I'm not sure why the -2 is necessary.
int TrackArtist::GetBottom(NoteTrack *t, const wxRect &r)
{
int bottomNote = t->GetBottomNote();
int bottom = r.y + r.height - 2 - t->GetNoteMargin() +
((bottomNote / 12) * octaveHeight + notePos[bottomNote % 12]);
return bottom;
}
*/
#endif // USE_MIDI
TrackArtist::TrackArtist()
{
mInsetLeft = 0;
mInsetTop = 0;
mInsetRight = 0;
mInsetBottom = 0;
mdBrange = ENV_DB_RANGE;
mShowClipping = false;
UpdatePrefs();
SetColours();
vruler = new Ruler();
#ifdef EXPERIMENTAL_FFT_Y_GRID
fftYGridOld=true;
#endif //EXPERIMENTAL_FFT_Y_GRID
#ifdef EXPERIMENTAL_FIND_NOTES
fftFindNotesOld=false;
#endif
}
TrackArtist::~TrackArtist()
{
delete vruler;
}
void TrackArtist::SetColours()
{
theTheme.SetBrushColour( blankBrush, clrBlank );
theTheme.SetBrushColour( unselectedBrush, clrUnselected);
theTheme.SetBrushColour( selectedBrush, clrSelected);
theTheme.SetBrushColour( sampleBrush, clrSample);
theTheme.SetBrushColour( selsampleBrush, clrSelSample);
theTheme.SetBrushColour( dragsampleBrush, clrDragSample);
theTheme.SetBrushColour( blankSelectedBrush, clrBlankSelected);
theTheme.SetPenColour( blankPen, clrBlank);
theTheme.SetPenColour( unselectedPen, clrUnselected);
theTheme.SetPenColour( selectedPen, clrSelected);
theTheme.SetPenColour( samplePen, clrSample);
theTheme.SetPenColour( selsamplePen, clrSelSample);
theTheme.SetPenColour( muteSamplePen, clrMuteSample);
theTheme.SetPenColour( odProgressDonePen, clrProgressDone);
theTheme.SetPenColour( odProgressNotYetPen, clrProgressNotYet);
theTheme.SetPenColour( rmsPen, clrRms);
theTheme.SetPenColour( muteRmsPen, clrMuteRms);
theTheme.SetPenColour( shadowPen, clrShadow);
theTheme.SetPenColour( clippedPen, clrClipped);
theTheme.SetPenColour( muteClippedPen, clrMuteClipped);
theTheme.SetPenColour( blankSelectedPen,clrBlankSelected);
}
void TrackArtist::SetInset(int left, int top, int right, int bottom)
{
mInsetLeft = left;
mInsetTop = top;
mInsetRight = right;
mInsetBottom = bottom;
}
void TrackArtist::DrawTracks(TrackList * tracks,
Track * start,
wxDC & dc,
wxRegion & reg,
wxRect & r,
wxRect & clip,
ViewInfo * viewInfo,
bool drawEnvelope,
bool drawSamples,
bool drawSliders)
{
wxRect trackRect = r;
wxRect stereoTrackRect;
TrackListIterator iter(tracks);
Track *t;
bool hasSolo = false;
for (t = iter.First(); t; t = iter.Next()) {
if (t->GetSolo()) {
hasSolo = true;
break;
}
}
#if defined(DEBUG_CLIENT_AREA)
// Change the +0 to +1 or +2 to see the bounding box
mInsetLeft = 1+0; mInsetTop = 5+0; mInsetRight = 6+0; mInsetBottom = 2+0;
// This just show what the passed in rectanges enclose
dc.SetPen(wxColour(*wxGREEN));
dc.SetBrush(*wxTRANSPARENT_BRUSH);
dc.DrawRectangle(r);
dc.SetPen(wxColour(*wxBLUE));
dc.SetBrush(*wxTRANSPARENT_BRUSH);
dc.DrawRectangle(clip);
#endif
t = iter.StartWith(start);
while (t) {
trackRect.y = t->GetY() - viewInfo->vpos;
trackRect.height = t->GetHeight();
if (trackRect.y > clip.GetBottom() && !t->GetLinked()) {
break;
}
#if defined(DEBUG_CLIENT_AREA)
// Filled rectangle to show the interior of the client area
wxRect zr = trackRect;
zr.x+=1; zr.y+=5; zr.width-=7; zr.height-=7;
dc.SetPen(*wxCYAN_PEN);
dc.SetBrush(*wxRED_BRUSH);
dc.DrawRectangle(zr);
#endif
stereoTrackRect = trackRect;
// For various reasons, the code will break if we display one
// of a stereo pair of tracks but not the other - for example,
// if you try to edit the envelope of one track when its linked
// pair is off the screen, then it won't be able to edit the
// offscreen envelope. So we compute the rect of the track and
// its linked partner, and see if any part of that rect is on-screen.
// If so, we draw both. Otherwise, we can safely draw neither.
Track *link = t->GetLink();
if (link) {
if (t->GetLinked()) {
// If we're the first track
stereoTrackRect.height += link->GetHeight();
}
else {
// We're the second of two
stereoTrackRect.y -= link->GetHeight();
stereoTrackRect.height += link->GetHeight();
}
}
if (stereoTrackRect.Intersects(clip) && reg.Contains(stereoTrackRect)) {
wxRect rr = trackRect;
rr.x += mInsetLeft;
rr.y += mInsetTop;
rr.width -= (mInsetLeft + mInsetRight);
rr.height -= (mInsetTop + mInsetBottom);
DrawTrack(t, dc, rr, viewInfo,
drawEnvelope, drawSamples, drawSliders, hasSolo);
}
t = iter.Next();
}
}
void TrackArtist::DrawTrack(const Track * t,
wxDC & dc,
const wxRect & r,
const ViewInfo * viewInfo,
bool drawEnvelope,
bool drawSamples,
bool drawSliders,
bool hasSolo)
{
switch (t->GetKind()) {
case Track::Wave:
{
WaveTrack* wt = (WaveTrack*)t;
for (WaveClipList::compatibility_iterator it=wt->GetClipIterator(); it; it=it->GetNext()) {
it->GetData()->ClearDisplayRect();
}
bool muted = (hasSolo || t->GetMute()) && !t->GetSolo();
switch (wt->GetDisplay()) {
case WaveTrack::WaveformDisplay:
DrawWaveform(wt, dc, r, viewInfo,
drawEnvelope, drawSamples, drawSliders, false, muted);
break;
case WaveTrack::WaveformDBDisplay:
DrawWaveform(wt, dc, r, viewInfo,
drawEnvelope, drawSamples, drawSliders, true, muted);
break;
case WaveTrack::SpectrumDisplay:
DrawSpectrum(wt, dc, r, viewInfo, false, false);
break;
case WaveTrack::SpectrumLogDisplay:
DrawSpectrum(wt, dc, r, viewInfo, false, true);
break;
case WaveTrack::PitchDisplay:
DrawSpectrum(wt, dc, r, viewInfo, true, false);
break;
}
break; // case Wave
}
#ifdef USE_MIDI
case Track::Note:
{
bool muted = (hasSolo || t->GetMute()) && !t->GetSolo();
DrawNoteTrack((NoteTrack *)t, dc, r, viewInfo, muted);
break;
}
#endif // USE_MIDI
case Track::Label:
DrawLabelTrack((LabelTrack *)t, dc, r, viewInfo);
break;
case Track::Time:
DrawTimeTrack((TimeTrack *)t, dc, r, viewInfo);
break;
}
}
void TrackArtist::DrawVRuler(Track *t, wxDC * dc, wxRect & r)
{
int kind = t->GetKind();
// Label and Time tracks do not have a vruler
// But give it a beveled area
if (kind == Track::Label || kind == Track::Time) {
wxRect bev = r;
bev.Inflate(-1, -1);
bev.width += 1;
AColor::BevelTrackInfo(*dc, true, bev);
return;
}
// All waves have a ruler in the info panel
// The ruler needs a bevelled surround.
if (kind == Track::Wave) {
wxRect bev = r;
bev.Inflate(-1, -1);
bev.width += 1;
AColor::BevelTrackInfo(*dc, true, bev);
// Pitch doesn't have a ruler
if (((WaveTrack *)t)->GetDisplay() == WaveTrack::PitchDisplay) {
return;
}
// Right align the ruler
wxRect rr = r;
rr.width--;
if (t->vrulerSize.GetWidth() < r.GetWidth()) {
int adj = rr.GetWidth() - t->vrulerSize.GetWidth();
rr.x += adj;
rr.width -= adj;
}
UpdateVRuler(t, rr);
vruler->Draw(*dc);
return;
}
#ifdef USE_MIDI
// The note track draws a vertical keyboard to label pitches
if (kind == Track::Note) {
UpdateVRuler(t, r);
dc->SetPen(*wxTRANSPARENT_PEN);
dc->SetBrush(*wxWHITE_BRUSH);
wxRect bev = r;
bev.x++;
bev.y++;
bev.width--;
bev.height--;
dc->DrawRectangle(bev);
r.y += 2;
r.height -= 2;
//int bottom = GetBottom((NoteTrack *) t, r);
NoteTrack *track = (NoteTrack *) t;
track->PrepareIPitchToY(r);
wxPen hilitePen;
hilitePen.SetColour(120, 120, 120);
wxBrush blackKeyBrush;
blackKeyBrush.SetColour(70, 70, 70);
dc->SetBrush(blackKeyBrush);
int fontSize = 10;
#ifdef __WXMSW__
fontSize = 8;
#endif
wxFont labelFont(fontSize, wxSWISS, wxNORMAL, wxNORMAL);
dc->SetFont(labelFont);
int octave = 0;
int obottom = track->GetOctaveBottom(octave);
int marg = track->GetNoteMargin();
//IPITCH_TO_Y(octave * 12) + PITCH_HEIGHT + 1;
while (obottom >= r.y) {
dc->SetPen(*wxBLACK_PEN);
for (int white = 0; white < 7; white++) {
int pos = track->GetWhitePos(white);
if (obottom - pos > r.y + marg + 1 &&
// don't draw too close to margin line -- it's annoying
obottom - pos < r.y + r.height - marg - 3)
AColor::Line(*dc, r.x, obottom - pos,
r.x + r.width, obottom - pos);
}
wxRect br = r;
br.height = track->GetPitchHeight();
br.x++;
br.width = 17;
for (int black = 0; black < 5; black++) {
br.y = obottom - track->GetBlackPos(black);
if (br.y > r.y + marg - 2 && br.y + br.height < r.y + r.height - marg) {
dc->SetPen(hilitePen);
dc->DrawRectangle(br);
dc->SetPen(*wxBLACK_PEN);
AColor::Line(*dc,
br.x + 1, br.y + br.height - 1,
br.x + br.width - 1, br.y + br.height - 1);
AColor::Line(*dc,
br.x + br.width - 1, br.y + 1,
br.x + br.width - 1, br.y + br.height - 1);
}
}
if (octave >= 1 && octave <= 10) {
wxString s;
// ISO standard: A440 is in the 4th octave, denoted
// A4 <- the "4" should be a subscript.
s.Printf(wxT("C%d"), octave - 1);
long width, height;
dc->GetTextExtent(s, &width, &height);
if (obottom - height + 4 > r.y &&
obottom + 4 < r.y + r.height) {
dc->SetTextForeground(wxColour(60, 60, 255));
dc->DrawText(s, r.x + r.width - width,
obottom - height + 2);
}
}
obottom = track->GetOctaveBottom(++octave);
}
// draw lines delineating the out-of-bounds margins
dc->SetPen(*wxBLACK_PEN);
// you would think the -1 offset here should be -2 to match the
// adjustment to r.y (see above), but -1 produces correct output
AColor::Line(*dc, r.x, r.y + marg - 1, r.x + r.width, r.y + marg - 1);
// since the margin gives us the bottom of the line,
// the extra -1 gets us to the top
AColor::Line(*dc, r.x, r.y + r.height - marg - 1,
r.x + r.width, r.y + r.height - marg - 1);
}
#endif // USE_MIDI
}
void TrackArtist::UpdateVRuler(Track *t, wxRect & r)
{
// Label tracks do not have a vruler
if (t->GetKind() == Track::Label) {
return;
}
// All waves have a ruler in the info panel
// The ruler needs a bevelled surround.
if (t->GetKind() == Track::Wave) {
WaveTrack *wt = (WaveTrack *)t;
int display = wt->GetDisplay();
if (display == WaveTrack::WaveformDisplay) {
// Waveform
float min, max;
wt->GetDisplayBounds(&min, &max);
vruler->SetBounds(r.x, r.y+1, r.x + r.width, r.y + r.height-1);
vruler->SetOrientation(wxVERTICAL);
vruler->SetRange(max, min);
vruler->SetFormat(Ruler::RealFormat);
vruler->SetUnits(wxT(""));
vruler->SetLabelEdges(false);
vruler->SetLog(false);
}
else if (display == WaveTrack::WaveformDBDisplay) {
// Waveform (db)
vruler->SetUnits(wxT(""));
float min, max;
wt->GetDisplayBounds(&min, &max);
if (max > 0) {
int top = 0;
float topval = 0;
int bot = r.height;
float botval = -mdBrange;
if (min < 0) {
bot = top + (int)((max / (max-min))*(bot-top));
min = 0;
}
if (max > 1) {
top += (int)((max-1)/(max-min) * (bot-top));
max = 1;
}
if (max < 1)
topval = -((1-max)*mdBrange);
if (min > 0) {
botval = -((1-min)*mdBrange);
}
if (topval > botval && bot > top+10) {
vruler->SetBounds(r.x, r.y+top+1, r.x + r.width, r.y + bot-1);
vruler->SetOrientation(wxVERTICAL);
vruler->SetRange(topval, botval);
vruler->SetFormat(Ruler::LinearDBFormat);
vruler->SetLabelEdges(true);
vruler->SetLog(false);
}
}
}
else if (display == WaveTrack::SpectrumDisplay) {
// Spectrum
if (r.height < 60)
return;
double rate = wt->GetRate();
int freq = lrint(rate/2.);
int maxFreq = GetSpectrumMaxFreq(freq);
#ifdef EXPERIMENTAL_FFT_SKIP_POINTS
maxFreq/=(mFftSkipPoints+1);
#endif //EXPERIMENTAL_FFT_SKIP_POINTS
if(maxFreq > freq)
maxFreq = freq;
int minFreq = GetSpectrumMinFreq(0);
#ifdef EXPERIMENTAL_FFT_SKIP_POINTS
minFreq/=(mFftSkipPoints+1);
#endif //EXPERIMENTAL_FFT_SKIP_POINTS
if(minFreq < 0)
minFreq = 0;
/*
draw the ruler
we will use Hz if maxFreq is < 2000, otherwise we represent kHz,
and append to the numbers a "k"
*/
vruler->SetBounds(r.x, r.y+1, r.x + r.width, r.y + r.height-1);
vruler->SetOrientation(wxVERTICAL);
vruler->SetFormat(Ruler::RealFormat);
vruler->SetLabelEdges(true);
// use kHz in scale, if appropriate
if (maxFreq>=2000) {
vruler->SetRange((maxFreq/1000.), (minFreq/1000.));
vruler->SetUnits(wxT("k"));
} else {
// use Hz
vruler->SetRange(int(maxFreq), int(minFreq));
vruler->SetUnits(wxT(""));
}
vruler->SetLog(false);
}
else if (display == WaveTrack::SpectrumLogDisplay) {
// SpectrumLog
if (r.height < 10)
return;
double rate = wt->GetRate();
int freq = lrint(rate/2.);
int maxFreq = GetSpectrumLogMaxFreq(freq);
#ifdef EXPERIMENTAL_FFT_SKIP_POINTS
maxFreq/=(mFftSkipPoints+1);
#endif //EXPERIMENTAL_FFT_SKIP_POINTS
if(maxFreq > freq)
maxFreq = freq;
int minFreq = GetSpectrumLogMinFreq(freq/1000.0);
#ifdef EXPERIMENTAL_FFT_SKIP_POINTS
minFreq/=(mFftSkipPoints+1);
#endif //EXPERIMENTAL_FFT_SKIP_POINTS
if(minFreq < 1)
minFreq = 1;
/*
draw the ruler
we will use Hz if maxFreq is < 2000, otherwise we represent kHz,
and append to the numbers a "k"
*/
vruler->SetBounds(r.x, r.y+1, r.x + r.width, r.y + r.height-1);
vruler->SetOrientation(wxVERTICAL);
vruler->SetFormat(Ruler::IntFormat);
vruler->SetLabelEdges(true);
vruler->SetRange(maxFreq, minFreq);
vruler->SetUnits(wxT(""));
vruler->SetLog(true);
}
else if (display == WaveTrack::PitchDisplay) {
// Pitch
}
}
#ifdef USE_MIDI
// The note track isn't drawing a ruler at all!
// But it needs to!
else if (t->GetKind() == Track::Note) {
vruler->SetBounds(r.x, r.y+1, r.x + 1, r.y + r.height-1);
vruler->SetOrientation(wxVERTICAL);
}
#endif // USE_MIDI
vruler->GetMaxSize(&t->vrulerSize.x, &t->vrulerSize.y);
}
/// Takes a value between min and max and returns a value between
/// height and 0
/// \todo Should this function move int GuiWaveTrack where it can
/// then use the zoomMin, zoomMax and height values without having
/// to have them passed in to it??
int GetWaveYPos(float value, float min, float max,
int height, bool dB, bool outer,
float dBr, bool clip)
{
if (dB) {
if (height == 0) {
return 0;
}
float sign = (value >= 0 ? 1 : -1);
if (value != 0.) {
float db = 20.0 * log10(fabs(value));
value = (db + dBr) / dBr;
if (!outer) {
value -= 0.5;
}
if (value < 0.0) {
value = 0.0;
}
value *= sign;
}
}
else {
if (!outer) {
if (value >= 0.0) {
value -= 0.5;
}
else {
value += 0.5;
}
}
}
if (clip) {
if (value < min) {
value = min;
}
if (value > max) {
value = max;
}
}
value = (max - value) / (max - min);
return (int) (value * (height - 1) + 0.5);
}
void TrackArtist::DrawNegativeOffsetTrackArrows(wxDC &dc, const wxRect &r)
{
// Draws two black arrows on the left side of the track to
// indicate the user that the track has been time-shifted
// to the left beyond t=0.0.
dc.SetPen(*wxBLACK_PEN);
AColor::Line(dc,
r.x + 2, r.y + 6,
r.x + 8, r.y + 6);
AColor::Line(dc,
r.x + 2, r.y + 6,
r.x + 6, r.y + 2);
AColor::Line(dc,
r.x + 2, r.y + 6,
r.x + 6, r.y + 10);
AColor::Line(dc,
r.x + 2, r.y + r.height - 8,
r.x + 8, r.y + r.height - 8);
AColor::Line(dc,
r.x + 2, r.y + r.height - 8,
r.x + 6, r.y + r.height - 4);
AColor::Line(dc,
r.x + 2, r.y + r.height - 8,
r.x + 6, r.y + r.height - 12);
}
void TrackArtist::DrawWaveformBackground(wxDC &dc, const wxRect &r, const double env[],
float zoomMin, float zoomMax, bool dB,
const sampleCount where[],
sampleCount ssel0, sampleCount ssel1,
bool drawEnvelope, bool bIsSyncLockSelected)
{
// Visually (one vertical slice of the waveform background, on its side;
// the "*" is the actual waveform background we're drawing
//
//1.0 0.0 -1.0
// |--------------------------------|--------------------------------|
// *************** ***************
// | | | |
// maxtop maxbot mintop minbot
int h = r.height;
int halfHeight = wxMax(h / 2, 1);
int maxtop, lmaxtop = 0;
int mintop, lmintop = 0;
int maxbot, lmaxbot = 0;
int minbot, lminbot = 0;
bool sel, lsel = false;
int x, lx = 0;
int l, w;
dc.SetPen(*wxTRANSPARENT_PEN);
dc.SetBrush(blankBrush);
dc.DrawRectangle(r);
for (x = 0; x < r.width; x++) {
// First we compute the truncated shape of the waveform background.
// If drawEnvelope is true, then we compute the lower border of the
// envelope.
maxtop = GetWaveYPos(env[x], zoomMin, zoomMax,
h, dB, true, mdBrange, true);
maxbot = GetWaveYPos(env[x], zoomMin, zoomMax,
h, dB, false, mdBrange, true);
mintop = GetWaveYPos(-env[x], zoomMin, zoomMax,
h, dB, false, mdBrange, true);
minbot = GetWaveYPos(-env[x], zoomMin, zoomMax,
h, dB, true, mdBrange, true);
// Make sure it's odd so that a that max and min mirror each other
mintop +=1;
minbot +=1;
if (!drawEnvelope || maxbot > mintop) {
maxbot = halfHeight;
mintop = halfHeight;
}
// We don't draw selection color for sync-lock selected tracks.
sel = (ssel0 <= where[x] && where[x + 1] < ssel1) && !bIsSyncLockSelected;
if (lmaxtop == maxtop &&
lmintop == mintop &&
lmaxbot == maxbot &&
lminbot == minbot &&
lsel == sel) {
continue;
}
dc.SetBrush(lsel ? selectedBrush : unselectedBrush);
l = r.x + lx;
w = x - lx;
if (lmaxbot != lmintop - 1) {
dc.DrawRectangle(l, r.y + lmaxtop, w, lmaxbot - lmaxtop);
dc.DrawRectangle(l, r.y + lmintop, w, lminbot - lmintop);
}
else {
dc.DrawRectangle(l, r.y + lmaxtop, w, lminbot - lmaxtop);
}
lmaxtop = maxtop;
lmintop = mintop;
lmaxbot = maxbot;
lminbot = minbot;
lsel = sel;
lx = x;
}
dc.SetBrush(lsel ? selectedBrush : unselectedBrush);
l = r.x + lx;
w = x - lx;
if (lmaxbot != lmintop - 1) {
dc.DrawRectangle(l, r.y + lmaxtop, w, lmaxbot - lmaxtop);
dc.DrawRectangle(l, r.y + lmintop, w, lminbot - lmintop);
}
else {
dc.DrawRectangle(l, r.y + lmaxtop, w, lminbot - lmaxtop);
}
// If sync-lock selected, draw in linked graphics.
if (bIsSyncLockSelected && ssel0 < ssel1) {
// Find the beginning/end of the selection
int begin, end;
for (x = 0; x < r.width && where[x] < ssel0; ++x);
begin = x;
for (; x < r.width && where[x] < ssel1; ++x);
end = x;
DrawSyncLockTiles(&dc, wxRect(r.x + begin, r.y, end - 1 - begin, r.height));
}
//OK, the display bounds are between min and max, which
//is spread across r.height. Draw the line at the proper place.
if (zoomMin < 0 && zoomMax > 0) {
int half = (int)((zoomMax / (zoomMax - zoomMin)) * h);
dc.SetPen(*wxBLACK_PEN);
AColor::Line(dc, r.x, r.y + half, r.x + r.width, r.y + half);
}
}
void TrackArtist::DrawMinMaxRMS(wxDC &dc, const wxRect &r, const double env[],
float zoomMin, float zoomMax, bool dB,
const float min[], const float max[], const float rms[],
const int bl[], bool showProgress, bool muted)
{
// Display a line representing the
// min and max of the samples in this region
int lasth1, h1;
int lasth2, h2;
int *r1 = new int[r.width];
int *r2 = new int[r.width];
int *clipped;
int clipcnt = 0;
int x;
if (mShowClipping) {
clipped = new int[r.width];
}
long pixAnimOffset = (long)fabs((double)(wxDateTime::Now().GetTicks() * -10)) +
wxDateTime::Now().GetMillisecond() / 100; //10 pixels a second
bool drawStripes = true;
bool drawWaveform = true;
dc.SetPen(muted ? muteSamplePen : samplePen);
for (x = 0; x < r.width; x++) {
int xx = r.x + x;
double v;
v = min[x] * env[x];
if (mShowClipping && v <= -MAX_AUDIO) {
if (clipcnt == 0 || clipped[clipcnt - 1] != xx) {
clipped[clipcnt++] = xx;
}
}
h1 = GetWaveYPos(v, zoomMin, zoomMax,
r.height, dB, true, mdBrange, true);
v = max[x] * env[x];
if (mShowClipping && v >= MAX_AUDIO) {
if (clipcnt == 0 || clipped[clipcnt - 1] != xx) {
clipped[clipcnt++] = xx;
}
}
h2 = GetWaveYPos(v, zoomMin, zoomMax,
r.height, dB, true, mdBrange, true);
// JKC: This adjustment to h1 and h2 ensures that the drawn
// waveform is continuous.
if (x > 0) {
if (h1 < lasth2) {
h1 = lasth2 - 1;
}
if (h2 > lasth1) {
h2 = lasth1 + 1;
}
}
lasth1 = h1;
lasth2 = h2;
r1[x] = GetWaveYPos(-rms[x] * env[x], zoomMin, zoomMax,
r.height, dB, true, mdBrange, true);
r2[x] = GetWaveYPos(rms[x] * env[x], zoomMin, zoomMax,
r.height, dB, true, mdBrange, true);
// Make sure the rms isn't larger than the waveform min/max
if (r1[x] > h1 - 1) {
r1[x] = h1 - 1;
}
if (r2[x] < h2 + 1) {
r2[x] = h2 + 1;
}
if (r2[x] > r1[x]) {
r2[x] = r1[x];
}
if (bl[x] <= -1) {
if (drawStripes) {
// TODO:unify with buffer drawing.
dc.SetPen((bl[x] % 2) ? muteSamplePen : samplePen);
for (int y = 0; y < r.height / 25 + 1; y++) {
// we are drawing over the buffer, but I think DrawLine takes care of this.
AColor::Line(dc,
xx,
r.y + 25 * y + (x /*+pixAnimOffset*/) % 25,
xx,
r.y + 25 * y + (x /*+pixAnimOffset*/) % 25 + 6); //take the min so we don't draw past the edge
}
}
// draw a dummy waveform - some kind of sinusoid. We want to animate it so the user knows it's a dummy. Use the second's unit of a get time function.
// Lets use a triangle wave for now since it's easier - I don't want to use sin() or make a wavetable just for this.
if (drawWaveform) {
int triX;
dc.SetPen(samplePen);
triX = fabs((double)((x + pixAnimOffset) % (2 * r.height)) - r.height) + r.height;
for (int y = 0; y < r.height; y++) {
if ((y + triX) % r.height == 0) {
dc.DrawPoint(xx, r.y + y);
}
}
}
}
else {
AColor::Line(dc, xx, r.y + h2, xx, r.y + h1);
}
}
dc.SetPen(muted ? muteRmsPen : rmsPen);
for (int x = 0; x < r.width; x++) {
int xx = r.x + x;
if (bl[x] <= -1) {
}
else if (r1[x] != r2[x]) {
AColor::Line(dc, xx, r.y + r2[x], xx, r.y + r1[x]);
}
}
// Draw the clipping lines
if (clipcnt) {
dc.SetPen(muted ? muteClippedPen : clippedPen);
while (--clipcnt >= 0) {
int xx = clipped[clipcnt];
AColor::Line(dc, xx, r.y, xx, r.y + r.height);
}
}
if (mShowClipping) {
delete[] clipped;
}
delete [] r1;
delete [] r2;
}
void TrackArtist::DrawIndividualSamples(wxDC &dc, const wxRect &r,
float zoomMin, float zoomMax, bool dB,
WaveClip *clip,
double t0, double pps, double h,
bool drawSamples, bool showPoints, bool muted)
{
double rate = clip->GetRate();
sampleCount s0 = (sampleCount) (t0 * rate + 0.5);
sampleCount slen = (sampleCount) (r.width * rate / pps + 0.5);
sampleCount snSamples = clip->GetNumSamples();
slen += 4;
if (s0 > snSamples) {
return;
}
if (s0 + slen > snSamples) {
slen = snSamples - s0;
}
float *buffer = new float[slen];
clip->GetSamples((samplePtr)buffer, floatSample, s0, slen);
int *xpos = new int[slen];
int *ypos = new int[slen];
int *clipped;
int clipcnt = 0;
sampleCount s;
if (mShowClipping) {
clipped = new int[slen];
}
dc.SetPen(muted ? muteSamplePen : samplePen);
for (s = 0; s < slen; s++) {
double tt = (s / rate);
// MB: (s0/rate - t0) is the distance from the left edge of the screen
// to the first sample.
int xx = (int)rint((tt + s0 / rate - t0) * pps);
if (xx < -10000) {
xx = -10000;
}
if (xx > 10000) {
xx = 10000;
}
xpos[s] = xx;
// t0 + clip->GetOffset() is 'h' (the absolute time of the left edge) for 'r'.
tt = buffer[s] * clip->GetEnvelope()->GetValueAtX(xx + r.x, r, t0 + clip->GetOffset(), pps);
if (mShowClipping && (tt <= -MAX_AUDIO || tt >= MAX_AUDIO)) {
clipped[clipcnt++] = xx;
}
ypos[s] = GetWaveYPos(tt, zoomMin, zoomMax,
r.height, dB, true, mdBrange, false);
if (ypos[s] < -1) {
ypos[s] = -1;
}
if (ypos[s] > r.height) {
ypos[s] = r.height;
}
}
// Draw lines
for (s = 0; s < slen - 1; s++) {
AColor::Line(dc,
r.x + xpos[s], r.y + ypos[s],
r.x + xpos[s + 1], r.y + ypos[s + 1]);
}
if (showPoints) {
// Draw points
int tickSize= drawSamples ? 4 : 3;// Bigger ellipses when draggable.
wxRect pr;
pr.width = tickSize;
pr.height = tickSize;
//different colour when draggable.
dc.SetBrush( drawSamples ? dragsampleBrush : sampleBrush);
for (s = 0; s < slen; s++) {
if (ypos[s] >= 0 && ypos[s] < r.height) {
pr.x = r.x + xpos[s] - tickSize/2;
pr.y = r.y + ypos[s] - tickSize/2;
dc.DrawEllipse(pr);
}
}
}
// Draw clipping
if (clipcnt) {
dc.SetPen(muted ? muteClippedPen : clippedPen);
while (--clipcnt >= 0) {
s = clipped[clipcnt];
AColor::Line(dc, r.x + s, r.y, r.x + s, r.y + r.height);
}
}
if (mShowClipping) {
delete [] clipped;
}
delete[]buffer;
delete[]xpos;
delete[]ypos;
}
void TrackArtist::DrawEnvelope(wxDC &dc, const wxRect &r, const double env[],
float zoomMin, float zoomMax, bool dB)
{
int h = r.height;
dc.SetPen(AColor::envelopePen);
for (int x = 0; x < r.width; x++) {
int cenvTop = GetWaveYPos(env[x], zoomMin, zoomMax,
h, dB, true, mdBrange, true);
int cenvBot = GetWaveYPos(-env[x], zoomMin, zoomMax,
h, dB, true, mdBrange, true);
int envTop = GetWaveYPos(env[x], zoomMin, zoomMax,
h, dB, true, mdBrange, false);
int envBot = GetWaveYPos(-env[x], zoomMin, zoomMax,
h, dB, true, mdBrange, false);
// Make the collision at zero actually look solid
if (cenvBot - cenvTop < 9) {
int value = (int)((zoomMax / (zoomMax - zoomMin)) * h);
cenvTop = value - 4;
cenvBot = value + 4;
}
DrawEnvLine(dc, r, x, envTop, cenvTop, true);
DrawEnvLine(dc, r, x, envBot, cenvBot, false);
}
}
void TrackArtist::DrawEnvLine(wxDC &dc, const wxRect &r, int x, int y, int cy, bool top)
{
int xx = r.x + x;
int yy = r.y + cy;
if (y < 0) {
if (x % 4 != 3) {
AColor::Line(dc, xx, yy, xx, yy + 3);
}
}
else if (y > r.height) {
if (x % 4 != 3) {
AColor::Line(dc, xx, yy - 3, xx, yy);
}
}
else {
if (top) {
AColor::Line(dc, xx, yy, xx, yy + 3);
}
else {
AColor::Line(dc, xx, yy - 3, xx, yy);
}
}
}
void TrackArtist::DrawWaveform(WaveTrack *track,
wxDC & dc,
const wxRect & r,
const ViewInfo *viewInfo,
bool drawEnvelope,
bool drawSamples,
bool drawSliders,
bool dB,
bool muted)
{
DrawBackgroundWithSelection(&dc, r, track, blankSelectedBrush, blankBrush,
viewInfo->sel0, viewInfo->sel1, viewInfo->h, viewInfo->zoom);
for (WaveClipList::compatibility_iterator it = track->GetClipIterator(); it; it = it->GetNext())
DrawClipWaveform(track, it->GetData(), dc, r, viewInfo,
drawEnvelope, drawSamples, drawSliders,
dB, muted);
// Update cache for locations, e.g. cutlines and merge points
track->UpdateLocationsCache();
for (int i = 0; i<track->GetNumCachedLocations(); i++) {
WaveTrack::Location loc = track->GetCachedLocation(i);
double x = (loc.pos - viewInfo->h) * viewInfo->zoom;
if (x >= 0 && x < r.width) {
dc.SetPen(*wxGREY_PEN);
AColor::Line(dc, (int) (r.x + x - 1), r.y, (int) (r.x + x - 1), r.y + r.height);
if (loc.typ == WaveTrack::locationCutLine) {
dc.SetPen(*wxRED_PEN);
}
else {
dc.SetPen(*wxBLACK_PEN);
}
AColor::Line(dc, (int) (r.x + x), r.y, (int) (r.x + x), r.y + r.height);
dc.SetPen(*wxGREY_PEN);
AColor::Line(dc, (int) (r.x + x + 1), r.y, (int) (r.x + x + 1), r.y + r.height);
}
}
}
void TrackArtist::DrawClipWaveform(WaveTrack *track,
WaveClip *clip,
wxDC & dc,
const wxRect & r,
const ViewInfo *viewInfo,
bool drawEnvelope,
bool drawSamples,
bool drawSliders,
bool dB,
bool muted)
{
#if PROFILE_WAVEFORM
# ifdef __WXMSW__
__time64_t tv0, tv1;
_time64(&tv0);
# else
struct timeval tv0, tv1;
gettimeofday(&tv0, NULL);
# endif
#endif
double h = viewInfo->h; //The horizontal position in seconds
double pps = viewInfo->zoom; //points-per-second--the zoom level
double sel0 = viewInfo->sel0; //left selection bound
double sel1 = viewInfo->sel1; //right selection bound
double trackLen = clip->GetEndTime() - clip->GetStartTime();
double tOffset = clip->GetOffset();
double rate = clip->GetRate();
double sps = 1./rate; //seconds-per-sample
//If the track isn't selected, make the selection empty
if (!track->GetSelected() && !track->IsSyncLockSelected()) {
sel0 = sel1 = 0.0;
}
//Some bookkeeping time variables:
double tstep = 1.0 / pps; // Seconds per point
double tpre = h - tOffset; // offset corrected time of
// left edge of display
double tpost = tpre + (r.width * tstep); // offset corrected time of
// right edge of display
// Determine whether we should show individual samples
// or draw circular points as well
bool showIndividualSamples = (pps / rate > 0.5); //zoomed in a lot
bool showPoints = (pps / rate > 3.0); //zoomed in even more
// Calculate actual selection bounds so that t0 > 0 and t1 < the
// end of the track
double t0 = (tpre >= 0.0 ? tpre : 0.0);
double t1 = (tpost < trackLen - sps * .99 ? tpost : trackLen - sps * .99);
if (showIndividualSamples) {
// adjustment so that the last circular point doesn't appear
// to be hanging off the end
t1 += 2. / pps;
}
// Make sure t1 (the right bound) is greater than 0
if (t1 < 0.0) {
t1 = 0.0;
}
// Make sure t1 is greater than t0
if (t0 > t1) {
t0 = t1;
}
// Calculate sample-based offset-corrected selection
// Use the WaveTrack method to show what is selected and 'should' be copied, pasted etc.
sampleCount ssel0 = wxMax(0, track->TimeToLongSamples(sel0 - tOffset));
sampleCount ssel1 = wxMax(0, track->TimeToLongSamples(sel1 - tOffset));
//trim selection so that it only contains the actual samples
if (ssel0 != ssel1 && ssel1 > (sampleCount)(0.5 + trackLen * rate)) {
ssel1 = (sampleCount)(0.5 + trackLen * rate);
}
// The variable "mid" will be the rectangle containing the
// actual waveform, as opposed to any blank area before
// or after the track.
wxRect mid = r;
dc.SetPen(*wxTRANSPARENT_PEN);
// If the left edge of the track is to the right of the left
// edge of the display, then there's some blank area to the
// left of the track. Reduce the "mid"
if (tpre < 0) {
double delta = r.width;
if (t0 < tpost) {
delta = (int) ((t0 - tpre) * pps);
}
mid.x += (int)delta;
mid.width -= (int)delta;
}
// If the right edge of the track is to the left of the the right
// edge of the display, then there's some blank area to the right
// of the track. Reduce the "mid" rect by the
// size of the blank area.
if (tpost > t1) {
wxRect post = r;
if (t1 > tpre) {
post.x += (int) ((t1 - tpre) * pps);
}
post.width = r.width - (post.x - r.x);
mid.width -= post.width;
}
// The "mid" rect contains the part of the display actually
// containing the waveform. If it's empty, we're done.
if (mid.width <= 0) {
#if PROFILE_WAVEFORM
# ifdef __WXMSW__
_time64(&tv1);
double elapsed = _difftime64(tv1, tv0);
# else
gettimeofday(&tv1, NULL);
double elapsed =
(tv1.tv_sec + tv1.tv_usec*0.000001) -
(tv0.tv_sec + tv0.tv_usec*0.000001);
# endif
gWaveformTimeTotal += elapsed;
gWaveformTimeCount++;
#endif
return;
}
// If we get to this point, the clip is actually visible on the
// screen, so remember the display rectangle.
clip->SetDisplayRect(mid);
// The bounds (controlled by vertical zooming; -1.0...1.0
// by default)
float zoomMin, zoomMax;
track->GetDisplayBounds(&zoomMin, &zoomMax);
// Arrays containing the shape of the waveform - each array
// has one value per pixel.
float *min = new float[mid.width];
float *max = new float[mid.width];
float *rms = new float[mid.width];
sampleCount *where = new sampleCount[mid.width + 1];
int *bl = new int[mid.width];
bool isLoadingOD = false;//true if loading on demand block in sequence.
// The WaveClip class handles the details of computing the shape
// of the waveform. The only way GetWaveDisplay will fail is if
// there's a serious error, like some of the waveform data can't
// be loaded. So if the function returns false, we can just exit.
if (!clip->GetWaveDisplay(min, max, rms, bl, where,
mid.width, t0, pps, isLoadingOD)) {
delete[] min;
delete[] max;
delete[] rms;
delete[] where;
delete[] bl;
return;
}
// Get the values of the envelope corresponding to each pixel
// in the display, and use these to compute the height of the
// track at each pixel
double *envValues = new double[mid.width];
clip->GetEnvelope()->GetValues(envValues, mid.width, t0 + tOffset, tstep);
// Draw the background of the track, outlining the shape of
// the envelope and using a colored pen for the selected
// part of the waveform
DrawWaveformBackground(dc, mid, envValues, zoomMin, zoomMax, dB,
where, ssel0, ssel1, drawEnvelope,
!track->GetSelected());
if (!showIndividualSamples) {
DrawMinMaxRMS(dc, mid, envValues, zoomMin, zoomMax, dB,
min, max, rms, bl, isLoadingOD, muted);
}
else {
DrawIndividualSamples(dc, mid, zoomMin, zoomMax, dB,
clip, t0, pps, h,
drawSamples, showPoints, muted);
}
if (drawEnvelope) {
DrawEnvelope(dc, mid, envValues, zoomMin, zoomMax, dB);
clip->GetEnvelope()->DrawPoints(dc, r, h, pps, dB, zoomMin, zoomMax);
}
delete[] envValues;
delete[] min;
delete[] max;
delete[] rms;
delete[] where;
delete[] bl;
// Draw arrows on the left side if the track extends to the left of the
// beginning of time. :)
if (h == 0.0 && tOffset < 0.0) {
DrawNegativeOffsetTrackArrows(dc, r);
}
if (drawSliders) {
DrawTimeSlider(track, dc, r, viewInfo, true); // directed right
DrawTimeSlider(track, dc, r, viewInfo, false); // directed left
}
// Draw clip edges
dc.SetPen(*wxGREY_PEN);
if (tpre < 0) {
AColor::Line(dc,
mid.x - 1, mid.y,
mid.x - 1, mid.y + r.height);
}
if (tpost > t1) {
AColor::Line(dc,
mid.x + mid.width, mid.y,
mid.x + mid.width, mid.y + r.height);
}
#if PROFILE_WAVEFORM
# ifdef __WXMSW__
_time64(&tv1);
double elapsed = _difftime64(tv1, tv0);
# else
gettimeofday(&tv1, NULL);
double elapsed =
(tv1.tv_sec + tv1.tv_usec*0.000001) -
(tv0.tv_sec + tv0.tv_usec*0.000001);
# endif
gWaveformTimeTotal += elapsed;
gWaveformTimeCount++;
wxPrintf(wxT("Avg waveform drawing time: %f\n"),
gWaveformTimeTotal / gWaveformTimeCount);
#endif
}
void TrackArtist::DrawTimeSlider(WaveTrack *track,
wxDC & dc,
const wxRect & r,
const ViewInfo *viewInfo,
bool rightwards)
{
const int border = 3; // 3 pixels all round.
const int width = 6; // width of the drag box.
const int taper = 6; // how much the box tapers by.
const int barSpacing = 4; // how far apart the bars are.
const int barWidth = 3;
const int xFlat = 3;
//Enough space to draw in?
if (r.height <= ((taper+border + barSpacing) * 2)) {
return;
}
if (r.width <= (width * 2 + border * 3)) {
return;
}
// The draggable box is tapered towards the direction you drag it.
int leftTaper = rightwards ? 0 : 6;
int rightTaper = rightwards ? 6 : 0;
int xLeft = rightwards ? (r.x + border - 2)
: (r.x + r.width + 1 - (border + width));
int yTop = r.y + border;
int yBot = r.y + r.height - border - 1;
AColor::Light(&dc, false);
AColor::Line(dc, xLeft, yBot - leftTaper, xLeft, yTop + leftTaper);
AColor::Line(dc, xLeft, yTop + leftTaper, xLeft + xFlat, yTop);
AColor::Line(dc, xLeft + xFlat, yTop, xLeft + width, yTop + rightTaper);
AColor::Dark(&dc, false);
AColor::Line(dc, xLeft + width, yTop + rightTaper, xLeft + width, yBot - rightTaper);
AColor::Line(dc, xLeft + width, yBot - rightTaper, xLeft + width-xFlat, yBot);
AColor::Line(dc, xLeft + width - xFlat, yBot, xLeft, yBot - leftTaper);
int firstBar = yTop + taper + taper / 2;
int nBars = (yBot - yTop - taper * 3) / barSpacing + 1;
xLeft += (width - barWidth + 1) / 2;
int y;
int i;
AColor::Light(&dc, false);
for (i = 0;i < nBars; i++) {
y = firstBar + barSpacing * i;
AColor::Line(dc, xLeft, y, xLeft + barWidth, y);
}
AColor::Dark(&dc, false);
for(i = 0;i < nBars; i++){
y = firstBar + barSpacing * i + 1;
AColor::Line(dc, xLeft, y, xLeft + barWidth, y);
}
}
void TrackArtist::DrawSpectrum(WaveTrack *track,
wxDC & dc,
const wxRect & r,
const ViewInfo *viewInfo,
bool autocorrelation,
bool logF)
{
DrawBackgroundWithSelection(&dc, r, track, blankSelectedBrush, blankBrush,
viewInfo->sel0, viewInfo->sel1, viewInfo->h, viewInfo->zoom);
if(!viewInfo->bUpdateTrackIndicator && viewInfo->bIsPlaying) {
// BG: Draw (undecorated) waveform instead of spectrum
DrawWaveform(track, dc, r, viewInfo, false, false, false, false, false);
/*
// BG: uncomment to draw grey instead of spectrum
dc.SetBrush(unselectedBrush);
dc.SetPen(unselectedPen);
dc.DrawRectangle(r);
*/
return;
}
for (WaveClipList::compatibility_iterator it = track->GetClipIterator(); it; it = it->GetNext()) {
DrawClipSpectrum(track, it->GetData(), dc, r, viewInfo, autocorrelation, logF);
}
}
float sumFreqValues(float *freq, int x0, float bin0, float bin1)
{
float value;
if (int(bin1) == int(bin0)) {
value = freq[x0+int(bin0)];
} else {
float binwidth= bin1 - bin0;
value = freq[x0 + int(bin0)] * (1.f - bin0 + (int)bin0);
bin0 = 1 + int (bin0);
while (bin0 < int(bin1)) {
value += freq[x0 + int(bin0)];
bin0 += 1.0;
}
value += freq[x0 + int(bin1)] * (bin1 - int(bin1));
value /= binwidth;
}
return value;
}
void TrackArtist::DrawClipSpectrum(WaveTrack *track,
WaveClip *clip,
wxDC & dc,
const wxRect & r,
const ViewInfo *viewInfo,
bool autocorrelation,
bool logF)
{
#if PROFILE_WAVEFORM
# ifdef __WXMSW__
__time64_t tv0, tv1;
_time64(&tv0);
# else
struct timeval tv0, tv1;
gettimeofday(&tv0, NULL);
# endif
#endif
double h = viewInfo->h;
double pps = viewInfo->zoom;
double sel0 = viewInfo->sel0;
double sel1 = viewInfo->sel1;
double tOffset = clip->GetOffset();
double rate = clip->GetRate();
double sps = 1./rate;
int range = gPrefs->Read(wxT("/Spectrum/Range"), 80L);
int gain = gPrefs->Read(wxT("/Spectrum/Gain"), 20L);
if (!track->GetSelected())
sel0 = sel1 = 0.0;
double tpre = h - tOffset;
double tstep = 1.0 / pps;
double tpost = tpre + (r.width * tstep);
double trackLen = clip->GetEndTime() - clip->GetStartTime();
bool showIndividualSamples = (pps / rate > 0.5); //zoomed in a lot
double t0 = (tpre >= 0.0 ? tpre : 0.0);
double t1 = (tpost < trackLen - sps*.99 ? tpost : trackLen - sps*.99);
if(showIndividualSamples) t1+=2./pps; // for display consistency
// with Waveform display
// Make sure t1 (the right bound) is greater than 0
if (t1 < 0.0)
t1 = 0.0;
// Make sure t1 is greater than t0
if (t0 > t1)
t0 = t1;
sampleCount ssel0 = wxMax(0, sampleCount((sel0 - tOffset) * rate + .99));
sampleCount ssel1 = wxMax(0, sampleCount((sel1 - tOffset) * rate + .99));
//trim selection so that it only contains the actual samples
if (ssel0 != ssel1 && ssel1 > (sampleCount)(0.5+trackLen*rate))
ssel1 = (sampleCount)(0.5+trackLen*rate);
// The variable "mid" will be the rectangle containing the
// actual waveform, as opposed to any blank area before
// or after the track.
wxRect mid = r;
dc.SetPen(*wxTRANSPARENT_PEN);
// If the left edge of the track is to the right of the left
// edge of the display, then there's some blank area to the
// left of the track. Reduce the "mid"
// rect by size of the blank area.
if (tpre < 0) {
// Fill in the area to the left of the track
wxRect pre = r;
if (t0 < tpost)
pre.width = (int) ((t0 - tpre) * pps);
// Offset the rectangle containing the waveform by the width
// of the area we just erased.
mid.x += pre.width;
mid.width -= pre.width;
}
// If the right edge of the track is to the left of the the right
// edge of the display, then there's some blank area to the right
// of the track. Reduce the "mid" rect by the
// size of the blank area.
if (tpost > t1) {
wxRect post = r;
if (t1 > tpre)
post.x += (int) ((t1 - tpre) * pps);
post.width = r.width - (post.x - r.x);
// Reduce the rectangle containing the waveform by the width
// of the area we just erased.
mid.width -= post.width;
}
// The "mid" rect contains the part of the display actually
// containing the waveform. If it's empty, we're done.
if (mid.width <= 0) {
#if PROFILE_WAVEFORM
# ifdef __WXMSW__
_time64(&tv1);
double elapsed = _difftime64(tv1, tv0);
# else
gettimeofday(&tv1, NULL);
double elapsed =
(tv1.tv_sec + tv1.tv_usec*0.000001) -
(tv0.tv_sec + tv0.tv_usec*0.000001);
# endif
gWaveformTimeTotal += elapsed;
gWaveformTimeCount++;
#endif
return;
}
// We draw directly to a bit image in memory,
// and then paint this directly to our offscreen
// bitmap. Note that this could be optimized even
// more, but for now this is not bad. -dmazzoni
wxImage *image = new wxImage((int) mid.width, (int) mid.height);
if (!image)return;
unsigned char *data = image->GetData();
int windowSize = GetSpectrumWindowSize();
int half = windowSize/2;
float *freq = new float[mid.width * half];
sampleCount *where = new sampleCount[mid.width+1];
bool updated = clip->GetSpectrogram(freq, where, mid.width,
t0, pps, autocorrelation);
int ifreq = lrint(rate/2);
int maxFreq;
if (!logF)
maxFreq = GetSpectrumMaxFreq(ifreq);
else
maxFreq = GetSpectrumLogMaxFreq(ifreq);
if(maxFreq > ifreq)
maxFreq = ifreq;
int minFreq;
if (!logF) {
minFreq = GetSpectrumMinFreq(0);
if(minFreq < 0)
minFreq = 0;
}
else {
minFreq = GetSpectrumLogMinFreq(ifreq/1000.0);
if(minFreq < 1)
minFreq = ifreq/1000.0;
}
bool usePxCache = false;
if( !updated && clip->mSpecPxCache->valid && (clip->mSpecPxCache->len == mid.height * mid.width)
#ifdef EXPERIMENTAL_FFT_Y_GRID
&& mFftYGrid==fftYGridOld
#endif //EXPERIMENTAL_FFT_Y_GRID
#ifdef EXPERIMENTAL_FIND_NOTES
&& mFftFindNotes==fftFindNotesOld
&& mFindNotesMinA==findNotesMinAOld
&& mNumberOfMaxima==findNotesNOld
&& mFindNotesQuantize==findNotesQuantizeOld
#endif
) {
usePxCache = true;
}
else {
delete clip->mSpecPxCache;
clip->mSpecPxCache = new SpecPxCache(mid.width * mid.height);
usePxCache = false;
clip->mSpecPxCache->valid = true;
#ifdef EXPERIMENTAL_FIND_NOTES
fftFindNotesOld=mFftFindNotes;
findNotesMinAOld=mFindNotesMinA;
findNotesNOld=mNumberOfMaxima;
findNotesQuantizeOld=mFindNotesQuantize;
#endif
}
int minSamples = int (minFreq * windowSize / rate + 0.5); // units are fft bins
int maxSamples = int (maxFreq * windowSize / rate + 0.5);
float binPerPx = float(maxSamples - minSamples) / float(mid.height);
int x = 0;
sampleCount w1 = (sampleCount) ((t0*rate + x *rate *tstep) + .5);
const float
// e=exp(1.0f),
f=rate/2.0f/half,
lmin=logf(float(minFreq)),
lmax=logf(float(maxFreq)),
#ifdef EXPERIMENTAL_FIND_NOTES
log2=logf(2.0f),
#ifdef EXPERIMENTAL_FFT_SKIP_POINTS
lmins=logf(float(minFreq)/(mFftSkipPoints+1)),
lmaxs=logf(float(maxFreq)/(mFftSkipPoints+1)),
#else //!EXPERIMENTAL_FFT_SKIP_POINTS
lmins=lmin,
lmaxs=lmax,
#endif //EXPERIMENTAL_FFT_SKIP_POINTS
#endif //EXPERIMENTAL_FIND_NOTES
scale=lmax-lmin /*,
expo=exp(scale)*/ ;
#ifdef EXPERIMENTAL_FFT_Y_GRID
const float
scale2=(lmax-lmin)/log2,
lmin2=lmin/log2;
bool *yGrid;
yGrid=new bool[mid.height];
for (int y = 0; y < mid.height; y++) {
float n =(float(y )/mid.height*scale2-lmin2)*12;
float n2=(float(y+1)/mid.height*scale2-lmin2)*12;
float f =float(minFreq)/(mFftSkipPoints+1)*powf(2.0f, n /12.0f+lmin2);
float f2=float(minFreq)/(mFftSkipPoints+1)*powf(2.0f, n2/12.0f+lmin2);
n =logf(f /440)/log2*12;
n2=logf(f2/440)/log2*12;
if (floor(n) < floor(n2))
yGrid[y]=true;
else
yGrid[y]=false;
}
#endif //EXPERIMENTAL_FFT_Y_GRID
#ifdef EXPERIMENTAL_FIND_NOTES
int maxima[128];
float maxima0[128], maxima1[128];
const float
#ifdef EXPERIMENTAL_FFT_SKIP_POINTS
f2bin = half/(rate/2.0f/(mFftSkipPoints+1)),
#else //!EXPERIMENTAL_FFT_SKIP_POINTS
f2bin = half/(rate/2.0f),
#endif //EXPERIMENTAL_FFT_SKIP_POINTS
bin2f = 1.0f/f2bin,
minDistance = powf(2.0f, 2.0f/12.0f),
i0=expf(lmin)/f,
i1=expf(scale+lmin)/f,
minColor=0.0f;
const int maxTableSize=1024;
int *indexes=new int[maxTableSize];
#endif //EXPERIMENTAL_FIND_NOTES
while (x < mid.width)
{
sampleCount w0 = w1;
w1 = (sampleCount) ((t0*rate + (x+1) *rate *tstep) + .5);
if (!logF)
{
for (int yy = 0; yy < mid.height; yy++) {
bool selflag = (ssel0 <= w0 && w1 < ssel1);
unsigned char rv, gv, bv;
float value;
if(!usePxCache) {
float bin0 = float (yy) * binPerPx + minSamples;
float bin1 = float (yy + 1) * binPerPx + minSamples;
if (int (bin1) == int (bin0))
value = freq[half * x + int (bin0)];
else {
float binwidth= bin1 - bin0;
value = freq[half * x + int (bin0)] * (1.f - bin0 + (int)bin0);
bin0 = 1 + int (bin0);
while (bin0 < int (bin1)) {
value += freq[half * x + int (bin0)];
bin0 += 1.0;
}
// Do not reference past end of freq array.
if (int(bin1) >= half) {
bin1 -= 1.0;
}
value += freq[half * x + int (bin1)] * (bin1 - int (bin1));
value /= binwidth;
}
if (!autocorrelation) {
// Last step converts dB to a 0.0-1.0 range
value = (value + range + gain) / (double)range;
}
if (value > 1.0)
value = float(1.0);
if (value < 0.0)
value = float(0.0);
clip->mSpecPxCache->values[x * mid.height + yy] = value;
}
else
value = clip->mSpecPxCache->values[x * mid.height + yy];
GetColorGradient(value, selflag, mIsGrayscale, &rv, &gv, &bv);
int px = ((mid.height - 1 - yy) * mid.width + x) * 3;
data[px++] = rv;
data[px++] = gv;
data[px] = bv;
}
}
else //logF
{
bool selflag = (ssel0 <= w0 && w1 < ssel1);
unsigned char rv, gv, bv;
float value;
int x0=x*half;
#ifdef EXPERIMENTAL_FIND_NOTES
int maximas=0;
if (!usePxCache && mFftFindNotes) {
for (int i = maxTableSize-1; i >= 0; i--)
indexes[i]=-1;
// Build a table of (most) values, put the index in it.
for (int i = int(i0); i < int(i1); i++) {
float freqi=freq[x0+int(i)];
int value=int((freqi+gain+range)/range*(maxTableSize-1));
if (value < 0)
value=0;
if (value >= maxTableSize)
value=maxTableSize-1;
indexes[value]=i;
}
// Build from the indices an array of maxima.
for (int i = maxTableSize-1; i >= 0; i--) {
int index=indexes[i];
if (index >= 0) {
float freqi=freq[x0+index];
if (freqi < mFindNotesMinA)
break;
bool ok=true;
for (int m=0; m < maximas; m++) {
// Avoid to store very close maxima.
float maxm = maxima[m];
if (maxm/index < minDistance && index/maxm < minDistance) {
ok=false;
break;
}
}
if (ok) {
maxima[maximas++] = index;
if (maximas >= mNumberOfMaxima)
break;
}
}
}
// The f2pix helper macro converts a frequency into a pixel coordinate.
#define f2pix(f) (logf(f)-lmins)/(lmaxs-lmins)*mid.height
// Possibly quantize the maxima frequencies and create the pixel block limits.
for (int i=0; i < maximas; i++) {
int index=maxima[i];
float f = float(index)*bin2f;
if (mFindNotesQuantize)
{ f = expf(int(log(f/440)/log2*12-0.5)/12.0f*log2)*440;
maxima[i] = f*f2bin;
}
float f0 = expf((log(f/440)/log2*24-1)/24.0f*log2)*440;
maxima0[i] = f2pix(f0);
float f1 = expf((log(f/440)/log2*24+1)/24.0f*log2)*440;
maxima1[i] = f2pix(f1);
}
}
int it=0;
int oldBin0=-1;
bool inMaximum = false;
#endif //EXPERIMENTAL_FIND_NOTES
double yy2_base=exp(lmin)/f;
float yy2 = yy2_base;
double exp_scale_per_height = exp(scale/mid.height);
for (int yy = 0; yy < mid.height; yy++) {
if(!usePxCache) {
if (int(yy2)>=half)
yy2=half-1;
if (yy2<0)
yy2=0;
float bin0 = float(yy2);
yy2_base *= exp_scale_per_height;
float yy3 = yy2_base;
if (int(yy3)>=half)
yy3=half-1;
if (yy3<0)
yy3=0;
float bin1 = float(yy3);
#ifdef EXPERIMENTAL_FIND_NOTES
if (mFftFindNotes) {
if (it < maximas) {
float i0=maxima0[it];
if (yy >= i0)
inMaximum = true;
if (inMaximum) {
float i1=maxima1[it];
if (yy+1 <= i1) {
value=sumFreqValues(freq, x0, bin0, bin1);
if (value < mFindNotesMinA)
value = minColor;
else
value = (value + gain + range) / (double)range;
} else {
it++;
inMaximum = false;
value = minColor;
}
} else {
value = minColor;
}
} else
value = minColor;
} else
#endif //EXPERIMENTAL_FIND_NOTES
{
value=sumFreqValues(freq, x0, bin0, bin1);
if (!autocorrelation) {
// Last step converts dB to a 0.0-1.0 range
value = (value + gain + range) / (double)range;
}
}
if (value > 1.0)
value = float(1.0);
if (value < 0.0)
value = float(0.0);
clip->mSpecPxCache->values[x * mid.height + yy] = value;
yy2 = yy2_base;
}
else
value = clip->mSpecPxCache->values[x * mid.height + yy];
GetColorGradient(value, selflag, mIsGrayscale, &rv, &gv, &bv);
#ifdef EXPERIMENTAL_FFT_Y_GRID
if (mFftYGrid && yGrid[yy]) {
rv /= 1.1f;
gv /= 1.1f;
bv /= 1.1f;
}
#endif //EXPERIMENTAL_FFT_Y_GRID
int px = ((mid.height - 1 - yy) * mid.width + x) * 3;
data[px++] = rv;
data[px++] = gv;
data[px] = bv;
}
}
x++;
}
// If we get to this point, the clip is actually visible on the
// screen, so remember the display rectangle.
clip->SetDisplayRect(mid);
wxBitmap converted = wxBitmap(*image);
wxMemoryDC memDC;
memDC.SelectObject(converted);
dc.Blit(mid.x, mid.y, mid.width, mid.height, &memDC, 0, 0, wxCOPY, FALSE);
delete image;
delete[] where;
delete[] freq;
#ifdef EXPERIMENTAL_FFT_Y_GRID
delete[] yGrid;
#endif //EXPERIMENTAL_FFT_Y_GRID
#ifdef EXPERIMENTAL_FIND_NOTES
delete[] indexes;
#endif //EXPERIMENTAL_FIND_NOTES
}
void TrackArtist::InvalidateSpectrumCache(TrackList *tracks)
{
TrackListOfKindIterator iter(Track::Wave, tracks);
for (Track *t = iter.First(); t; t = iter.Next()) {
InvalidateSpectrumCache((WaveTrack *)t);
}
}
void TrackArtist::InvalidateSpectrumCache(WaveTrack *track)
{
WaveClipList::compatibility_iterator it;
for (it = track->GetClipIterator(); it; it = it->GetNext()) {
it->GetData()->mSpecPxCache->valid = false;
}
}
#ifdef USE_MIDI
/*
Note: recall that Allegro attributes end in a type identifying letter.
In addition to standard notes, an Allegro_Note can denote a graphic.
A graphic is a note with a loud of zero (for quick testing) and an
attribute named "shapea" set to one of the following atoms:
line
from (time, pitch) to (time+dur, y1r), where y1r is an
attribute
rectangle
from (time, pitch) to (time+dur, y1r), where y1r is an
attribute
triangle
coordinates are (time, pitch), (x1r, y1r), (x2r, y2r)
dur must be the max of x1r-time, x2r-time
polygon
coordinates are (time, pitch), (x1r, y1r), (x2r, y2r),
(x3r, y3r), ... are coordinates (since we cannot represent
arrays as attribute values, we just generate as many
attribute names as we need)
dur must be the max of xNr-time for all N
oval
similar to rectangle
Note: this oval has horizontal and vertical axes only
text
drawn at (time, pitch)
duration should be zero (text is clipped based on time and duration,
NOT based on actual coordinates)
and optional attributes as follows:
linecolori is 0x00rrggbb format color for line or text foreground
fillcolori is 0x00rrggbb format color for fill or text background
linethicki is line thickness in pixels, 0 for no line
filll is true to fill rectangle or draw text background (default is false)
fonta is one of ['roman', 'swiss', 'modern'] (font, otherwise use default)
weighta may be 'bold' (font) (default is normal)
sizei is font size (default is 8)
justifys is a string containing two letters, a horizontal code and a
vertical code. The horizontal code is as follows:
l: the coordinate is to the left of the string (default)
c: the coordinate is at the center of the string
r: the coordinate is at the right of the string
The vertical code is as follows:
t: the coordinate is at the top of the string
c: the coordinate is at the center of the string
b: the coordinate is at the bottom of the string
d: the coordinate is at the baseline of the string (default)
Thus, -justifys:"lt" places the left top of the string at the point
given by (pitch, time). The default value is "ld".
*/
/* Declare Static functions */
static const char *IsShape(Alg_note_ptr note);
static double LookupRealAttribute(Alg_note_ptr note, Alg_attribute attr, double def);
static long LookupIntAttribute(Alg_note_ptr note, Alg_attribute attr, long def);
static bool LookupLogicalAttribute(Alg_note_ptr note, Alg_attribute attr, bool def);
static const char *LookupStringAttribute(Alg_note_ptr note, Alg_attribute attr, const char *def);
static const char *LookupAtomAttribute(Alg_note_ptr note, Alg_attribute attr, char *def);
2010-10-18 01:58:57 +00:00
//static int PITCH_TO_Y(double p, int bottom);
// returns NULL if note is not a shape,
// returns atom (string) value of note if note is a shape
const char *IsShape(Alg_note_ptr note)
{
Alg_parameters_ptr parameters = note->parameters;
while (parameters) {
if (strcmp(parameters->parm.attr_name(), "shapea") == 0) {
return parameters->parm.a;
}
parameters = parameters->next;
}
return NULL;
}
// returns value of attr, or default if not found
double LookupRealAttribute(Alg_note_ptr note, Alg_attribute attr, double def)
{
Alg_parameters_ptr parameters = note->parameters;
while (parameters) {
if (parameters->parm.attr_name() == attr + 1 &&
parameters->parm.attr_type() == 'r') {
return parameters->parm.r;
}
parameters = parameters->next;
}
return def;
}
// returns value of attr, or default if not found
long LookupIntAttribute(Alg_note_ptr note, Alg_attribute attr, long def)
{
Alg_parameters_ptr parameters = note->parameters;
while (parameters) {
if (parameters->parm.attr_name() == attr + 1 &&
parameters->parm.attr_type() == 'i') {
return parameters->parm.i;
}
parameters = parameters->next;
}
return def;
}
// returns value of attr, or default if not found
bool LookupLogicalAttribute(Alg_note_ptr note, Alg_attribute attr, bool def)
{
Alg_parameters_ptr parameters = note->parameters;
while (parameters) {
if (parameters->parm.attr_name() == attr + 1 &&
parameters->parm.attr_type() == 'l') {
return parameters->parm.l;
}
parameters = parameters->next;
}
return def;
}
// returns value of attr, or default if not found
const char *LookupStringAttribute(Alg_note_ptr note, Alg_attribute attr, const char *def)
{
Alg_parameters_ptr parameters = note->parameters;
while (parameters) {
if (parameters->parm.attr_name() == attr + 1 &&
parameters->parm.attr_type() == 's') {
return parameters->parm.s;
}
parameters = parameters->next;
}
return def;
}
// returns value of attr, or default if not found
const char *LookupAtomAttribute(Alg_note_ptr note, Alg_attribute attr, char *def)
{
Alg_parameters_ptr parameters = note->parameters;
while (parameters) {
if (parameters->parm.attr_name() == attr + 1 &&
parameters->parm.attr_type() == 'a') {
return parameters->parm.s;
}
parameters = parameters->next;
}
return def;
}
#endif // USE_MIDI
#define TIME_TO_X(t) (r.x + (int) (((t) - h) * pps))
#define X_TO_TIME(xx) (((xx) - r.x) / pps + h)
// CLIP(x) changes x to lie between +/- CLIP_MAX due to graphics display problems
// with very large coordinate values (this happens when you zoom in very far)
// This will cause incorrect things to be displayed, but at these levels of zoom
// you will only see a small fraction of the overall shape. Note that rectangles
// and lines are clipped in a way that preserves correct graphics, so in
// particular, line plots will be correct at any zoom (limited by floating point
// precision).
#define CLIP_MAX 16000
#define CLIP(x) { long c = (x); if (c < -CLIP_MAX) c = -CLIP_MAX; \
if (c > CLIP_MAX) c = CLIP_MAX; (x) = c; }
#define RED(i) ( unsigned char )( (((i) >> 16) & 0xff) )
#define GREEN(i) ( unsigned char )( (((i) >> 8) & 0xff) )
#define BLUE(i) ( unsigned char )( ((i) & 0xff) )
//#define PITCH_TO_Y(p) (r.y + r.height - int(pitchht * ((p) + 0.5 - pitch0) + 0.5))
#ifdef USE_MIDI
/*
int PitchToY(double p, int bottom)
{
int octave = (((int) (p + 0.5)) / 12);
int n = ((int) (p + 0.5)) % 12;
return IPITCH_TO_Y((int) (p + 0.5));
// was: bottom - octave * octaveHeight - notePos[n] - 4;
}
*/
/* DrawNoteBackground is called by DrawNoteTrack twice: once to draw
the unselected background, and once to draw the selected background.
The selected background is the same except for the horizontal range
and the colors. The background rectangle region is given by r; the
selected region is given by sel. The first time this is called,
sel is equal to r, and the entire region is drawn with unselected
background colors.
*/
void TrackArtist::DrawNoteBackground(NoteTrack *track, wxDC &dc,
const wxRect &r, const wxRect &sel,
const ViewInfo *viewInfo,
const wxBrush &wb, const wxPen &wp,
const wxBrush &bb, const wxPen &bp,
const wxPen &mp)
{
dc.SetBrush(wb);
dc.SetPen(wp);
dc.DrawRectangle(sel); // fill rectangle with white keys background
double h = viewInfo->h;
double pps = viewInfo->zoom;
int left = TIME_TO_X(track->GetOffset());
if (left < sel.x) left = sel.x; // clip on left
int right = TIME_TO_X(track->GetOffset() + track->mSeq->get_real_dur());
if (right > sel.x + sel.width) right = sel.x + sel.width; // clip on right
// need overlap between MIDI data and the background region
if (left >= right) return;
dc.SetBrush(bb);
int octave = 0;
// obottom is the window coordinate of octave divider line
int obottom = track->GetOctaveBottom(octave);
// eOffset is for the line between E and F; there's another line
// between B and C, hence the offset of 2 for two line thicknesses
int eOffset = track->GetPitchHeight() * 5 + 2;
while (obottom > r.y + track->GetNoteMargin() + 3) {
// draw a black line separating octaves if this octave botton is visible
if (obottom < r.y + r.height - track->GetNoteMargin()) {
dc.SetPen(*wxBLACK_PEN);
// obottom - 1 because obottom is at the bottom of the line
AColor::Line(dc, left, obottom - 1, right, obottom - 1);
}
dc.SetPen(bp);
// draw a black-key stripe colored line separating E and F if visible
if (obottom - eOffset > r.y && obottom - eOffset < r.y + r.height) {
AColor::Line(dc, left, obottom - eOffset,
right, obottom - eOffset);
}
// draw visible black key lines
wxRect br;
br.x = left;
br.width = right - left;
br.height = track->GetPitchHeight();
for (int black = 0; black < 5; black++) {
br.y = obottom - track->GetBlackPos(black);
if (br.y > r.y && br.y + br.height < r.y + r.height) {
dc.DrawRectangle(br); // draw each black key background stripe
}
}
obottom = track->GetOctaveBottom(++octave);
}
// draw bar lines
Alg_seq_ptr seq = track->mSeq;
// We assume that sliding a NoteTrack around slides the barlines
// along with the notes. This means that when we write out a track
// as Allegro or MIDI without the offset, we'll need to insert an
// integer number of measures of silence, using tempo change to
// match the duration to the offset.
// Iterate over all time signatures to generate beat positions of
// bar lines, map the beats to times, map the times to position,
// and draw the bar lines that fall within the region of interest (sel)
// seq->convert_to_beats();
dc.SetPen(mp);
Alg_time_sigs &sigs = seq->time_sig;
int i = 0; // index into ts[]
double next_bar_beat = 0.0;
double beats_per_measure = 4.0;
while (true) {
if (i < sigs.length() && sigs[i].beat < next_bar_beat + ALG_EPS) {
// new time signature takes effect
Alg_time_sig &sig = sigs[i++];
next_bar_beat = sig.beat;
beats_per_measure = (sig.num * 4.0) / sig.den;
}
// map beat to time
double t = seq->get_time_map()->beat_to_time(next_bar_beat);
// map time to position
int x = TIME_TO_X(t + track->GetOffset());
if (x > right) break;
AColor::Line(dc, x, sel.y, x, sel.y + sel.height);
next_bar_beat += beats_per_measure;
}
}
/* DrawNoteTrack:
Draws a piano-roll style display of sequence data with added
graphics. Since there may be notes outside of the display region,
reserve a half-note-height margin at the top and bottom of the
window and draw out-of-bounds notes here instead.
*/
void TrackArtist::DrawNoteTrack(NoteTrack *track,
wxDC & dc,
const wxRect & r,
const ViewInfo *viewInfo,
bool muted)
{
SonifyBeginNoteBackground();
double h = viewInfo->h;
double pps = viewInfo->zoom;
double sel0 = viewInfo->sel0;
double sel1 = viewInfo->sel1;
double h1 = X_TO_TIME(r.x + r.width);
Alg_seq_ptr seq = track->mSeq;
if (!seq) {
assert(track->mSerializationBuffer);
Alg_track_ptr alg_track = seq->unserialize(track->mSerializationBuffer,
track->mSerializationLength);
assert(alg_track->get_type() == 's');
track->mSeq = seq = (Alg_seq_ptr) alg_track;
free(track->mSerializationBuffer);
track->mSerializationBuffer = NULL;
}
assert(seq);
int visibleChannels = track->mVisibleChannels;
if (!track->GetSelected())
sel0 = sel1 = 0.0;
// reserve 1/2 note height at top and bottom of track for
// out-of-bounds notes
int numPitches = (r.height) / track->GetPitchHeight();
if (numPitches < 0) numPitches = 0; // cannot be negative
// bottom is the hypothetical location of the bottom of pitch 0 relative to
// the top of the clipping region r: r.height - PITCH_HEIGHT/2 is where the
// bottomNote is displayed, and to that
// we add the height of bottomNote from the position of pitch 0
track->PrepareIPitchToY(r);
// Background comes in 6 colors:
// 214, 214,214 -- unselected white keys
// 192,192,192 -- unselected black keys
// 170,170,170 -- unselected bar lines
// 165,165,190 -- selected white keys
// 148,148,170 -- selected black keys
// 131,131,150 -- selected bar lines
wxPen blackStripePen;
blackStripePen.SetColour(192, 192, 192);
wxBrush blackStripeBrush;
blackStripeBrush.SetColour(192, 192, 192);
wxPen barLinePen;
barLinePen.SetColour(170, 170, 170);
DrawNoteBackground(track, dc, r, r, viewInfo, blankBrush, blankPen,
blackStripeBrush, blackStripePen, barLinePen);
dc.SetClippingRegion(r);
// Draw the selection background
// First, the white keys, as a single rectangle
// In other words fill the selection area with selectedWhiteKeyPen
wxRect selBG;
selBG.y = r.y;
selBG.height = r.height;
selBG.x = TIME_TO_X(sel0);
selBG.width = TIME_TO_X(sel1) - TIME_TO_X(sel0);
wxPen selectedWhiteKeyPen;
selectedWhiteKeyPen.SetColour(165, 165, 190);
dc.SetPen(selectedWhiteKeyPen);
wxBrush selectedWhiteKeyBrush;
selectedWhiteKeyBrush.SetColour(165, 165, 190);
// Then, the black keys and octave stripes, as smaller rectangles
wxPen selectedBlackKeyPen;
selectedBlackKeyPen.SetColour(148, 148, 170);
wxBrush selectedBlackKeyBrush;
selectedBlackKeyBrush.SetColour(148, 148, 170);
wxPen selectedBarLinePen;
selectedBarLinePen.SetColour(131, 131, 150);
DrawNoteBackground(track, dc, r, selBG, viewInfo,
selectedWhiteKeyBrush, selectedWhiteKeyPen,
selectedBlackKeyBrush, selectedBlackKeyPen,
selectedBarLinePen);
SonifyEndNoteBackground();
SonifyBeginNoteForeground();
int marg = track->GetNoteMargin();
// NOTE: it would be better to put this in some global initialization
// function rather than do lookups every time.
Alg_attribute line = symbol_table.insert_string("line");
Alg_attribute rectangle = symbol_table.insert_string("rectangle");
Alg_attribute triangle = symbol_table.insert_string("triangle");
Alg_attribute polygon = symbol_table.insert_string("polygon");
Alg_attribute oval = symbol_table.insert_string("oval");
Alg_attribute text = symbol_table.insert_string("text");
Alg_attribute texts = symbol_table.insert_string("texts");
Alg_attribute x1r = symbol_table.insert_string("x1r");
Alg_attribute x2r = symbol_table.insert_string("x2r");
Alg_attribute y1r = symbol_table.insert_string("y1r");
Alg_attribute y2r = symbol_table.insert_string("y2r");
Alg_attribute linecolori = symbol_table.insert_string("linecolori");
Alg_attribute fillcolori = symbol_table.insert_string("fillcolori");
Alg_attribute linethicki = symbol_table.insert_string("linethicki");
Alg_attribute filll = symbol_table.insert_string("filll");
Alg_attribute fonta = symbol_table.insert_string("fonta");
Alg_attribute roman = symbol_table.insert_string("roman");
Alg_attribute swiss = symbol_table.insert_string("swiss");
Alg_attribute modern = symbol_table.insert_string("modern");
Alg_attribute weighta = symbol_table.insert_string("weighta");
Alg_attribute bold = symbol_table.insert_string("bold");
Alg_attribute sizei = symbol_table.insert_string("sizei");
Alg_attribute justifys = symbol_table.insert_string("justifys");
// We want to draw in seconds, so we need to convert to seconds
seq->convert_to_seconds();
Alg_iterator iterator(seq, false);
iterator.begin();
//for every event
Alg_event_ptr evt;
2010-10-18 01:58:57 +00:00
while ((evt = iterator.next())) {
if (evt->get_type() == 'n') { // 'n' means a note
Alg_note_ptr note = (Alg_note_ptr) evt;
// if the note's channel is visible
if (visibleChannels & (1 << (evt->chan & 15))) {
double x = note->time + track->GetOffset();
double x1 = x + note->dur;
if (x < h1 && x1 > h) { // omit if outside box
const char *shape = NULL;
if (note->loud > 0.0 || !(shape = IsShape(note))) {
wxRect nr; // "note rectangle"
nr.y = track->PitchToY(note->pitch);
nr.height = track->GetPitchHeight();
nr.x = r.x + (int) ((x - h) * pps);
nr.width = (int) ((note->dur * pps) + 0.5);
if (nr.x + nr.width >= r.x && nr.x < r.x + r.width) {
if (nr.x < r.x) {
nr.width -= (r.x - nr.x);
nr.x = r.x;
}
if (nr.x + nr.width > r.x + r.width) // clip on right
nr.width = r.x + r.width - nr.x;
if (nr.y + nr.height < r.y + marg + 3) {
// too high for window
nr.y = r.y;
nr.height = marg;
dc.SetBrush(*wxBLACK_BRUSH);
dc.SetPen(*wxBLACK_PEN);
dc.DrawRectangle(nr);
} else if (nr.y >= r.y + r.height - marg - 1) {
// too low for window
nr.y = r.y + r.height - marg;
nr.height = marg;
dc.SetBrush(*wxBLACK_BRUSH);
dc.SetPen(*wxBLACK_PEN);
dc.DrawRectangle(nr);
} else {
if (nr.y + nr.height > r.y + r.height - marg)
nr.height = r.y + r.height - nr.y;
if (nr.y < r.y + marg) {
int offset = r.y + marg - nr.y;
nr.height -= offset;
nr.y += offset;
}
// nr.y += r.y;
if (muted)
AColor::LightMIDIChannel(&dc, note->chan + 1);
else
AColor::MIDIChannel(&dc, note->chan + 1);
dc.DrawRectangle(nr);
if (track->GetPitchHeight() > 2) {
AColor::LightMIDIChannel(&dc, note->chan + 1);
AColor::Line(dc, nr.x, nr.y, nr.x + nr.width-2, nr.y);
AColor::Line(dc, nr.x, nr.y, nr.x, nr.y + nr.height-2);
AColor::DarkMIDIChannel(&dc, note->chan + 1);
AColor::Line(dc, nr.x+nr.width-1, nr.y,
nr.x+nr.width-1, nr.y+nr.height-1);
AColor::Line(dc, nr.x, nr.y+nr.height-1,
nr.x+nr.width-1, nr.y+nr.height-1);
}
// }
}
}
} else if (shape) {
// draw a shape according to attributes
// add 0.5 to pitch because pitches are plotted with
// height = PITCH_HEIGHT; thus, the center is raised
// by PITCH_HEIGHT * 0.5
int y = track->PitchToY(note->pitch);
long linecolor = LookupIntAttribute(note, linecolori, -1);
long linethick = LookupIntAttribute(note, linethicki, 1);
long fillcolor = -1;
long fillflag = 0;
// set default color to be that of channel
AColor::MIDIChannel(&dc, note->chan+1);
if (shape != text) {
if (linecolor != -1)
dc.SetPen(wxPen(wxColour(RED(linecolor),
GREEN(linecolor),
BLUE(linecolor)),
linethick, wxSOLID));
}
if (shape != line) {
fillcolor = LookupIntAttribute(note, fillcolori, -1);
fillflag = LookupLogicalAttribute(note, filll, false);
if (fillcolor != -1)
dc.SetBrush(wxBrush(wxColour(RED(fillcolor),
GREEN(fillcolor),
BLUE(fillcolor)),
wxSOLID));
if (!fillflag) dc.SetBrush(*wxTRANSPARENT_BRUSH);
}
int y1 = track->PitchToY(LookupRealAttribute(note, y1r, note->pitch));
if (shape == line) {
// extreme zooms caues problems under windows, so we have to do some
// clipping before calling display routine
if (x < h) { // clip line on left
y = int((y + (y1 - y) * (h - x) / (x1 - x)) + 0.5);
x = h;
}
if (x1 > h1) { // clip line on right
y1 = int((y + (y1 - y) * (h1 - x) / (x1 - x)) + 0.5);
x1 = h1;
}
AColor::Line(dc, TIME_TO_X(x), y, TIME_TO_X(x1), y1);
} else if (shape == rectangle) {
if (x < h) { // clip on left, leave 10 pixels to spare
x = h - (linethick + 10) / pps;
}
if (x1 > h1) { // clip on right, leave 10 pixels to spare
x1 = h1 + (linethick + 10) / pps;
}
dc.DrawRectangle(TIME_TO_X(x), y, int((x1 - x) * pps + 0.5), y1 - y + 1);
} else if (shape == triangle) {
wxPoint points[3];
points[0].x = TIME_TO_X(x);
CLIP(points[0].x);
points[0].y = y;
points[1].x = TIME_TO_X(LookupRealAttribute(note, x1r, note->pitch));
CLIP(points[1].x);
points[1].y = y1;
points[2].x = TIME_TO_X(LookupRealAttribute(note, x2r, x));
CLIP(points[2].x);
points[2].y = track->PitchToY(LookupRealAttribute(note, y2r, note->pitch));
dc.DrawPolygon(3, points);
} else if (shape == polygon) {
wxPoint points[20]; // upper bound of 20 sides
points[0].x = TIME_TO_X(x);
CLIP(points[0].x);
points[0].y = y;
points[1].x = TIME_TO_X(LookupRealAttribute(note, x1r, x));
CLIP(points[1].x);
points[1].y = y1;
points[2].x = TIME_TO_X(LookupRealAttribute(note, x2r, x));
CLIP(points[2].x);
points[2].y = track->PitchToY(LookupRealAttribute(note, y2r, note->pitch));
int n = 3;
while (n < 20) {
char name[8];
sprintf(name, "x%dr", n);
Alg_attribute attr = symbol_table.insert_string(name);
double xn = LookupRealAttribute(note, attr, -1000000.0);
if (xn == -1000000.0) break;
points[n].x = TIME_TO_X(xn);
CLIP(points[n].x);
sprintf(name, "y%dr", n - 1);
attr = symbol_table.insert_string(name);
double yn = LookupRealAttribute(note, attr, -1000000.0);
if (yn == -1000000.0) break;
points[n].y = track->PitchToY(yn);
n++;
}
dc.DrawPolygon(n, points);
} else if (shape == oval) {
int ix = TIME_TO_X(x);
CLIP(ix);
int ix1 = int((x1 - x) * pps + 0.5);
if (ix1 > CLIP_MAX * 2) ix1 = CLIP_MAX * 2; // CLIP a width
dc.DrawEllipse(ix, y, ix1, y1 - y + 1);
} else if (shape == text) {
if (linecolor != -1)
dc.SetTextForeground(wxColour(RED(linecolor),
GREEN(linecolor),
BLUE(linecolor)));
// if no color specified, copy color from brush
else dc.SetTextForeground(dc.GetBrush().GetColour());
// This seems to have no effect, so I commented it out. -RBD
//if (fillcolor != -1)
// dc.SetTextBackground(wxColour(RED(fillcolor),
// GREEN(fillcolor),
// BLUE(fillcolor)));
//// if no color specified, copy color from brush
//else dc.SetTextBackground(dc.GetPen().GetColour());
const char *font = LookupAtomAttribute(note, fonta, NULL);
const char *weight = LookupAtomAttribute(note, weighta, NULL);
int size = LookupIntAttribute(note, sizei, 8);
const char *justify = LookupStringAttribute(note, justifys, "ld");
wxFont wxfont;
wxfont.SetFamily(font == roman ? wxROMAN :
(font == swiss ? wxSWISS :
(font == modern ? wxMODERN : wxDEFAULT)));
wxfont.SetStyle(wxNORMAL);
wxfont.SetWeight(weight == bold ? wxBOLD : wxNORMAL);
wxfont.SetPointSize(size);
dc.SetFont(wxfont);
// now do justification
const char *s = LookupStringAttribute(note, texts, "");
#ifdef __WXMAC__
long textWidth, textHeight;
#else
int textWidth, textHeight;
#endif
dc.GetTextExtent(LAT1CTOWX(s), &textWidth, &textHeight);
long hoffset = 0;
long voffset = -textHeight; // default should be baseline of text
if (strlen(justify) != 2) justify = "ld";
if (justify[0] == 'c') hoffset = -(textWidth/2);
else if (justify[0] == 'r') hoffset = -textWidth;
if (justify[1] == 't') voffset = 0;
else if (justify[1] == 'c') voffset = -(textHeight/2);
else if (justify[1] == 'b') voffset = -textHeight;
if (fillflag) {
// It should be possible to do this with background color,
// but maybe because of the transfer mode, no background is
// drawn. To fix this, just draw a rectangle:
dc.SetPen(wxPen(wxColour(RED(fillcolor),
GREEN(fillcolor),
BLUE(fillcolor)),
1, wxSOLID));
dc.DrawRectangle(TIME_TO_X(x) + hoffset, y + voffset,
textWidth, textHeight);
}
dc.DrawText(LAT1CTOWX(s), TIME_TO_X(x) + hoffset, y + voffset);
}
}
}
}
}
}
iterator.end();
// draw black line between top/bottom margins and the track
dc.SetPen(*wxBLACK_PEN);
AColor::Line(dc, r.x, r.y + marg, r.x + r.width, r.y + marg);
AColor::Line(dc, r.x, r.y + r.height - marg - 1, // subtract 1 to get
r.x + r.width, r.y + r.height - marg - 1); // top of line
if (h == 0.0 && track->GetOffset() < 0.0) {
DrawNegativeOffsetTrackArrows(dc, r);
}
dc.DestroyClippingRegion();
SonifyEndNoteForeground();
}
#endif // USE_MIDI
void TrackArtist::DrawLabelTrack(LabelTrack *track,
wxDC & dc,
const wxRect & r,
const ViewInfo *viewInfo)
{
double sel0 = viewInfo->sel0;
double sel1 = viewInfo->sel1;
if (!track->GetSelected() && !track->IsSyncLockSelected())
sel0 = sel1 = 0.0;
track->Draw(dc, r, viewInfo->h, viewInfo->zoom, sel0, sel1);
}
void TrackArtist::DrawTimeTrack(TimeTrack *track,
wxDC & dc,
const wxRect & r,
const ViewInfo *viewInfo)
{
track->Draw(dc, r, viewInfo->h, viewInfo->zoom);
wxRect envRect = r;
envRect.height -= 2;
track->GetEnvelope()->DrawPoints(dc, envRect, viewInfo->h, viewInfo->zoom,
false,0.0,1.0);
}
void TrackArtist::UpdatePrefs()
{
mdBrange = gPrefs->Read(wxT("/GUI/EnvdBRange"), mdBrange);
mShowClipping = gPrefs->Read(wxT("/GUI/ShowClipping"), mShowClipping);
mMaxFreq = gPrefs->Read(wxT("/Spectrum/MaxFreq"), -1);
mMinFreq = gPrefs->Read(wxT("/Spectrum/MinFreq"), -1);
mLogMaxFreq = gPrefs->Read(wxT("/SpectrumLog/MaxFreq"), -1);
mLogMinFreq = gPrefs->Read(wxT("/SpectrumLog/MinFreq"), -1);
mWindowSize = gPrefs->Read(wxT("/Spectrum/FFTSize"), 256);
mIsGrayscale = (gPrefs->Read(wxT("/Spectrum/Grayscale"), 0L) != 0);
#ifdef EXPERIMENTAL_FFT_Y_GRID
mFftYGrid = (gPrefs->Read(wxT("/Spectrum/FFTYGrid"), 0L) != 0);
#endif //EXPERIMENTAL_FFT_Y_GRID
#ifdef EXPERIMENTAL_FIND_NOTES
mFftFindNotes = (gPrefs->Read(wxT("/Spectrum/FFTFindNotes"), 0L) != 0);
mFindNotesMinA = gPrefs->Read(wxT("/Spectrum/FindNotesMinA"), -30.0);
mNumberOfMaxima = gPrefs->Read(wxT("/Spectrum/FindNotesN"), 5L);
mFindNotesQuantize = (gPrefs->Read(wxT("/Spectrum/FindNotesQuantize"), 0L) != 0);
#endif //EXPERIMENTAL_FIND_NOTES
#ifdef EXPERIMENTAL_FFT_SKIP_POINTS
mFftSkipPoints = gPrefs->Read(wxT("/Spectrum/FFTSkipPoints"), 0L);
#endif //EXPERIMENTAL_FFT_SKIP_POINTS
}
// Get various preference values
int TrackArtist::GetSpectrumMinFreq(int deffreq)
{
return mMinFreq < 0 ? deffreq : mMinFreq;
}
int TrackArtist::GetSpectrumMaxFreq(int deffreq)
{
return mMaxFreq < 0 ? deffreq : mMaxFreq;
}
int TrackArtist::GetSpectrumLogMinFreq(int deffreq)
{
return mLogMinFreq < 0 ? deffreq : mLogMinFreq;
}
int TrackArtist::GetSpectrumLogMaxFreq(int deffreq)
{
return mLogMaxFreq < 0 ? deffreq : mLogMaxFreq;
}
int TrackArtist::GetSpectrumWindowSize()
{
return mWindowSize;
}
#ifdef EXPERIMENTAL_FFT_SKIP_POINTS
int TrackArtist::GetSpectrumFftSkipPoints()
{
return mFftSkipPoints;
}
#endif
// Set various preference values
void TrackArtist::SetSpectrumMinFreq(int freq)
{
mMinFreq = freq;
}
void TrackArtist::SetSpectrumMaxFreq(int freq)
{
mMaxFreq = freq;
}
void TrackArtist::SetSpectrumLogMinFreq(int freq)
{
mLogMinFreq = freq;
}
void TrackArtist::SetSpectrumLogMaxFreq(int freq)
{
mLogMaxFreq = freq;
}
// Draws the sync-lock bitmap, tiled; always draws stationary relative to the DC
2010-10-18 01:58:57 +00:00
//
// AWD: now that the tiles don't link together, we're drawing a tilted grid, at
// two steps down for every one across. This creates a pattern that repeats in
// 5-step by 5-step boxes. Because we're only drawing in 5/25 possible positions
// we have a grid spacing somewhat smaller than the image dimensions. Thus we
// acheive lower density than with a square grid and eliminate edge cases where
// no tiles are displayed.
//
// The pattern draws in tiles at (0,0), (2,1), (4,2), (1,3), and (3,4) in each
// 5x5 box.
//
// There may be a better way to do this, or a more appealing pattern.
void TrackArtist::DrawSyncLockTiles(wxDC *dc, wxRect r)
{
wxBitmap syncLockBitmap(theTheme.Image(bmpSyncLockSelTile));
2010-10-18 01:58:57 +00:00
// Grid spacing is a bit smaller than actual image size
int gridW = syncLockBitmap.GetWidth() - 6;
int gridH = syncLockBitmap.GetHeight() - 8;
// Horizontal position within the grid, modulo its period
int blockX = (r.x / gridW) % 5;
// Amount to offset drawing of first column
int xOffset = r.x % gridW;
if (xOffset < 0) xOffset += gridW;
// Check if we're missing an extra column to the left (this can happen
// because the tiles are bigger than the grid spacing)
bool extraCol = false;
if (syncLockBitmap.GetWidth() - gridW > xOffset) {
extraCol = true;
xOffset += gridW;
blockX = (blockX - 1) % 5;
}
// Make sure blockX is non-negative
if (blockX < 0) blockX += 5;
int x = 0;
while (x < r.width) {
int width = syncLockBitmap.GetWidth() - xOffset;
if (x + width > r.width)
width = r.width - x;
2010-10-18 01:58:57 +00:00
//
// Draw each row in this column
//
// Vertical position in the grid, modulo its period
int blockY = (r.y / gridH) % 5;
// Amount to offset drawing of first row
int yOffset = r.y % gridH;
if (yOffset < 0) yOffset += gridH;
// Check if we're missing an extra row on top (this can happen because
// the tiles are bigger than the grid spacing)
bool extraRow = false;
if (syncLockBitmap.GetHeight() - gridH > yOffset) {
extraRow = true;
yOffset += gridH;
blockY = (blockY - 1) % 5;
}
// Make sure blockY is non-negative
if (blockY < 0) blockY += 5;
int y = 0;
while (y < r.height)
{
int height = syncLockBitmap.GetHeight() - yOffset;
if (y + height > r.height)
height = r.height - y;
2010-10-18 01:58:57 +00:00
// AWD: draw blocks according to our pattern
if ((blockX == 0 && blockY == 0) || (blockX == 2 && blockY == 1) ||
(blockX == 4 && blockY == 2) || (blockX == 1 && blockY == 3) ||
(blockX == 3 && blockY == 4))
{
// Do we need to get a sub-bitmap?
if (width != syncLockBitmap.GetWidth() || height != syncLockBitmap.GetHeight()) {
wxBitmap subSyncLockBitmap =
syncLockBitmap.GetSubBitmap(wxRect(xOffset, yOffset, width, height));
dc->DrawBitmap(subSyncLockBitmap, r.x + x, r.y + y, true);
}
else {
dc->DrawBitmap(syncLockBitmap, r.x + x, r.y + y, true);
}
}
// Updates for next row
if (extraRow) {
// Second offset row, still at y = 0; no more extra rows
yOffset -= gridH;
extraRow = false;
}
else {
2010-10-18 01:58:57 +00:00
// Move on in y, no more offset rows
y += gridH - yOffset;
yOffset = 0;
}
2010-10-18 01:58:57 +00:00
blockY = (blockY + 1) % 5;
}
2010-10-18 01:58:57 +00:00
// Updates for next column
if (extraCol) {
// Second offset column, still at x = 0; no more extra columns
xOffset -= gridW;
extraCol = false;
}
else {
// Move on in x, no more offset rows
x += gridW - xOffset;
xOffset = 0;
}
2010-10-18 01:58:57 +00:00
blockX = (blockX + 1) % 5;
}
}
void TrackArtist::DrawBackgroundWithSelection(wxDC *dc, const wxRect &r,
Track *track, wxBrush &selBrush, wxBrush &unselBrush,
double sel0, double sel1, double h, double pps)
{
//MM: Draw background. We should optimize that a bit more.
//AWD: "+ 1.5" and "+ 2.5" throughout match code in
//AdornedRulerPanel::DoDrawSelection() and make selection line up with ruler.
//I don't know if/why this is correct.
dc->SetPen(*wxTRANSPARENT_PEN);
if (track->GetSelected() || track->IsSyncLockSelected())
{
// Rectangles before, within, after the selction
wxRect before = r;
wxRect within = r;
wxRect after = r;
before.width = int ((sel0 - h) * pps + 2.5);
if (before.GetRight() > r.GetRight()) {
before.width = r.width;
}
if (before.width > 0) {
dc->SetBrush(unselBrush);
dc->DrawRectangle(before);
within.x = before.GetRight();
}
within.width = r.x + int ((sel1 - h) * pps + 2.5) - within.x;
if (within.GetRight() > r.GetRight()) {
within.width = r.GetRight() - within.x;
}
if (within.width > 0) {
if (track->GetSelected()) {
dc->SetBrush(selBrush);
dc->DrawRectangle(within);
}
else {
// Per condition above, track must be sync-lock selected
dc->SetBrush(unselBrush);
dc->DrawRectangle(within);
DrawSyncLockTiles(dc, within);
}
after.x = within.GetRight();
}
else {
// `within` not drawn; start where it would have gone
after.x = within.x;
}
after.width = r.GetRight() - after.x;
if (after.width > 0) {
dc->SetBrush(unselBrush);
dc->DrawRectangle(after);
}
}
else
{
// Track not selected; just draw background
dc->SetBrush(unselBrush);
dc->DrawRectangle(r);
}
}