Window function improvemenets: ...

fix off-by-one inconsistencies in the sum-of-cosines windows.

Implement derivatives of the window functions, needed for reassigned
spectrograms.
This commit is contained in:
Paul Licameli 2015-05-31 14:06:54 -04:00
parent ec742f76e7
commit c4f7e25c1c
2 changed files with 310 additions and 55 deletions

View File

@ -514,82 +514,323 @@ const wxChar *WindowFuncName(int whichFunction)
}
}
void WindowFunc(int whichFunction, int NumSamples, float *in)
void NewWindowFunc(int whichFunction, int NumSamples, bool extraSample, float *in)
{
int i;
double A;
if (extraSample)
--NumSamples;
switch( whichFunction )
{
switch (whichFunction) {
default:
fprintf(stderr,"FFT::WindowFunc - Invalid window function: %d\n",whichFunction);
fprintf(stderr, "FFT::WindowFunc - Invalid window function: %d\n", whichFunction);
break;
case eWinFuncRectangular:
// Multiply all by 1.0f -- do nothing
break;
case eWinFuncBartlett:
{
// Bartlett (triangular) window
for (i = 0; i < NumSamples / 2; i++) {
in[i] *= (i / (float) (NumSamples / 2));
in[i + (NumSamples / 2)] *=
(1.0 - (i / (float) (NumSamples / 2)));
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
const float denom = NumSamples / 2.0f;
in[0] = 0.0f;
for (int ii = 1;
ii <= nPairs; // Yes, <=
++ii) {
const float value = ii / denom;
in[ii] *= value;
in[NumSamples - ii] *= value;
}
// When NumSamples is even, in[half] should be multiplied by 1.0, so unchanged
// When odd, the value of 1.0 is not reached
}
break;
case eWinFuncHamming:
{
// Hamming
for (i = 0; i < NumSamples; i++)
in[i] *= 0.54 - 0.46 * cos(2 * M_PI * i / (NumSamples - 1));
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.54, coeff1 = -0.46;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
}
break;
case eWinFuncHanning:
{
// Hanning
for (i = 0; i < NumSamples; i++)
in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (NumSamples - 1));
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.5, coeff1 = -0.5;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
}
break;
case eWinFuncBlackman:
{
// Blackman
for (i = 0; i < NumSamples; i++) {
in[i] *= 0.42 - 0.5 * cos (2 * M_PI * i / (NumSamples - 1)) + 0.08 * cos (4 * M_PI * i / (NumSamples - 1));
}
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
static const double coeff0 = 0.42, coeff1 = -0.5, coeff2 = 0.08;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2);
}
break;
case eWinFuncBlackmanHarris:
{
// Blackman-Harris
for (i = 0; i < NumSamples; i++) {
in[i] *= 0.35875 - 0.48829 * cos(2 * M_PI * i /(NumSamples-1)) + 0.14128 * cos(4 * M_PI * i/(NumSamples-1)) - 0.01168 * cos(6 * M_PI * i/(NumSamples-1));
}
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double multiplier3 = 3 * multiplier;
static const double coeff0 = 0.35875, coeff1 = -0.48829, coeff2 = 0.14128, coeff3 = -0.01168;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2) + coeff3 * cos(ii * multiplier3);
}
break;
case eWinFuncWelch:
{
// Welch
for (i = 0; i < NumSamples; i++) {
in[i] *= 4*i/(float)NumSamples*(1-(i/(float)NumSamples));
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= 4 * iOverN * (1 - iOverN);
}
}
break;
case eWinFuncGaussian25:
{
// Gaussian (a=2.5)
// Precalculate some values, and simplify the fmla to try and reduce overhead
static const double A = -2 * 2.5*2.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
// full
// in[ii] *= exp(-0.5*(A*((ii-NumSamples/2)/NumSamples/2))*(A*((ii-NumSamples/2)/NumSamples/2)));
// reduced
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
case eWinFuncGaussian35:
{
// Gaussian (a=3.5)
static const double A = -2 * 3.5*3.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
case eWinFuncGaussian45:
{
// Gaussian (a=4.5)
static const double A = -2 * 4.5*4.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
}
if (extraSample && whichFunction != eWinFuncRectangular) {
double value = 0.0;
switch (whichFunction) {
case eWinFuncHamming:
value = 0.08;
break;
case eWinFuncGaussian25:
value = exp(-2 * 2.5 * 2.5 * 0.25);
break;
case eWinFuncGaussian35:
value = exp(-2 * 3.5 * 3.5 * 0.25);
break;
case eWinFuncGaussian45:
value = exp(-2 * 4.5 * 4.5 * 0.25);
break;
default:
break;
}
in[NumSamples] *= value;
}
}
// See cautions in FFT.h !
void WindowFunc(int whichFunction, int NumSamples, float *in)
{
bool extraSample = false;
switch (whichFunction)
{
case eWinFuncHamming:
case eWinFuncHanning:
case eWinFuncBlackman:
case eWinFuncBlackmanHarris:
extraSample = true;
break;
default:
break;
case eWinFuncBartlett:
// PRL: Do nothing here either
// But I want to comment that the old function did this case
// wrong in the second half of the array, in case NumSamples was odd
// but I think that never happened, so I am not bothering to preserve that
break;
}
NewWindowFunc(whichFunction, NumSamples, extraSample, in);
}
void DerivativeOfWindowFunc(int whichFunction, int NumSamples, bool extraSample, float *in)
{
if (eWinFuncRectangular == whichFunction)
{
// Rectangular
// There are deltas at the ends
--NumSamples;
// in[0] *= 1.0f;
for (int ii = 1; ii < NumSamples; ++ii)
in[ii] = 0.0f;
in[NumSamples] *= -1.0f;
return;
}
if (extraSample)
--NumSamples;
double A;
switch (whichFunction) {
case eWinFuncBartlett:
{
// Bartlett (triangular) window
// There are discontinuities in the derivative at the ends, and maybe at the midpoint
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
const float value = 2.0f / NumSamples;
in[0] *=
// Average the two limiting values of discontinuous derivative
value / 2.0f;
for (int ii = 1;
ii <= nPairs; // Yes, <=
++ii) {
in[ii] *= value;
in[NumSamples - ii] *= -value;
}
if (NumSamples % 2 == 0)
// Average the two limiting values of discontinuous derivative
in[NumSamples / 2] = 0.0f;
if (extraSample)
in[NumSamples] *=
// Average the two limiting values of discontinuous derivative
-value / 2.0f;
else
// Halve the multiplier previously applied
// Average the two limiting values of discontinuous derivative
in[NumSamples - 1] *= 0.5f;
}
break;
case eWinFuncHamming:
{
// Hamming
// There are deltas at the ends
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.54, coeff1 = -0.46 * multiplier;
in[0] *= coeff0;
if (!extraSample)
--NumSamples;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier);
if (extraSample)
in[NumSamples] *= - coeff0;
else
// slightly different
in[NumSamples] *= - coeff0 - coeff1 * sin(NumSamples * multiplier);
}
break;
case eWinFuncHanning:
{
// Hanning
const double multiplier = 2 * M_PI / NumSamples;
const double coeff1 = -0.5 * multiplier;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncBlackman:
{
// Blackman
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double coeff1 = -0.5 * multiplier, coeff2 = 0.08 * multiplier2;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncBlackmanHarris:
{
// Blackman-Harris
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double multiplier3 = 3 * multiplier;
const double coeff1 = -0.48829 * multiplier,
coeff2 = 0.14128 * multiplier2, coeff3 = -0.01168 * multiplier3;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2) - coeff3 * sin(ii * multiplier3);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncWelch:
{
// Welch
const float N = NumSamples;
const float NN = NumSamples * NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
in[ii] *= 4 * (N - ii - ii) / NN;
}
if (extraSample)
in[NumSamples] = 0.0f;
// Average the two limiting values of discontinuous derivative
in[0] /= 2.0f;
in[NumSamples - 1] /= 2.0f;
}
break;
case eWinFuncGaussian25:
// Gaussian (a=2.5)
// Precalculate some values, and simplify the fmla to try and reduce overhead
A=-2*2.5*2.5;
for (i = 0; i < NumSamples; i++) {
// full
// in[i] *= exp(-0.5*(A*((i-NumSamples/2)/NumSamples/2))*(A*((i-NumSamples/2)/NumSamples/2)));
// reduced
in[i] *= exp(A*(0.25 + ((i/(float)NumSamples)*(i/(float)NumSamples)) - (i/(float)NumSamples)));
}
break;
A = -2 * 2.5*2.5;
goto Gaussian;
case eWinFuncGaussian35:
// Gaussian (a=3.5)
A=-2*3.5*3.5;
for (i = 0; i < NumSamples; i++) {
// reduced
in[i] *= exp(A*(0.25 + ((i/(float)NumSamples)*(i/(float)NumSamples)) - (i/(float)NumSamples)));
}
break;
A = -2 * 3.5*3.5;
goto Gaussian;
case eWinFuncGaussian45:
// Gaussian (a=4.5)
A=-2*4.5*4.5;
for (i = 0; i < NumSamples; i++) {
// reduced
in[i] *= exp(A*(0.25 + ((i/(float)NumSamples)*(i/(float)NumSamples)) - (i/(float)NumSamples)));
A = -2 * 4.5*4.5;
goto Gaussian;
Gaussian:
{
// Gaussian (a=2.5)
// There are deltas at the ends
const float invN = 1.0f / NumSamples;
const float invNN = invN * invN;
// Simplify formula from the loop for ii == 0, add term for the delta
in[0] *= exp(A * 0.25) * (1 - invN);
if (!extraSample)
--NumSamples;
for (int ii = 1; ii < NumSamples; ++ii) {
const float iOverN = ii * invN;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * ii * invNN - invN);
}
if (extraSample)
in[NumSamples] *= exp(A * 0.25) * (invN - 1);
else {
// Slightly different
const float iOverN = NumSamples * invN;
in[NumSamples] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * NumSamples * invNN - invN - 1);
}
}
break;
default:
fprintf(stderr, "FFT::DerivativeOfWindowFunc - Invalid window function: %d\n", whichFunction);
}
}

View File

@ -45,6 +45,9 @@
* 9: Gaussian(a=4.5)
*/
#include <wx/defs.h>
#include <wx/wxchar.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#endif
@ -93,18 +96,12 @@ void FFT(int NumSamples,
float *RealIn, float *ImagIn, float *RealOut, float *ImagOut);
/*
* Applies a windowing function to the data in place
*
* 0: Rectangular (no window)
* 1: Bartlett (triangular)
* 2: Hamming
* 3: Hanning
* 4: Blackman
* 5: Blackman-Harris
* 6: Welch
* 7: Gaussian(a=2.5)
* 8: Gaussian(a=3.5)
* 9: Gaussian(a=4.5)
* Multiply values in data by values of the chosen function
* DO NOT REUSE! Prefer NewWindowFunc instead
* This version was inconsistent whether the window functions were
* symmetrical about NumSamples / 2, or about (NumSamples - 1) / 2
* It remains for compatibility until we decide to upgrade all the old uses
* All functions have 0 in data[0] except Rectangular, Hamming and Gaussians
*/
enum eWindowFunctions
@ -124,6 +121,23 @@ enum eWindowFunctions
void WindowFunc(int whichFunction, int NumSamples, float *data);
/*
* Multiply values in data by values of the chosen function
* All functions are symmetrical about NumSamples / 2 if extraSample is false,
* otherwise about (NumSamples - 1) / 2
* All functions have 0 in data[0] except Rectangular, Hamming and Gaussians
*/
void NewWindowFunc(int whichFunction, int NumSamples, bool extraSample, float *data);
/*
* Multiply values in data by derivative of the chosen function, assuming
* sampling interval is unit
* All functions are symmetrical about NumSamples / 2 if extraSample is false,
* otherwise about (NumSamples - 1) / 2
* All functions have 0 in data[0] except Rectangular, Hamming and Gaussians
*/
void DerivativeOfWindowFunc(int whichFunction, int NumSamples, bool extraSample, float *data);
/*
* Returns the name of the windowing function (for UI display)
*/