/********************************************************************** Audacity: A Digital Audio Editor AudioIO.cpp Copyright 2000-2004: Dominic Mazzoni Joshua Haberman Markus Meyer Matt Brubeck This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. ********************************************************************//** \class AudioIO \brief AudioIO uses the PortAudio library to play and record sound. Great care and attention to detail are necessary for understanding and modifying this system. The code in this file is run from three different thread contexts: the UI thread, the disk thread (which this file creates and maintains; in the code, this is called the Audio Thread), and the PortAudio callback thread. To highlight this deliniation, the file is divided into three parts based on what thread context each function is intended to run in. \par EXPERIMENTAL_MIDI_PLAYBACK If EXPERIMENTAL_MIDI_PLAYBACK is defined, this class also manages MIDI playback. The reason for putting MIDI here rather than in, say, class MidiIO, is that there is no high-level synchronization and transport architecture, so Audio and MIDI must be coupled in order to start/stop/pause and synchronize them. \par MIDI With Audio When Audio and MIDI play simultaneously, MIDI synchronizes to Audio. This is necessary because the Audio sample clock is not the same hardware as the system time used to schedule MIDI messages. MIDI is synchronized to Audio because it is simple to pause or rush the dispatch of MIDI messages, but generally impossible to pause or rush synchronous audio samples (without distortion). \par MIDI output is driven by yet another thread. In principle, we could output timestamped MIDI data at the same time we fill audio buffers from disk, but audio buffers are filled far in advance of playback time, and there is a lower latency thread (PortAudio's callback) that actually sends samples to the output device. The relatively low latency to the output device allows Audacity to stop audio output quickly. We want the same behavior for MIDI, but there is not periodic callback from PortMidi (because MIDI is asynchronous), so this function is performed by the MidiThread class. \par When Audio is running, MIDI is synchronized to Audio. Globals are set in the Audio callback (audacityAudioCallback) for use by a time function that reports milliseconds to PortMidi. (Details below.) \par MIDI Without Audio When Audio is not running, PortMidi uses its own millisecond timer since there is no audio to synchronize to. (Details below.) \par Implementation Notes and Details for MIDI When opening devices, successAudio and successMidi indicate errors if false, so normally both are true. Use playbackChannels, captureChannels and mMidiPlaybackTracks.IsEmpty() to determine if Audio or MIDI is actually in use. \par Audio Time Normally, the current time during playback is given by the variable mTime. mTime normally advances by frames / samplerate each time an audio buffer is output by the audio callback. However, Audacity has a speed control that can perform continuously variable time stretching on audio. This is achieved in two places: the playback "mixer" that generates the samples for output processes the audio according to the speed control. In a separate algorithm, the audio callback updates mTime by (frames / samplerate) * factor, where factor reflects the speed at mTime. This effectively integrates speed to get position. \par Midi Time MIDI is not warped according to the speed control. This might be something that should be changed. (Editorial note: Wouldn't it make more sense to display audio at the correct time and allow users to stretch audio the way they can stretch MIDI?) For now, MIDI plays at 1 second per second, so it requires an unwarped clock. In fact, MIDI time synchronization requires a millisecond clock that does not pause. Note that mTime will stop progress when the Pause button is pressed, even though audio samples (zeros) continue to be output. \par Therefore, we define the following interface for MIDI timing: \li \c AudioTime() is the time based on all samples written so far, including zeros output during pauses. AudioTime() is based on the start location mT0, not zero. \li \c PauseTime() is the amount of time spent paused, based on a count of zero samples output. \li \c MidiTime() is an estimate in milliseconds of the current audio output time + 1s. In other words, what audacity track time corresponds to the audio (including pause insertions) at the output? \par AudioTime() and PauseTime() computation AudioTime() is simply mT0 + mNumFrames / mRate. mNumFrames is incremented in each audio callback. Similarly, PauseTime() is mNumPauseFrames / mRate. mNumPauseFrames is also incremented in each audio callback when a pause is in effect. \par MidiTime() computation MidiTime() is computed based on information from PortAudio's callback, which estimates the system time at which the current audio buffer will be output. Consider the (unimplemented) function RealToTrack() that maps real time to track time. If outputTime is PortAudio's time estimate for the most recent output buffer, then \n RealToTrack(outputTime) = AudioTime() - PauseTime() - bufferDuration \n We want to know RealToTrack of the current time, so we use this approximation for small d: \n RealToTrack(t + d) = RealToTrack(t) + d \n Letting t = outputTime and d = (systemTime - outputTime), we can substitute to get:\n RealToTrack(systemTime) = AudioTime() - PauseTime() - bufferduration + (systemTime - outputTime) \n MidiTime() should include pause time, so add PauseTime() to both sides of the equation. Also MidiTime() is offset by 1 second to avoid negative time at startup, so add 1 to both sides: MidiTime() in seconds = RealToTrack(systemTime) + PauseTime() + 1 = \n AudioTime() - bufferduration + (systemTime - outputTime) + 1 \par The difference AudioTime() - PauseTime() is the time "cursor" for MIDI. When the speed control is used, MIDI and Audio will become unsynchronized. In particular, MIDI will not be synchronized with the visual cursor, which moves with scaled time reported in mTime. \par Midi Synchronization The goal of MIDI playback is to deliver MIDI messages synchronized to audio (assuming no speed variation for now). If a midi event has time tmidi, then the timestamp for that message should be \n timestamp (in seconds) = tmidi + PauseTime() + 1.0 - latency.\n (This is actually off by 1ms; see "PortMidi Latency Parameter" below for more detail.) Notice the extra 1.0, added because MidiTime() is offset by 1s to avoid starting at a negative value. Also notice that we subtract latency. The user must set device latency using preferences. Some software synthesizers have very high latency (on the order of 100ms), so unless we lower timestamps and send messages early, the final output will not be synchronized. This timestamp is interpreted by PortMidi relative to MidiTime(), which is synchronized to audio output. So the only thing we need to do is output Midi messages shortly before they will be played with the correct timestamp. We will take "shortly before" to mean "at about the same time as corresponding audio". Based on this, output the event when AudioTime() - PauseTime() > mtime - latency, adjusting the event time by adding PauseTime() + 1 - latency. This gives at least mAudioOutputLatency for the MIDI output to be generated (we want to generate MIDI output before the actual output time because events generated early are accurately timed according to their timestamp). However, the MIDI thread sleeps for MIDI_SLEEP in its polling loop, so the worst case is really mAudioOutputLatency + MIDI_SLEEP. In case the audio output latency is very low, we will output events when AudioTime() + MIDI_SLEEP - PauseTime() > mtime - latency. \par Interaction between MIDI, Audio, and Pause When Pause is used, PauseTime() will increase at the same rate as AudioTime(), and no more events will be output. Because of the time advance of mAudioOutputLatency + MIDI_SLEEP + latency and the fact that AudioTime() advances stepwise by mAudioBufferDuration, some extra MIDI might be output, but the same is true of audio: something like mAudioOutputLatency audio samples will be in the output buffer (with up to mAudioBufferDuration additional samples, depending on when the Pause takes effect). When playback is resumed, there will be a slight delay corresponding to the extra data previously sent. Again, the same is true of audio. Audio and MIDI will not pause and resume at exactly the same times, but their pause and resume times will be within the low tens of milliseconds, and the streams will be synchronized in any case. I.e. if audio pauses 10ms earlier than MIDI, it will resume 10ms earlier as well. \par PortMidi Latency Parameter PortMidi has a "latency" parameter that is added to all timestamps. This value must be greater than zero to enable timestamp-based timing, but serves no other function, so we will set it to 1. All timestamps must then be adjusted down by 1 before messages are sent. This adjustment is on top of all the calculations described above. It just seem too complicated to describe everything in complete detail in one place. \par Midi While Recording Only All of the midi-to-audio synchronization is of course meaningless when audio is not playing. If only recording, there is the problem that synchronization is based on output time, but without audio output, there is no output time. This does not seem like a critical feature, so MIDI is not synchronized to audio without audio playback. The user can always play a track of silence while recording to synchronize. \par Midi Without Audio Playback When there is no audio playback, MIDI runs according to its own clock. The midi timestamp clock starts at approximately the same time as audio recording (if any). A timestamp of 0 corresponds to mT0, the starting time in the Midi track(s). Thus the timestamp for an event at time tmidi should be: \n timestamp = tmidi - mT0 + PauseTime() - latency - 0.001\n Where latency is the synthesizer latency, and the extra 0.001 is the latency (1ms) that PortMidi adds to timestamps automatically. \par Midi Output Without Audio Playback Midi events should be written before their timestamp expires. Since the loop that checks for events to write pauses for MIDI_SLEEP, the events should be written at least MIDI_SLEEP early, and due to other delays and computation, we want some extra time, so let's allow 2*MIDI_SLEEP. Therefore, the write time should be when:\n tmidi - mT0 + PauseTime() - latency - 0.001 - 2 * MIDI_SLEEP < Pt_Time()\n, which can be rearranged to:\n tmidi < mT0 + Pt_Time() + MIDI_SLEEP + (MIDI_SLEEP + latency) - PauseTime\n which matches the code in AudioIO::FillMidiBuffers() after converting ms to s appropriately. (Note also that the 0.001 is dropped here -- it's not really important). \par The code for Midi Without Audio was developed by simply trying to play Midi alone and fixing everything that did not work. The "normal" AudioIO execution was full of assumptions about audio, so there is no systematic design for running without audio, merely a number of "patches" to make it work. The expression "mNumPlaybackChannels > 0" is used to detect whether audio playback is active, and "mNumFrames > 0" is used to indicate that playback of either Midi or Audio has actually started. (mNumFrames is normally incremented by the audio callback, but if there is no audio playback or recording, it is set to 1 at the end of initialization. \par NoteTrack PlayLooped When mPlayLooped is true, output is supposed to loop from mT0 to mT1. For NoteTracks, we interpret this to mean that any note-on or control change in the range mT0 <= t < mT1 is sent (notes that start before mT0 are not played even if they extend beyond mT0). Then, all notes are turned off. Events in the range mT0 <= t < mT1 are then repeated, offset by (mT1 - mT0), etc. We do NOT go back to the beginning and play all control changes (update events) up to mT0, nor do we "undo" any state changes between mT0 and mT1. \par NoteTrack PlayLooped Implementation The mIterator object (an Alg_iterator) returns NULL when there are no more events scheduled before mT1. At mT1, we want to output all notes off messages, but the FillMidiBuffers() loop will exit if mNextEvent is NULL, so we create a "fake" mNextEvent for this special "event" of sending all notes off. After that, we destroy the iterator and use PrepareMidiIterator() to set up a new one. At each iteration, time must advance by (mT1 - mT0), so the accumulated time is held in mMidiLoopOffset. \todo run through all functions called from audio and portaudio threads to verify they are thread-safe. Note that synchronization of the style: "A sets flag to signal B, B clears flag to acknowledge completion" is not thread safe in a general multiple-CPU context. For example, B can write to a buffer and set a completion flag. The flag write can occur before the buffer write due to out-of-order execution. Then A can see the flag and read the buffer before buffer writes complete. *//****************************************************************//** \class AudioThread \brief Defined different on Mac and other platforms (on Mac it does not use wxWidgets wxThread), this class sits in a thread loop reading and writing audio. *//*******************************************************************/ #include "Audacity.h" #include "float_cast.h" #include "Experimental.h" #include #include #include #ifdef __WXMSW__ #include #endif #ifdef HAVE_ALLOCA_H #include #endif #if USE_PORTMIXER #include "portmixer.h" #endif #include #include #include #include #include #include #include #include #include "AudacityApp.h" #include "AudioIO.h" #include "WaveTrack.h" #ifdef EXPERIMENTAL_MIDI_OUT #define MIDI_SLEEP 10 /* milliseconds */ #define ROUND(x) (int) ((x)+0.5) //#include #include "portmidi.h" #include "../src/common/pa_util.h" #include "NoteTrack.h" #endif #include "Mix.h" #include "Resample.h" #include "RingBuffer.h" #include "Prefs.h" #include "Project.h" #include "toolbars/ControlToolBar.h" #include "widgets/Meter.h" #include "../Experimental.h" #define NO_STABLE_INDICATOR -1000000000 #define LOWER_BOUND 0.0 #define UPPER_BOUND 1.0 using std::max; using std::min; AudioIO *gAudioIO; // static int AudioIO::mNextStreamToken = 0; int AudioIO::mCachedPlaybackIndex = -1; wxArrayLong AudioIO::mCachedPlaybackRates; int AudioIO::mCachedCaptureIndex = -1; wxArrayLong AudioIO::mCachedCaptureRates; wxArrayLong AudioIO::mCachedSampleRates; double AudioIO::mCachedBestRateIn = 0.0; double AudioIO::mCachedBestRateOut; const int AudioIO::StandardRates[] = { 8000, 11025, 16000, 22050, 32000, 44100, 48000, 96000 }; const int AudioIO::NumStandardRates = sizeof(AudioIO::StandardRates) / sizeof(AudioIO::StandardRates[0]); const int AudioIO::RatesToTry[] = { 8000, 9600, 11025, 12000, 15000, 16000, 22050, 24000, 32000, 44100, 48000, 88200, 96000, 192000 }; const int AudioIO::NumRatesToTry = sizeof(AudioIO::RatesToTry) / sizeof(AudioIO::RatesToTry[0]); int audacityAudioCallback(const void *inputBuffer, void *outputBuffer, unsigned long framesPerBuffer, const PaStreamCallbackTimeInfo *timeInfo, PaStreamCallbackFlags statusFlags, void *userData ); #ifdef EXPERIMENTAL_MIDI_OUT int compareTime( const void* a, const void* b ); #endif ////////////////////////////////////////////////////////////////////// // // class AudioThread - declaration and glue code // ////////////////////////////////////////////////////////////////////// #ifdef __WXMAC__ // On Mac OS X, it's better not to use the wxThread class. // We use our own implementation based on pthreads instead. #include #include class AudioThread { public: typedef int ExitCode; AudioThread() { mDestroy = false; mThread = NULL; } virtual ExitCode Entry(); void Create() {} void Delete() { mDestroy = true; pthread_join(mThread, NULL); } bool TestDestroy() { return mDestroy; } void Sleep(int ms) { struct timespec spec; spec.tv_sec = 0; spec.tv_nsec = ms * 1000 * 1000; nanosleep(&spec, NULL); } static void *callback(void *p) { AudioThread *th = (AudioThread *)p; return (void *)th->Entry(); } void Run() { pthread_create(&mThread, NULL, callback, this); } private: bool mDestroy; pthread_t mThread; }; #else // The normal wxThread-derived AudioThread class for all other // platforms: class AudioThread : public wxThread { public: AudioThread():wxThread(wxTHREAD_JOINABLE) {} virtual ExitCode Entry(); }; #endif #ifdef EXPERIMENTAL_MIDI_OUT class MidiThread : public AudioThread { public: virtual ExitCode Entry(); }; #endif ////////////////////////////////////////////////////////////////////// // // UI Thread Context // ////////////////////////////////////////////////////////////////////// void InitAudioIO() { gAudioIO = new AudioIO(); gAudioIO->mThread->Run(); #ifdef EXPERIMENTAL_MIDI_OUT gAudioIO->mMidiThread->Run(); #endif // Make sure device prefs are initialized if (gPrefs->Read(wxT("AudioIO/RecordingDevice"), wxT("")) == wxT("")) { int i = AudioIO::getRecordDevIndex(); const PaDeviceInfo *info = Pa_GetDeviceInfo(i); if (info) { gPrefs->Write(wxT("/AudioIO/RecordingDevice"), DeviceName(info)); gPrefs->Write(wxT("/AudioIO/Host"), wxString(Pa_GetHostApiInfo(info->hostApi)->name, wxConvLocal)); } } if (gPrefs->Read(wxT("AudioIO/PlaybackDevice"), wxT("")) == wxT("")) { int i = AudioIO::getPlayDevIndex(); const PaDeviceInfo *info = Pa_GetDeviceInfo(i); if (info) { gPrefs->Write(wxT("/AudioIO/PlaybackDevice"), DeviceName(info)); gPrefs->Write(wxT("/AudioIO/Host"), wxString(Pa_GetHostApiInfo(info->hostApi)->name, wxConvLocal)); } } } void DeinitAudioIO() { delete gAudioIO; } wxString DeviceName(const PaDeviceInfo* info) { wxString hostapiName(Pa_GetHostApiInfo(info->hostApi)->name, wxConvLocal); wxString infoName(info->name, wxConvLocal); return wxString::Format(wxT("%s: %s"), hostapiName.c_str(), infoName.c_str()); } bool AudioIO::ValidateDeviceNames(wxString play, wxString rec) { const PaDeviceInfo *pInfo = Pa_GetDeviceInfo(AudioIO::getPlayDevIndex(play)); const PaDeviceInfo *rInfo = Pa_GetDeviceInfo(AudioIO::getRecordDevIndex(rec)); if (!pInfo || !rInfo || pInfo->hostApi != rInfo->hostApi) { return false; } return true; } AudioIO::AudioIO() { mAudioThreadShouldCallFillBuffersOnce = false; mAudioThreadFillBuffersLoopRunning = false; mAudioThreadFillBuffersLoopActive = false; mPortStreamV19 = NULL; #ifdef EXPERIMENTAL_MIDI_OUT mMidiStream = NULL; mMidiThreadFillBuffersLoopRunning = false; mMidiThreadFillBuffersLoopActive = false; mMidiStreamActive = false; mSendMidiState = false; mIterator = NULL; mNumFrames = 0; mNumPauseFrames = 0; #endif #ifdef AUTOMATED_INPUT_LEVEL_ADJUSTMENT mAILAActive = false; #endif mSilentBuf = NULL; mLastSilentBufSize = 0; mStreamToken = 0; mStopStreamCount = 0; mTempFloats = new float[65536]; // TODO: out channels * PortAudio buffer size mLastPaError = paNoError; mLastRecordingOffset = 0.0; mNumCaptureChannels = 0; mPaused = false; mPlayLooped = false; mListener = NULL; mUpdateMeters = false; mUpdatingMeters = false; PaError err = Pa_Initialize(); if (err != paNoError) { wxString errStr = _("Could not find any audio devices.\n"); errStr += _("You will not be able to play or record audio.\n\n"); wxString paErrStr = LAT1CTOWX(Pa_GetErrorText(err)); if (paErrStr) errStr += _("Error: ")+paErrStr; // XXX: we are in libaudacity, popping up dialogs not allowed! A // long-term solution will probably involve exceptions wxMessageBox(errStr, _("Error Initializing Audio"), wxICON_ERROR|wxOK); // Since PortAudio is not initialized, all calls to PortAudio // functions will fail. This will give reasonable behavior, since // the user will be able to do things not relating to audio i/o, // but any attempt to play or record will simply fail. } #ifdef EXPERIMENTAL_MIDI_OUT PmError pmErr = Pm_Initialize(); if (pmErr != pmNoError) { wxString errStr = _("There was an error initializing the midi i/o layer.\n"); errStr += _("You will not be able to play midi.\n\n"); wxString pmErrStr = LAT1CTOWX(Pm_GetErrorText(pmErr)); if (pmErrStr) errStr += _("Error: ") + pmErrStr; // XXX: we are in libaudacity, popping up dialogs not allowed! A // long-term solution will probably involve exceptions wxMessageBox(errStr, _("Error Initializing Midi"), wxICON_ERROR|wxOK); // Same logic for PortMidi as described above for PortAudio } mMidiThread = new MidiThread(); mMidiThread->Create(); #endif // Start thread mThread = new AudioThread(); mThread->Create(); #if defined(USE_PORTMIXER) mPortMixer = NULL; mPreviousHWPlaythrough = -1.0; HandleDeviceChange(); #else mEmulateMixerOutputVol = true; mMixerOutputVol = 1.0; mInputMixerWorks = false; #endif } AudioIO::~AudioIO() { #if defined(USE_PORTMIXER) if (mPortMixer) { #if __WXMAC__ if (Px_SupportsPlaythrough(mPortMixer) && mPreviousHWPlaythrough >= 0.0) Px_SetPlaythrough(mPortMixer, mPreviousHWPlaythrough); mPreviousHWPlaythrough = -1.0; #endif Px_CloseMixer(mPortMixer); mPortMixer = NULL; } #endif Pa_Terminate(); #ifdef EXPERIMENTAL_MIDI_OUT Pm_Terminate(); mMidiThread->Delete(); #endif /* Delete is a "graceful" way to stop the thread. (Kill is the not-graceful way.) */ wxTheApp->Yield(); mThread->Delete(); if(mSilentBuf) DeleteSamples(mSilentBuf); delete [] mTempFloats; delete mThread; } void AudioIO::SetMixer(int recordDevice, float recordVolume, float playbackVolume) { mMixerOutputVol = playbackVolume; #if defined(USE_PORTMIXER) PxMixer *mixer = mPortMixer; if( mixer ) { int oldRecordDevice = Px_GetCurrentInputSource(mixer); float oldRecordVolume = Px_GetInputVolume(mixer); float oldPlaybackVolume = Px_GetPCMOutputVolume(mixer); if( recordDevice != oldRecordDevice ) Px_SetCurrentInputSource(mixer, recordDevice); if( oldRecordVolume != recordVolume ) Px_SetInputVolume(mixer, recordVolume); if( oldPlaybackVolume != playbackVolume ) Px_SetPCMOutputVolume(mixer, playbackVolume); return; } #endif } void AudioIO::GetMixer(int *recordDevice, float *recordVolume, float *playbackVolume) { #if defined(USE_PORTMIXER) PxMixer *mixer = mPortMixer; if( mixer ) { *recordDevice = Px_GetCurrentInputSource(mixer); if (mInputMixerWorks) *recordVolume = Px_GetInputVolume(mixer); else *recordVolume = 1.0f; if (mEmulateMixerOutputVol) *playbackVolume = mMixerOutputVol; else *playbackVolume = Px_GetPCMOutputVolume(mixer); return; } #endif *recordDevice = 0; *recordVolume = 1.0f; *playbackVolume = mMixerOutputVol; } bool AudioIO::InputMixerWorks() { return mInputMixerWorks; } wxArrayString AudioIO::GetInputSourceNames() { #if defined(USE_PORTMIXER) wxArrayString deviceNames; if( mPortMixer ) { int numSources = Px_GetNumInputSources(mPortMixer); for( int source = 0; source < numSources; source++ ) deviceNames.Add(wxString(Px_GetInputSourceName(mPortMixer, source), wxConvLocal)); } else { wxLogDebug(wxT("AudioIO::GetInputSourceNames(): PortMixer not initialised!")); } return deviceNames; #else wxArrayString blank; return blank; #endif } void AudioIO::HandleDeviceChange() { // This should not happen, but it would screw things up if it did. if (IsStreamActive()) return; // get the selected record and playback devices int playDeviceNum = getPlayDevIndex(); int recDeviceNum = getRecordDevIndex(); // cache playback/capture rates mCachedPlaybackRates = GetSupportedPlaybackRates(playDeviceNum); mCachedCaptureRates = GetSupportedCaptureRates(recDeviceNum); mCachedSampleRates = GetSupportedSampleRates(playDeviceNum, recDeviceNum); mCachedPlaybackIndex = playDeviceNum; mCachedCaptureIndex = recDeviceNum; mCachedBestRateIn = 0.0; #if defined(USE_PORTMIXER) // if we have a PortMixer object, close it down if (mPortMixer) { #if __WXMAC__ // on the Mac we must make sure that we restore the hardware playthrough // state of the sound device to what it was before, because there isn't // a UI for this (!) if (Px_SupportsPlaythrough(mPortMixer) && mPreviousHWPlaythrough >= 0.0) Px_SetPlaythrough(mPortMixer, mPreviousHWPlaythrough); mPreviousHWPlaythrough = -1.0; #endif Px_CloseMixer(mPortMixer); mPortMixer = NULL; } // that might have given us no rates whatsoever, so we have to guess an // answer to do the next bit int numrates = mCachedSampleRates.GetCount(); int highestSampleRate; if (numrates > 0) { highestSampleRate = mCachedSampleRates[numrates - 1]; } else { // we don't actually have any rates that work for Rec and Play. Guess one // to use for messing with the mixer, which doesn't actually do either highestSampleRate = 44100; // mCachedSampleRates is still empty, but it's not used again, so // can ignore } mInputMixerWorks = false; mEmulateMixerOutputVol = true; mMixerOutputVol = 1.0; int error; // This tries to open the device with the samplerate worked out above, which // will be the highest available for play and record on the device, or // 44.1kHz if the info cannot be fetched. PaStream *stream; PaStreamParameters playbackParameters; playbackParameters.device = playDeviceNum; playbackParameters.sampleFormat = paFloat32; playbackParameters.hostApiSpecificStreamInfo = NULL; playbackParameters.channelCount = 1; if (Pa_GetDeviceInfo(playDeviceNum)) playbackParameters.suggestedLatency = Pa_GetDeviceInfo(playDeviceNum)->defaultLowOutputLatency; else playbackParameters.suggestedLatency = DEFAULT_LATENCY_CORRECTION/1000.0; PaStreamParameters captureParameters; captureParameters.device = recDeviceNum; captureParameters.sampleFormat = paFloat32;; captureParameters.hostApiSpecificStreamInfo = NULL; captureParameters.channelCount = 1; if (Pa_GetDeviceInfo(recDeviceNum)) captureParameters.suggestedLatency = Pa_GetDeviceInfo(recDeviceNum)->defaultLowInputLatency; else captureParameters.suggestedLatency = DEFAULT_LATENCY_CORRECTION/1000.0; // try opening for record and playback error = Pa_OpenStream(&stream, &captureParameters, &playbackParameters, highestSampleRate, paFramesPerBufferUnspecified, paClipOff | paDitherOff, audacityAudioCallback, NULL); if (!error) { // Try portmixer for this stream mPortMixer = Px_OpenMixer(stream, 0); if (!mPortMixer) { Pa_CloseStream(stream); error = true; } } // if that failed, try just for record if( error ) { error = Pa_OpenStream(&stream, &captureParameters, NULL, highestSampleRate, paFramesPerBufferUnspecified, paClipOff | paDitherOff, audacityAudioCallback, NULL); if (!error) { mPortMixer = Px_OpenMixer(stream, 0); if (!mPortMixer) { Pa_CloseStream(stream); error = true; } } } // finally, try just for playback if ( error ) { error = Pa_OpenStream(&stream, NULL, &playbackParameters, highestSampleRate, paFramesPerBufferUnspecified, paClipOff | paDitherOff, audacityAudioCallback, NULL); if (!error) { mPortMixer = Px_OpenMixer(stream, 0); if (!mPortMixer) { Pa_CloseStream(stream); error = true; } } } // if it's still not working, give up if( error ) return; // Determine mixer capabilities - if it doesn't support control of output // signal level, we emulate it (by multiplying this value by all outgoing // samples) mMixerOutputVol = Px_GetPCMOutputVolume(mPortMixer); mEmulateMixerOutputVol = false; Px_SetPCMOutputVolume(mPortMixer, 0.0); if (Px_GetPCMOutputVolume(mPortMixer) > 0.1) mEmulateMixerOutputVol = true; Px_SetPCMOutputVolume(mPortMixer, 0.2f); if (Px_GetPCMOutputVolume(mPortMixer) < 0.1 || Px_GetPCMOutputVolume(mPortMixer) > 0.3) mEmulateMixerOutputVol = true; Px_SetPCMOutputVolume(mPortMixer, mMixerOutputVol); float inputVol = Px_GetInputVolume(mPortMixer); mInputMixerWorks = true; // assume it works unless proved wrong Px_SetInputVolume(mPortMixer, 0.0); if (Px_GetInputVolume(mPortMixer) > 0.1) mInputMixerWorks = false; // can't set to zero Px_SetInputVolume(mPortMixer, 0.2f); if (Px_GetInputVolume(mPortMixer) < 0.1 || Px_GetInputVolume(mPortMixer) > 0.3) mInputMixerWorks = false; // can't set level accurately Px_SetInputVolume(mPortMixer, inputVol); Pa_CloseStream(stream); #if 0 printf("PortMixer: Output: %s Input: %s\n", mEmulateMixerOutputVol? "emulated": "native", mInputMixerWorks? "hardware": "no control"); #endif mMixerOutputVol = 1.0; #endif // USE_PORTMIXER } PaSampleFormat AudacityToPortAudioSampleFormat(sampleFormat format) { switch(format) { case int16Sample: return paInt16; case int24Sample: return paInt24; case floatSample: default: return paFloat32; } } bool AudioIO::StartPortAudioStream(double sampleRate, unsigned int numPlaybackChannels, unsigned int numCaptureChannels, sampleFormat captureFormat) { #ifdef EXPERIMENTAL_MIDI_OUT mNumFrames = 0; mNumPauseFrames = 0; mPauseTime = 0; #endif mLastPaError = paNoError; // pick a rate to do the audio I/O at, from those available. The project // rate is suggested, but we may get something else if it isn't supported mRate = GetBestRate(numCaptureChannels > 0, numPlaybackChannels > 0, sampleRate); if (mListener) { // advertise the chosen I/O sample rate to the UI mListener->OnAudioIORate((int)mRate); } // Special case: Our 24-bit sample format is different from PortAudio's // 3-byte packed format. So just make PortAudio return float samples, // since we need float values anyway to apply the gain. if (captureFormat == int24Sample) captureFormat = floatSample; mNumPlaybackChannels = numPlaybackChannels; mNumCaptureChannels = numCaptureChannels; PaStreamParameters *playbackParameters = NULL; PaStreamParameters *captureParameters = NULL; double latencyDuration = DEFAULT_LATENCY_DURATION; gPrefs->Read(wxT("/AudioIO/LatencyDuration"), &latencyDuration); if( numPlaybackChannels > 0) { playbackParameters = new PaStreamParameters; // this sets the device index to whatever is "right" based on preferences, // then defaults playbackParameters->device = getPlayDevIndex(); const PaDeviceInfo *playbackDeviceInfo; playbackDeviceInfo = Pa_GetDeviceInfo( playbackParameters->device ); if( playbackDeviceInfo == NULL ) return false; // regardless of source formats, we always mix to float playbackParameters->sampleFormat = paFloat32; playbackParameters->hostApiSpecificStreamInfo = NULL; playbackParameters->channelCount = mNumPlaybackChannels; if (mSoftwarePlaythrough) playbackParameters->suggestedLatency = playbackDeviceInfo->defaultLowOutputLatency; else playbackParameters->suggestedLatency = latencyDuration/1000.0; } if( numCaptureChannels > 0) { mCaptureFormat = captureFormat; captureParameters = new PaStreamParameters; const PaDeviceInfo *captureDeviceInfo; // retrieve the index of the device set in the prefs, or a sensible // default if it isn't set/valid captureParameters->device = getRecordDevIndex(); captureDeviceInfo = Pa_GetDeviceInfo( captureParameters->device ); if( captureDeviceInfo == NULL ) return false; captureParameters->sampleFormat = AudacityToPortAudioSampleFormat(mCaptureFormat); captureParameters->hostApiSpecificStreamInfo = NULL; captureParameters->channelCount = mNumCaptureChannels; if (mSoftwarePlaythrough) captureParameters->suggestedLatency = captureDeviceInfo->defaultHighInputLatency; else captureParameters->suggestedLatency = latencyDuration/1000.0; } #ifdef EXPERIMENTAL_MIDI_OUT if (numPlaybackChannels == 0 && numCaptureChannels == 0) return true; #endif mLastPaError = Pa_OpenStream( &mPortStreamV19, captureParameters, playbackParameters, mRate, paFramesPerBufferUnspecified, paNoFlag, audacityAudioCallback, NULL ); #if USE_PORTMIXER if (mPortStreamV19 != NULL && mLastPaError == paNoError) { #ifdef __WXMAC__ if (mPortMixer) { if (Px_SupportsPlaythrough(mPortMixer)) { bool playthrough; mPreviousHWPlaythrough = Px_GetPlaythrough(mPortMixer); gPrefs->Read(wxT("/AudioIO/Playthrough"), &playthrough, false); if (playthrough) Px_SetPlaythrough(mPortMixer, 1.0); else Px_SetPlaythrough(mPortMixer, 0.0); } } #endif } #endif // these may be null, but deleting a null pointer should never crash. delete captureParameters; delete playbackParameters; return (mLastPaError == paNoError); } void AudioIO::StartMonitoring(double sampleRate) { if ( mPortStreamV19 || mStreamToken ) return; bool success; long captureChannels; sampleFormat captureFormat = (sampleFormat) gPrefs->Read(wxT("/SamplingRate/DefaultProjectSampleFormat"), floatSample); gPrefs->Read(wxT("/AudioIO/RecordChannels"), &captureChannels, 2L); gPrefs->Read(wxT("/AudioIO/SWPlaythrough"), &mSoftwarePlaythrough, false); int playbackChannels = 0; if (mSoftwarePlaythrough) playbackChannels = 2; success = StartPortAudioStream(sampleRate, (unsigned int)playbackChannels, (unsigned int)captureChannels, captureFormat); // Now start the PortAudio stream! mLastPaError = Pa_StartStream( mPortStreamV19 ); } int AudioIO::StartStream(WaveTrackArray playbackTracks, WaveTrackArray captureTracks, #ifdef EXPERIMENTAL_MIDI_OUT NoteTrackArray midiPlaybackTracks, #endif TimeTrack *timeTrack, double sampleRate, double t0, double t1, AudioIOListener* listener, bool playLooped /* = false */, double cutPreviewGapStart /* = 0.0 */, double cutPreviewGapLen /* = 0.0 */) { if( IsBusy() ) return 0; // We just want to set mStreamToken to -1 - this way avoids // an extremely rare but possible race condition, if two functions // somehow called StartStream at the same time... mStreamToken--; if (mStreamToken != -1) return 0; // TODO: we don't really need to close and reopen stream if the // format matches; however it's kind of tricky to keep it open... // // if (sampleRate == mRate && // playbackChannels == mNumPlaybackChannels && // captureChannels == mNumCaptureChannels && // captureFormat == mCaptureFormat) { if (mPortStreamV19) { StopStream(); while(mPortStreamV19) wxMilliSleep( 50 ); } gPrefs->Read(wxT("/AudioIO/SWPlaythrough"), &mSoftwarePlaythrough, false); gPrefs->Read(wxT("/AudioIO/SoundActivatedRecord"), &mPauseRec, false); int silenceLevelDB; gPrefs->Read(wxT("/AudioIO/SilenceLevel"), &silenceLevelDB, -50); int dBRange; dBRange = gPrefs->Read(wxT("/GUI/EnvdBRange"), ENV_DB_RANGE); if(silenceLevelDB < -dBRange) { silenceLevelDB = -dBRange + 3; // meter range was made smaller than SilenceLevel gPrefs->Write(wxT("/GUI/EnvdBRange"), dBRange); // so set SilenceLevel reasonable } mSilenceLevel = (silenceLevelDB + dBRange)/(double)dBRange; // meter goes -dBRange dB -> 0dB mTimeTrack = timeTrack; mListener = listener; mInputMeter = NULL; mOutputMeter = NULL; mRate = sampleRate; mT0 = t0; mT = t0; mT1 = t1; mTime = t0; mSeek = 0; mLastRecordingOffset = 0; mPlaybackTracks = playbackTracks; mCaptureTracks = captureTracks; #ifdef EXPERIMENTAL_MIDI_OUT mMidiPlaybackTracks = midiPlaybackTracks; #endif mPlayLooped = playLooped; mCutPreviewGapStart = cutPreviewGapStart; mCutPreviewGapLen = cutPreviewGapLen; double factor = 1.0; if (mTimeTrack) { factor = mTimeTrack->GetEnvelope()->Average(mT0, mT1); factor = (mTimeTrack->GetRangeLower() * (1 - factor) + factor * mTimeTrack->GetRangeUpper()) / 100.0; } mWarpedT1 = factor >= 1 ? mT1 : mT0 + ((mT1 - mT0) / factor); // // The RingBuffer sizes, and the max amount of the buffer to // fill at a time, both grow linearly with the number of // tracks. This allows us to scale up to many tracks without // killing performance. // mPlaybackRingBufferSecs = 4.5 + (0.5 * mPlaybackTracks.GetCount()); mMaxPlaybackSecsToCopy = 0.75 + (0.25 * mPlaybackTracks.GetCount()); mCaptureRingBufferSecs = 4.5 + 0.5 * mCaptureTracks.GetCount(); mMinCaptureSecsToCopy = 0.2 + (0.2 * mCaptureTracks.GetCount()); unsigned int playbackChannels = 0; unsigned int captureChannels = 0; sampleFormat captureFormat = floatSample; if( playbackTracks.GetCount() > 0 ) playbackChannels = 2; if (mSoftwarePlaythrough) playbackChannels = 2; if( captureTracks.GetCount() > 0 ) { // For capture, every input channel gets its own track captureChannels = mCaptureTracks.GetCount(); // I don't deal with the possibility of the capture tracks // having different sample formats, since it will never happen // with the current code. This code wouldn't *break* if this // assumption was false, but it would be sub-optimal. For example, // if the first track was 16-bit and the second track was 24-bit, // we would set the sound card to capture in 16 bits and the second // track wouldn't get the benefit of all 24 bits the card is capable // of. captureFormat = mCaptureTracks[0]->GetSampleFormat(); // Tell project that we are about to start recording if (mListener) mListener->OnAudioIOStartRecording(); } bool successAudio; successAudio = StartPortAudioStream(sampleRate, playbackChannels, captureChannels, captureFormat); #ifdef EXPERIMENTAL_MIDI_OUT // TODO: it may be that midi out will not work unless audio in or out is // active -- this would be a bug and may require a change in the // logic here. bool successMidi = true; if(!mMidiPlaybackTracks.IsEmpty()){ successMidi = StartPortMidiStream(); } // On the other hand, if MIDI cannot be opened, we will not complain #endif if (!successAudio) { if (mListener && captureChannels > 0) mListener->OnAudioIOStopRecording(); mStreamToken = 0; return 0; } // // The (audio) stream has been opened successfully (assuming we tried // to open it). We now proceed to // allocate the memory structures the stream will need. // if( mNumPlaybackChannels > 0 ) { // Allocate output buffers. For every output track we allocate // a ring buffer of five seconds sampleCount playbackBufferSize = (sampleCount)(mRate * mPlaybackRingBufferSecs + 0.5); sampleCount playbackMixBufferSize = (sampleCount)(mRate * mMaxPlaybackSecsToCopy + 0.5); mPlaybackBuffers = new RingBuffer* [mPlaybackTracks.GetCount()]; mPlaybackMixers = new Mixer* [mPlaybackTracks.GetCount()]; for( unsigned int i = 0; i < mPlaybackTracks.GetCount(); i++ ) { mPlaybackBuffers[i] = new RingBuffer(floatSample, playbackBufferSize); mPlaybackMixers[i] = new Mixer(1, &mPlaybackTracks[i], mTimeTrack, mT0, mWarpedT1, 1, playbackMixBufferSize, false, mRate, floatSample, false); mPlaybackMixers[i]->ApplyTrackGains(false); } } if( mNumCaptureChannels > 0 ) { // Allocate input buffers. For every input track we allocate // a ring buffer of five seconds sampleCount captureBufferSize = (sampleCount)(mRate * mCaptureRingBufferSecs + 0.5); mCaptureBuffers = new RingBuffer* [mCaptureTracks.GetCount()]; mResample = new Resample* [mCaptureTracks.GetCount()]; mFactor = sampleRate / mRate; for( unsigned int i = 0; i < mCaptureTracks.GetCount(); i++ ) { mCaptureBuffers[i] = new RingBuffer( mCaptureTracks[i]->GetSampleFormat(), captureBufferSize ); mResample[i] = new Resample( true, mFactor, mFactor ); } } #ifdef AUTOMATED_INPUT_LEVEL_ADJUSTMENT AILASetStartTime(); #endif // We signal the audio thread to call FillBuffers, to prime the RingBuffers // so that they will have data in them when the stream starts. Having the // audio thread call FillBuffers here makes the code more predictable, since // FillBuffers will ALWAYS get called from the Audio thread. mAudioThreadShouldCallFillBuffersOnce = true; while( mAudioThreadShouldCallFillBuffersOnce == true ) wxMilliSleep( 50 ); #ifdef EXPERIMENTAL_MIDI_OUT // if no playback, reset the midi time to zero to roughly sync // with recording (or if recording is not going to happen, just // reset time now so that time stamps increase from zero Pt_Stop(); Pt_Start(1, NULL, NULL); #endif if(mNumPlaybackChannels > 0 || mNumCaptureChannels > 0) { // Now start the PortAudio stream! PaError err; err = Pa_StartStream( mPortStreamV19 ); if( err != paNoError ) { // TODO // we'll need a more complete way to indicate error. // AND we need to delete the ring buffers and mixers, etc. if (mListener && mNumCaptureChannels > 0) mListener->OnAudioIOStopRecording(); wxPrintf(wxT("%hs\n"), Pa_GetErrorText(err)); mStreamToken = 0; return 0; } } mAudioThreadFillBuffersLoopRunning = true; #ifdef EXPERIMENTAL_MIDI_OUT // If audio is not running, mNumFrames will not be incremented and // MIDI will hang waiting for it unless we do it here. if (mNumPlaybackChannels + mNumCaptureChannels == 0) { mNumFrames = 1; } #endif // // Generate an unique value each time, to be returned to // clients accessing the AudioIO API, so they can query if // are the ones who have reserved AudioIO or not. // mStreamToken = (++mNextStreamToken); return mStreamToken; } #ifdef EXPERIMENTAL_MIDI_OUT PmTimestamp MidiTime(void *info) { return gAudioIO->MidiTime(); } // Set up state to iterate NoteTrack events in sequence. // Sends MIDI control changes up to the starting point mT0 // if send is true. Output is delayed by offset to facilitate // looping (each iteration is delayed more). void AudioIO::PrepareMidiIterator(bool send, double offset) { int i; int nTracks = mMidiPlaybackTracks.GetCount(); // Set up to play only one track: mSeq = mMidiPlaybackTracks[0]->GetSequence(); mIterator = new Alg_iterator(mSeq, false); // Iterator not yet intialized, must add each track... for (i = 0; i < nTracks; i++) { NoteTrack *t = mMidiPlaybackTracks[i]; mIterator->begin_seq(t->GetSequence(), t, t->GetOffset() + offset); } GetNextEvent(); // prime the pump for FillMidiBuffers // Start MIDI from current cursor position mSendMidiState = true; while (mNextEvent && mNextEventTime < mT0 + offset) { if (send) OutputEvent(); GetNextEvent(); } mSendMidiState = false; } bool AudioIO::StartPortMidiStream() { int i; int nTracks = mMidiPlaybackTracks.GetCount(); // Only start MIDI stream if there is an open track if (nTracks == 0) return false; mMidiLatency = 1; // arbitrary, but small //printf("StartPortMidiStream: mT0 %g mTime %g\n", // gAudioIO->mT0, gAudioIO->mTime); /* get midi playback device */ PmDeviceID playbackDevice = Pm_GetDefaultOutputDeviceID(); wxString playbackDeviceName = gPrefs->Read(wxT("/MidiIO/PlaybackDevice"), wxT("")); mSynthLatency = gPrefs->Read(wxT("/MidiIO/SynthLatency"), DEFAULT_SYNTH_LATENCY); if (wxStrcmp(playbackDeviceName, wxT("")) != 0) { for (i = 0; i < Pm_CountDevices(); i++) { const PmDeviceInfo *info = Pm_GetDeviceInfo(i); if (!info) continue; if (!info->output) continue; wxString interf(info->interf, wxConvLocal); wxString name(info->name, wxConvLocal); interf.Append(wxT(": ")).Append(name); if (wxStrcmp(interf, playbackDeviceName) == 0) { playbackDevice = i; } } } // (else playback device has Pm_GetDefaultOuputDeviceID()) /* open output device */ mLastPmError = Pm_OpenOutput(&mMidiStream, playbackDevice, NULL, 0, &::MidiTime, NULL, mMidiLatency); // DEBUGGING //const PmDeviceInfo *info = Pm_GetDeviceInfo(playbackDevice); //printf("Pm_OpenOutput on %s, return code %d\n", // info->name, mLastPmError); //fprintf(stderr, "mT0: %f\n", mT0); mMidiStreamActive = true; mPauseTime = 0; mMidiPaused = false; mMidiLoopOffset = 0; mMidiOutputComplete = false; // mCnt = 0; PrepareMidiIterator(); // It is ok to call this now, but do not send timestamped midi // until after the first audio callback, which provides necessary // data for MidiTime(). Pm_Synchronize(mMidiStream); // start using timestamps // start midi output flowing (pending first audio callback) mMidiThreadFillBuffersLoopRunning = true; return (mLastPmError == pmNoError); } #endif void AudioIO::SetMeters(Meter *inputMeter, Meter *outputMeter) { mInputMeter = inputMeter; mOutputMeter = outputMeter; if (mInputMeter) mInputMeter->Reset(mRate, true); if (mOutputMeter) mOutputMeter->Reset(mRate, true); mUpdateMeters = true; } void AudioIO::StopStream() { if( mPortStreamV19 == NULL #ifdef EXPERIMENTAL_MIDI_OUT && mMidiStream == NULL #endif ) return; if( Pa_IsStreamStopped( mPortStreamV19 ) #ifdef EXPERIMENTAL_MIDI_OUT && !mMidiStreamActive #endif ) return; // Avoid race condition by making sure this function only // gets called once at a time mStopStreamCount++; // <- note that this is not atomic, therefore has // a race condition -RBD if (mStopStreamCount != 1) return; // // We got here in one of two ways: // // 1. The user clicked the stop button and we therefore want to stop // as quickly as possible. So we use AbortStream(). If this is // the case the portaudio stream is still in the Running state // (see PortAudio state machine docs). // // 2. The callback told PortAudio to stop the stream since it had // reached the end of the selection. The UI thread discovered // this by noticing that AudioIO::IsActive() returned false. // IsActive() (which calls Pa_GetStreamActive()) will not return // false until all buffers have finished playing, so we can call // AbortStream without losing any samples. If this is the case // we are in the "callback finished state" (see PortAudio state // machine docs). // // The moral of the story: We can call AbortStream safely, without // losing samples. // // DMM: This doesn't seem to be true; it seems to be necessary to // call StopStream if the callback brought us here, and AbortStream // if the user brought us here. // mAudioThreadFillBuffersLoopRunning = false; // Audacity can deadlock if it tries to update meters while // we're stopping PortAudio (because the meter updating code // tries to grab a UI mutex while PortAudio tries to join a // pthread). So we tell the callback to stop updating meters, // and wait until the callback has left this part of the code // if it was already there. mUpdateMeters = false; while(mUpdatingMeters) { ::wxSafeYield(); wxMilliSleep( 50 ); } // Turn off HW playthrough if PortMixer is being used #if defined(USE_PORTMIXER) if( mPortMixer ) { #if __WXMAC__ if (Px_SupportsPlaythrough(mPortMixer) && mPreviousHWPlaythrough >= 0.0) Px_SetPlaythrough(mPortMixer, mPreviousHWPlaythrough); mPreviousHWPlaythrough = -1.0; #endif } #endif if (mPortStreamV19) { Pa_AbortStream( mPortStreamV19 ); Pa_CloseStream( mPortStreamV19 ); mPortStreamV19 = NULL; } #ifdef EXPERIMENTAL_MIDI_OUT /* Stop Midi playback */ if ( mMidiStream ) { mMidiStreamActive = false; mMidiThreadFillBuffersLoopRunning = false; // stop output to stream // but output is in another thread. Wait for output to stop... while (mMidiThreadFillBuffersLoopActive) { wxMilliSleep(1); } // now we can assume "ownership" of the mMidiStream // if output in progress, send all off, etc. AllNotesOff(); // AllNotesOff() should be sufficient to stop everything, but // in Linux, if you Pm_Close() immediately, it looks like // messages are dropped. ALSA then seems to send All Sound Off // and Reset All Controllers messages, but not all synthesizers // respond to these messages. This is probably a bug in PortMidi // if the All Off messages do not get out, but for security, // delay a bit so that messages can be delivered before closing // the stream. It should take about 16ms to send All Off messages, // so this will add 24ms latency. wxMilliSleep(40); // deliver the all-off messages Pm_Close(mMidiStream); mMidiStream = NULL; mIterator->end(); delete mIterator; mIterator = NULL; // just in case someone tries to reference it } #endif // If there's no token, we were just monitoring, so we can // skip this next part... if (mStreamToken > 0) { // In either of the above cases, we want to make sure that any // capture data that made it into the PortAudio callback makes it // to the target WaveTrack. To do this, we ask the audio thread to // call FillBuffers one last time (it normally would not do so since // Pa_GetStreamActive() would now return false mAudioThreadShouldCallFillBuffersOnce = true; while( mAudioThreadShouldCallFillBuffersOnce == true ) { // LLL: Experienced recursive yield here...once. wxGetApp().Yield(true); // Pass true for onlyIfNeeded to avoid recursive call error. wxMilliSleep( 50 ); } // // Everything is taken care of. Now, just free all the resources // we allocated in StartStream() // if( mPlaybackTracks.GetCount() > 0 ) { for( unsigned int i = 0; i < mPlaybackTracks.GetCount(); i++ ) { delete mPlaybackBuffers[i]; delete mPlaybackMixers[i]; } delete[] mPlaybackBuffers; delete[] mPlaybackMixers; } // // Offset all recorded tracks to account for latency // if( mCaptureTracks.GetCount() > 0 ) { // // We only apply latency correction when we actually played back // tracks during the recording. If we did not play back tracks, // there's nothing we could be out of sync with. This also covers the // case that we do not apply latency correction when recording the // first track in a project. // double latencyCorrection = DEFAULT_LATENCY_CORRECTION; gPrefs->Read(wxT("/AudioIO/LatencyCorrection"), &latencyCorrection); double recordingOffset = mLastRecordingOffset + latencyCorrection / 1000.0; for( unsigned int i = 0; i < mCaptureTracks.GetCount(); i++ ) { delete mCaptureBuffers[i]; delete mResample[i]; WaveTrack* track = mCaptureTracks[i]; track->Flush(); if (mPlaybackTracks.GetCount() > 0) { // only do latency correction if some tracks are being played back WaveTrackArray playbackTracks; AudacityProject *p = GetActiveProject(); // we need to get this as mPlaybackTracks does not contain tracks being recorded into playbackTracks = p->GetTracks()->GetWaveTrackArray(false); bool appendRecord = false; for( unsigned int j = 0; j < playbackTracks.GetCount(); j++) { // find if we are recording into an existing track (append-record) WaveTrack* trackP = playbackTracks[j]; if( track == trackP ) { if( track->GetStartTime() != mT0 ) // in a new track if these are equal { appendRecord = true; break; } } } if( appendRecord ) { // append-recording if (recordingOffset < 0) track->Clear(mT0, mT0 - recordingOffset); // cut the latency out else track->InsertSilence(mT0, recordingOffset); // put silence in } else { // recording into a new track track->SetOffset(track->GetStartTime() + recordingOffset); if(track->GetEndTime() < 0.) { wxMessageDialog m(NULL, _("Latency Correction setting has caused the recorded audio to be hidden before zero.\nAudacity has brought it back to start at zero.\nYou may have to use the Time Shift Tool (<---> or F5) to drag the track to the right place."), _("Latency problem"), wxOK); m.ShowModal(); track->SetOffset(0.); } } } } delete[] mCaptureBuffers; delete[] mResample; } } if (mInputMeter) mInputMeter->Reset(mRate, false); if (mOutputMeter) mOutputMeter->Reset(mRate, false); if (mListener && mNumCaptureChannels > 0) mListener->OnAudioIOStopRecording(); // // Only set token to 0 after we're totally finished with everything // mStreamToken = 0; mStopStreamCount = 0; } void AudioIO::SetPaused(bool state) { mPaused = state; } bool AudioIO::IsPaused() { return mPaused; } bool AudioIO::IsBusy() { if (mStreamToken != 0) return true; return false; } bool AudioIO::IsStreamActive() { bool isActive = false; if( mPortStreamV19 ) isActive = (Pa_IsStreamActive( mPortStreamV19 ) > 0); else isActive = false; #ifdef EXPERIMENTAL_MIDI_OUT if( mMidiStreamActive && !mMidiOutputComplete ) isActive = true; #endif return isActive; } bool AudioIO::IsStreamActive(int token) { if( IsStreamActive() && token > 0 && token == mStreamToken ) return true; else return false; } bool AudioIO::IsAudioTokenActive(int token) { return ( token > 0 && token == mStreamToken ); } bool AudioIO::IsMonitoring() { return ( mPortStreamV19 && mStreamToken==0 ); } double AudioIO::NormalizeStreamTime(double absoluteTime) const { // dmazzoni: This function is needed for two reasons: // One is for looped-play mode - this function makes sure that the // position indicator keeps wrapping around. The other reason is // more subtle - it's because PortAudio can query the hardware for // the current stream time, and this query is not always accurate. // Sometimes it's a little behind or ahead, and so this function // makes sure that at least we clip it to the selection. // // msmeyer: There is also the possibility that we are using "cut preview" // mode. In this case, we should jump over a defined "gap" in the // audio. // msmeyer: Just to be sure, the returned stream time should // never be smaller than the actual start time. if (absoluteTime < mT0) absoluteTime = mT0; if (absoluteTime > mT1) absoluteTime = mT1; if (mCutPreviewGapLen > 0) { // msmeyer: We're in cut preview mode, so if we are on the right // side of the gap, we jump over it. if (absoluteTime > mCutPreviewGapStart) absoluteTime += mCutPreviewGapLen; } return absoluteTime; } double AudioIO::GetStreamTime() { if( !IsStreamActive() ) return -1000000000; return NormalizeStreamTime(mTime); } wxArrayLong AudioIO::GetSupportedPlaybackRates(int devIndex, double rate) { if (devIndex == -1) { // weren't given a device index, get the prefs / default one devIndex = getPlayDevIndex(); } // Check if we can use the cached rates if (mCachedPlaybackIndex != -1 && devIndex == mCachedPlaybackIndex && rate == 0.0) { return mCachedPlaybackRates; } wxArrayLong supported; int irate = (int)rate; const PaDeviceInfo* devInfo = NULL; int i; wxLogDebug(wxT("Getting supported playback rates for device %d"), devIndex); devInfo = Pa_GetDeviceInfo(devIndex); if (!devInfo) { wxLogDebug(wxT("GetSupportedPlaybackRates() Could not get device info!")); return supported; } PaStreamParameters pars; pars.device = devIndex; pars.channelCount = 1; pars.sampleFormat = paFloat32; pars.suggestedLatency = devInfo->defaultHighOutputLatency; pars.hostApiSpecificStreamInfo = NULL; for (i = 0; i < NumRatesToTry; i++) { if (Pa_IsFormatSupported(NULL, &pars, RatesToTry[i]) == 0) { wxLogDebug(wxT("Rate %ld Hz is supported"), RatesToTry[i]); supported.Add(RatesToTry[i]); } } if (irate != 0 && supported.Index(irate) == wxNOT_FOUND) { if (Pa_IsFormatSupported(NULL, &pars, irate) == 0) { wxLogDebug(wxT("Suggested rate %ld Hz is supported"), irate); supported.Add(irate); } } return supported; } wxArrayLong AudioIO::GetSupportedCaptureRates(int devIndex, double rate) { if (devIndex == -1) { // not given a device, look up in prefs / default devIndex = getRecordDevIndex(); } // Check if we can use the cached rates if (mCachedCaptureIndex != -1 && devIndex == mCachedCaptureIndex && rate == 0.0) { return mCachedCaptureRates; } wxArrayLong supported; int irate = (int)rate; const PaDeviceInfo* devInfo = NULL; int i; wxLogDebug(wxT("Getting supported capture rates for device %d"), devIndex); devInfo = Pa_GetDeviceInfo(devIndex); if (!devInfo) { wxLogDebug(wxT("GetSupportedCaptureRates() Could not get device info!")); return supported; } double latencyDuration = DEFAULT_LATENCY_DURATION; long recordChannels = 1; gPrefs->Read(wxT("/AudioIO/LatencyDuration"), &latencyDuration); gPrefs->Read(wxT("/AudioIO/RecordChannels"), &recordChannels); PaStreamParameters pars; pars.device = devIndex; pars.channelCount = recordChannels; pars.sampleFormat = paFloat32; pars.suggestedLatency = latencyDuration / 1000.0; pars.hostApiSpecificStreamInfo = NULL; for (i = 0; i < NumRatesToTry; i++) { if (Pa_IsFormatSupported(&pars, NULL, RatesToTry[i]) == 0) { wxLogDebug(wxT("Rate %ld Hz is supported"), RatesToTry[i]); supported.Add(RatesToTry[i]); } } if (irate != 0 && supported.Index(irate) == wxNOT_FOUND) { if (Pa_IsFormatSupported(&pars, NULL, irate) == 0) { wxLogDebug(wxT("Suggested rate %ld Hz is supported"), irate); supported.Add(irate); } } return supported; } wxArrayLong AudioIO::GetSupportedSampleRates(int playDevice, int recDevice, double rate) { // Not given device indices, look up prefs if (playDevice == -1) { playDevice = getPlayDevIndex(); } if (recDevice == -1) { recDevice = getRecordDevIndex(); } // Check if we can use the cached rates if (mCachedPlaybackIndex != -1 && mCachedCaptureIndex != -1 && playDevice == mCachedPlaybackIndex && recDevice == mCachedCaptureIndex && rate == 0.0) { return mCachedSampleRates; } wxArrayLong playback = GetSupportedPlaybackRates(playDevice, rate); wxArrayLong capture = GetSupportedCaptureRates(recDevice, rate); int i; // Return only sample rates which are in both arrays wxArrayLong result; for (i = 0; i < (int)playback.GetCount(); i++) if (capture.Index(playback[i]) != wxNOT_FOUND) result.Add(playback[i]); // If this yields no results, use the default sample rates nevertheless /* if (result.IsEmpty()) { for (i = 0; i < NumStandardRates; i++) result.Add(StandardRates[i]); }*/ return result; } /** \todo: should this take into account PortAudio's value for * PaDeviceInfo::defaultSampleRate? In principal this should let us work out * which rates are "real" and which resampled in the drivers, and so prefer * the real rates. */ int AudioIO::GetOptimalSupportedSampleRate() { wxArrayLong rates = GetSupportedSampleRates(); if (rates.Index(44100) != wxNOT_FOUND) return 44100; if (rates.Index(48000) != wxNOT_FOUND) return 48000; // if there are no supported rates, the next bit crashes. So check first, // and give them a "sensible" value if there are no valid values. They // will still get an error later, but with any luck may have changed // something by then. It's no worse than having an invalid default rate // stored in the preferences, which we don't check for if (rates.IsEmpty()) return 44100; return rates[rates.GetCount() - 1]; } double AudioIO::GetBestRate(bool capturing, bool playing, double sampleRate) { // Check if we can use the cached value if (mCachedBestRateIn != 0.0 && mCachedBestRateIn == sampleRate) { return mCachedBestRateOut; } // In order to cache the value, all early returns should instead set retval // and jump to finished double retval; wxArrayLong rates; if (capturing) wxLogDebug(wxT("AudioIO::GetBestRate() for capture")); if (playing) wxLogDebug(wxT("AudioIO::GetBestRate() for playback")); wxLogDebug(wxT("GetBestRate() suggested rate %.0lf Hz"), sampleRate); if (capturing && !playing) { rates = GetSupportedCaptureRates(-1, sampleRate); } else if (playing && !capturing) { rates = GetSupportedPlaybackRates(-1, sampleRate); } else { // we assume capturing and playing - the alternative would be a // bit odd rates = GetSupportedSampleRates(-1, -1, sampleRate); } /* rem rates is the array of hardware-supported sample rates (in the current * configuration), sampleRate is the Project Rate (desired sample rate) */ long rate = (long)sampleRate; if (rates.Index(rate) != wxNOT_FOUND) { wxLogDebug(wxT("GetBestRate() Returning %.0ld Hz"), rate); retval = rate; goto finished; /* the easy case - the suggested rate (project rate) is in the list, and * we can just accept that and send back to the caller. This should be * the case for most users most of the time (all of the time on * Win MME as the OS does resampling) */ } /* if we get here, there is a problem - the project rate isn't supported * on our hardware, so we can't us it. Need to come up with an alternative * rate to use. The process goes like this: * * If there are no rates to pick from, we're stuck and return 0 (error) * * If there are some rates, we pick the next one higher than the requested * rate to use. * * If there aren't any higher, we use the highest available rate */ if (rates.IsEmpty()) { /* we're stuck - there are no supported rates with this hardware. Error */ wxLogDebug(wxT("GetBestRate() Error - no supported sample rates")); retval = 0.0; goto finished; } int i; for (i = 0; i < (int)rates.GetCount(); i++) // for each supported rate { if (rates[i] > rate) { // supported rate is greater than requested rate wxLogDebug(wxT("GetBestRate() Returning next higher rate - %.0ld Hz"), rates[i]); retval = rates[i]; goto finished; } } wxLogDebug(wxT("GetBestRate() Returning highest rate - %.0ld Hz"), rates[rates.GetCount() - 1]); retval = rates[rates.GetCount() - 1]; // the highest available rate goto finished; finished: mCachedBestRateIn = sampleRate; mCachedBestRateOut = retval; return retval; } ////////////////////////////////////////////////////////////////////// // // Audio Thread Context // ////////////////////////////////////////////////////////////////////// AudioThread::ExitCode AudioThread::Entry() { while( !TestDestroy() ) { // Set LoopActive outside the tests to avoid race condition gAudioIO->mAudioThreadFillBuffersLoopActive = true; if( gAudioIO->mAudioThreadShouldCallFillBuffersOnce ) { gAudioIO->FillBuffers(); gAudioIO->mAudioThreadShouldCallFillBuffersOnce = false; } else if( gAudioIO->mAudioThreadFillBuffersLoopRunning ) { gAudioIO->FillBuffers(); } gAudioIO->mAudioThreadFillBuffersLoopActive = false; Sleep(10); } return 0; } #ifdef EXPERIMENTAL_MIDI_OUT MidiThread::ExitCode MidiThread::Entry() { long pauseStart = 0; while( !TestDestroy() ) { // Set LoopActive outside the tests to avoid race condition gAudioIO->mMidiThreadFillBuffersLoopActive = true; if( gAudioIO->mMidiThreadFillBuffersLoopRunning && // mNumFrames signals at least one callback, needed for MidiTime() gAudioIO->mNumFrames > 0) { // Keep track of time paused. If not paused, fill buffers. if (gAudioIO->mNumPlaybackChannels == 0 && gAudioIO->IsPaused()) { if (!gAudioIO->mMidiPaused) { gAudioIO->mMidiPaused = true; pauseStart = MidiTime(NULL); gAudioIO->AllNotesOff(); // to avoid hanging notes during pause } } else { if (gAudioIO->mMidiPaused) { gAudioIO->mMidiPaused = false; gAudioIO->mPauseTime += (MidiTime(NULL) - pauseStart); } gAudioIO->FillMidiBuffers(); // test for end double real_time = gAudioIO->mT0 + gAudioIO->MidiTime() * 0.001 - gAudioIO->PauseTime(); if (gAudioIO->mNumPlaybackChannels != 0) { real_time -= 1; // with audio, MidiTime() runs ahead 1s } // The TrackPanel::OnTimer() method updates the time position // indicator every 200ms, so it tends to not advance the // indicator to the end of the selection (mT1) but instead stop // up to 200ms before the end. At this point, output is shut // down and the indicator is removed, but for a brief time, the // indicator is clearly stopped before reaching mT1. To avoid // this, we do not set mMidiOutputComplete until we are actually // 0.22s beyond mT1 (even though we stop playing at mT1. This // gives OnTimer() time to wake up and draw the final time // position at mT1 before shutting down the stream. gAudioIO->mMidiOutputComplete = (!gAudioIO->mPlayLooped && real_time >= gAudioIO->mT1 + 0.220); // !gAudioIO->mNextEvent); } } gAudioIO->mMidiThreadFillBuffersLoopActive = false; Sleep(MIDI_SLEEP); } return 0; } #endif int AudioIO::GetCommonlyAvailPlayback() { int commonlyAvail = mPlaybackBuffers[0]->AvailForPut(); unsigned int i; for( i = 1; i < mPlaybackTracks.GetCount(); i++ ) { int thisBlockAvail = mPlaybackBuffers[i]->AvailForPut(); if( thisBlockAvail < commonlyAvail ) commonlyAvail = thisBlockAvail; } return commonlyAvail; } int AudioIO::GetCommonlyAvailCapture() { int commonlyAvail = mCaptureBuffers[0]->AvailForGet(); unsigned int i; for( i = 1; i < mCaptureTracks.GetCount(); i++ ) { int avail = mCaptureBuffers[i]->AvailForGet(); if( avail < commonlyAvail ) commonlyAvail = avail; } return commonlyAvail; } int AudioIO::getRecordDevIndex(wxString devName) { // if we don't get given a device, look up the preferences if (devName.IsEmpty()) { devName = gPrefs->Read(wxT("/AudioIO/RecordingDevice"), wxT("")); } int i; for (i = 0; i < Pa_GetDeviceCount(); i++) { const PaDeviceInfo* info = Pa_GetDeviceInfo(i); if (info && (DeviceName(info) == devName) && (info->maxInputChannels > 0)) { // this device name matches the stored one, and works. // So we say this is the answer and return it return i; } } // landing here, we either don't have a value in the preferences, or // the stored / supplied value doesn't exist on the system. So we need to // use a default value int recDeviceNum = Pa_GetDefaultInputDevice(); // Sometimes PortAudio returns -1 if it cannot find a suitable default // device, so we just use the first one available if (recDeviceNum < 0) recDeviceNum = 0; return recDeviceNum; } int AudioIO::getPlayDevIndex(wxString devName ) { // if we don't get given a device, look up the preferences if (devName.IsEmpty()) { devName = gPrefs->Read(wxT("/AudioIO/PlaybackDevice"), wxT("")); } int i; for (i = 0; i < Pa_GetDeviceCount(); i++) { const PaDeviceInfo* info = Pa_GetDeviceInfo(i); if (info && (DeviceName(info) == devName) && (info->maxOutputChannels > 0)) { // this device name matches the stored one, and works. // So we say this is the answer and return it return i; } } // landing here, we either don't have a value in the preferences, or // the stored / supplied value doesn't exist on the system. So we need to // use a default value int DeviceNum = Pa_GetDefaultOutputDevice(); // Sometimes PortAudio returns -1 if it cannot find a suitable default // device, so we just use the first one available if (DeviceNum < 0) DeviceNum = 0; return DeviceNum; } wxString AudioIO::GetDeviceInfo() { wxStringOutputStream o; wxTextOutputStream s(o, wxEOL_UNIX); wxString e(wxT("\n")); if (IsStreamActive()) { return wxT("Stream is active ... unable to gather information."); } int recDeviceNum = Pa_GetDefaultInputDevice(); int playDeviceNum = Pa_GetDefaultOutputDevice(); int cnt = Pa_GetDeviceCount(); wxLogDebug(wxT("Portaudio reports %d audio devices"),cnt); s << wxT("==============================") << e; s << wxT("Default capture device number: ") << recDeviceNum << e; s << wxT("Default playback device number: ") << playDeviceNum << e; wxString recDevice = gPrefs->Read(wxT("/AudioIO/RecordingDevice"), wxT("")); wxString playDevice = gPrefs->Read(wxT("/AudioIO/PlaybackDevice"), wxT("")); int j; // This gets info on all available audio devices (input and output) if (cnt <= 0) { s << wxT("No devices found\n"); return o.GetString(); } const PaDeviceInfo* info; for (j = 0; j < cnt; j++) { s << wxT("==============================") << e; info = Pa_GetDeviceInfo(j); if (!info) { s << wxT("Device info unavailable for: ") << j << wxT("\n"); continue; } wxString name = DeviceName(info); s << wxT("Device ID: ") << j << e; s << wxT("Device name: ") << name << e; s << wxT("Input channels: ") << info->maxInputChannels << e; s << wxT("Output channels: ") << info->maxOutputChannels << e; s << wxT("Low Input Latency: ") << info->defaultLowInputLatency << e; s << wxT("Low Output Latency: ") << info->defaultLowOutputLatency << e; s << wxT("High Input Latency: ") << info->defaultHighInputLatency << e; s << wxT("High Output Latency: ") << info->defaultHighOutputLatency << e; wxArrayLong rates = GetSupportedPlaybackRates(j, 0.0); s << wxT("Supported Rates:") << e; for (int k = 0; k < (int) rates.GetCount(); k++) { s << wxT(" ") << (int)rates[k] << e; } if (name == playDevice && info->maxOutputChannels > 0) playDeviceNum = j; if (name == recDevice && info->maxInputChannels > 0) recDeviceNum = j; // Sometimes PortAudio returns -1 if it cannot find a suitable default // device, so we just use the first one available if (recDeviceNum < 0 && info->maxInputChannels > 0){ recDeviceNum = j; } if (playDeviceNum < 0 && info->maxOutputChannels > 0){ playDeviceNum = j; } } bool haveRecDevice = (recDeviceNum >= 0); bool havePlayDevice = (playDeviceNum >= 0); s << wxT("==============================") << e; if(haveRecDevice){ s << wxT("Selected capture device: ") << recDeviceNum << wxT(" - ") << recDevice << e; }else{ s << wxT("No capture device found.") << e; } if(havePlayDevice){ s << wxT("Selected playback device: ") << playDeviceNum << wxT(" - ") << playDevice << e; }else{ s << wxT("No playback device found.") << e; } wxArrayLong supportedSampleRates; if(havePlayDevice && haveRecDevice){ supportedSampleRates = GetSupportedSampleRates(playDeviceNum, recDeviceNum); s << wxT("Supported Rates:") << e; for (int k = 0; k < (int) supportedSampleRates.GetCount(); k++) { s << wxT(" ") << (int)supportedSampleRates[k] << e; } }else{ s << wxT("Cannot check mutual sample rates without both devices.") << e; return o.GetString(); } #if defined(USE_PORTMIXER) if (supportedSampleRates.GetCount() > 0) { int highestSampleRate = supportedSampleRates[supportedSampleRates.GetCount() - 1]; bool EmulateMixerInputVol = true; bool EmulateMixerOutputVol = true; float MixerInputVol = 1.0; float MixerOutputVol = 1.0; int error; PaStream *stream; PaStreamParameters playbackParameters; playbackParameters.device = playDeviceNum; playbackParameters.sampleFormat = paFloat32; playbackParameters.hostApiSpecificStreamInfo = NULL; playbackParameters.channelCount = 1; if (Pa_GetDeviceInfo(playDeviceNum)){ playbackParameters.suggestedLatency = Pa_GetDeviceInfo(playDeviceNum)->defaultLowOutputLatency; } else{ playbackParameters.suggestedLatency = DEFAULT_LATENCY_CORRECTION/1000.0; } PaStreamParameters captureParameters; captureParameters.device = recDeviceNum; captureParameters.sampleFormat = paFloat32;; captureParameters.hostApiSpecificStreamInfo = NULL; captureParameters.channelCount = 1; if (Pa_GetDeviceInfo(recDeviceNum)){ captureParameters.suggestedLatency = Pa_GetDeviceInfo(recDeviceNum)->defaultLowInputLatency; }else{ captureParameters.suggestedLatency = DEFAULT_LATENCY_CORRECTION/1000.0; } error = Pa_OpenStream(&stream, &captureParameters, &playbackParameters, highestSampleRate, paFramesPerBufferUnspecified, paClipOff | paDitherOff, audacityAudioCallback, NULL); if (error) { error = Pa_OpenStream(&stream, &captureParameters, NULL, highestSampleRate, paFramesPerBufferUnspecified, paClipOff | paDitherOff, audacityAudioCallback, NULL); } if (error) { s << wxT("Recieved ") << error << wxT(" while opening devices") << e; return o.GetString(); } PxMixer *PortMixer = Px_OpenMixer(stream, 0); if (!PortMixer) { s << wxT("Unable to open Portmixer") << e; Pa_CloseStream(stream); return o.GetString(); } s << wxT("==============================") << e; s << wxT("Available mixers:") << e; cnt = Px_GetNumMixers(stream); for (int i = 0; i < cnt; i++) { wxString name(Px_GetMixerName(stream, i), wxConvLocal); s << i << wxT(" - ") << name << e; } s << wxT("==============================") << e; s << wxT("Available capture sources:") << e; cnt = Px_GetNumInputSources(PortMixer); for (int i = 0; i < cnt; i++) { wxString name(Px_GetInputSourceName(PortMixer, i), wxConvLocal); s << i << wxT(" - ") << name << e; } s << wxT("==============================") << e; s << wxT("Available playback volumes:") << e; cnt = Px_GetNumOutputVolumes(PortMixer); for (int i = 0; i < cnt; i++) { wxString name(Px_GetOutputVolumeName(PortMixer, i), wxConvLocal); s << i << wxT(" - ") << name << e; } // Determine mixer capabilities - it it doesn't support either // input or output, we emulate them (by multiplying this value // by all incoming/outgoing samples) MixerOutputVol = Px_GetPCMOutputVolume(PortMixer); EmulateMixerOutputVol = false; Px_SetPCMOutputVolume(PortMixer, 0.0); if (Px_GetPCMOutputVolume(PortMixer) > 0.1) EmulateMixerOutputVol = true; Px_SetPCMOutputVolume(PortMixer, 0.2f); if (Px_GetPCMOutputVolume(PortMixer) < 0.1 || Px_GetPCMOutputVolume(PortMixer) > 0.3) EmulateMixerOutputVol = true; Px_SetPCMOutputVolume(PortMixer, MixerOutputVol); MixerInputVol = Px_GetInputVolume(PortMixer); EmulateMixerInputVol = false; Px_SetInputVolume(PortMixer, 0.0); if (Px_GetInputVolume(PortMixer) > 0.1) EmulateMixerInputVol = true; Px_SetInputVolume(PortMixer, 0.2f); if (Px_GetInputVolume(PortMixer) < 0.1 || Px_GetInputVolume(PortMixer) > 0.3) EmulateMixerInputVol = true; Px_SetInputVolume(PortMixer, MixerInputVol); Pa_CloseStream(stream); s << wxT("==============================") << e; s << wxT("Capture volume is ") << (EmulateMixerInputVol? wxT("emulated"): wxT("native")) << e; s << wxT("Playback volume is ") << (EmulateMixerOutputVol? wxT("emulated"): wxT("native")) << e; Px_CloseMixer(PortMixer); } //end of massive if statement if a valid sample rate has been found #endif return o.GetString(); } // This method is the data gateway between the audio thread (which // communicates with the disk) and the PortAudio callback thread // (which communicates with the audio device). void AudioIO::FillBuffers() { unsigned int i; if( mPlaybackTracks.GetCount() > 0 ) { // Though extremely unlikely, it is possible that some buffers // will have more samples available than others. This could happen // if we hit this code during the PortAudio callback. To keep // things simple, we only write as much data as is vacant in // ALL buffers, and advance the global time by that much. int commonlyAvail = GetCommonlyAvailPlayback(); // // Determine how much this will globally advance playback time // double secsAvail = commonlyAvail / mRate; // // Don't fill the buffers at all unless we can do the // full mMaxPlaybackSecsToCopy. This improves performance // by not always trying to process tiny chunks, eating the // CPU unnecessarily. // // The exception is if we're at the end of the selected // region - then we should just fill the buffer. // if (secsAvail >= mMaxPlaybackSecsToCopy || (!mPlayLooped && (secsAvail > 0 && mT+secsAvail >= mWarpedT1))) { // Limit maximum buffer size (increases performance) if (secsAvail > mMaxPlaybackSecsToCopy) secsAvail = mMaxPlaybackSecsToCopy; double deltat; // msmeyer: When playing a very short selection in looped // mode, the selection must be copied to the buffer multiple // times, to ensure, that the buffer has a reasonable size // This is the purpose of this loop. do { deltat = secsAvail; if( mT + deltat > mWarpedT1 ) { deltat = mWarpedT1 - mT; if( deltat < 0.0 ) deltat = 0.0; } mT += deltat; secsAvail -= deltat; for( i = 0; i < mPlaybackTracks.GetCount(); i++ ) { // The mixer here isn't actually mixing: it's just doing // resampling, format conversion, and possibly time track // warping int processed = 0; samplePtr warpedSamples; //don't do anything if we have no length. In particular, Process() will fail an wxAssert //that causes a crash since this is not the GUI thread and wxASSERT is a GUI call. if(deltat > 0.0) { processed = mPlaybackMixers[i]->Process(lrint(deltat * mRate)); warpedSamples = mPlaybackMixers[i]->GetBuffer(); mPlaybackBuffers[i]->Put(warpedSamples, floatSample, processed); } //if looping and processed is less than the full chunk/block/buffer that gets pulled from //other longer tracks, then we still need to advance the ring buffers or //we'll trip up on ourselves when we start them back up again. //if not looping we never start them up again, so its okay to not do anything if(processed < lrint(deltat * mRate) && mPlayLooped) { if(mLastSilentBufSize < lrint(deltat * mRate)) { //delete old if necessary if(mSilentBuf) DeleteSamples(mSilentBuf); mLastSilentBufSize=lrint(deltat * mRate); mSilentBuf = NewSamples(mLastSilentBufSize, floatSample); ClearSamples(mSilentBuf, floatSample, 0, mLastSilentBufSize); } mPlaybackBuffers[i]->Put(mSilentBuf, floatSample, lrint(deltat * mRate) - processed); } } // msmeyer: If playing looped, check if we are at the end of the buffer // and if yes, restart from the beginning. if (mPlayLooped && mT >= mWarpedT1) { for (i = 0; i < mPlaybackTracks.GetCount(); i++) mPlaybackMixers[i]->Restart(); mT = mT0; } } while (mPlayLooped && secsAvail > 0 && deltat > 0); } } // end of playback buffering if( mCaptureTracks.GetCount() > 0 ) // start record buffering { int commonlyAvail = GetCommonlyAvailCapture(); // // Determine how much this will add to captured tracks // double deltat = commonlyAvail / mRate; if (mAudioThreadShouldCallFillBuffersOnce || deltat >= mMinCaptureSecsToCopy) { // Append captured samples to the end of the WaveTracks. // The WaveTracks have their own buffering for efficiency. XMLStringWriter blockFileLog; int numChannels = mCaptureTracks.GetCount(); for( i = 0; (int)i < numChannels; i++ ) { int avail = commonlyAvail; sampleFormat trackFormat = mCaptureTracks[i]->GetSampleFormat(); XMLStringWriter appendLog; if( mFactor == 1.0 ) { samplePtr temp = NewSamples(avail, trackFormat); mCaptureBuffers[i]->Get (temp, trackFormat, avail); mCaptureTracks[i]-> Append(temp, trackFormat, avail, 1, &appendLog); DeleteSamples(temp); } else { int size = lrint(avail * mFactor); samplePtr temp1 = NewSamples(avail, floatSample); samplePtr temp2 = NewSamples(size, floatSample); mCaptureBuffers[i]->Get(temp1, floatSample, avail); /* we are re-sampling on the fly. The last resampling call * must flush any samples left in the rate conversion buffer * so that they get recorded */ size = mResample[i]->Process(mFactor, (float *)temp1, avail, !IsStreamActive(), &size, (float *)temp2, size); mCaptureTracks[i]-> Append(temp2, floatSample, size, 1, &appendLog); DeleteSamples(temp1); DeleteSamples(temp2); } if (!appendLog.IsEmpty()) { blockFileLog.StartTag(wxT("recordingrecovery")); blockFileLog.WriteAttr(wxT("channel"), (int)i); blockFileLog.WriteAttr(wxT("numchannels"), numChannels); blockFileLog.WriteSubTree(appendLog); blockFileLog.EndTag(wxT("recordingrecovery")); } } if (mListener && !blockFileLog.IsEmpty()) mListener->OnAudioIONewBlockFiles(blockFileLog); } } // end of record buffering } void AudioIO::SetListener(AudioIOListener* listener) { if (IsBusy()) return; mListener = listener; } #ifdef EXPERIMENTAL_MIDI_OUT static Alg_update gAllNotesOff; // special event for loop ending // the fields of this event are never used, only the address is important void AudioIO::OutputEvent() { int channel = (mNextEvent->chan) & 0xF; // must be in [0..15] int command = -1; int data1 = -1; int data2 = -1; // 0.0005 is for rounding double time = mNextEventTime + PauseTime() + 0.0005 - ((mMidiLatency + mSynthLatency) * 0.001); if (mNumPlaybackChannels > 0) { // is there audio playback? time += 1; // MidiTime() has a 1s offset } else { time -= mT0; // Midi is not synced to audio } // state changes have to go out without delay because the // midi stream time gets reset when playback starts, and // we don't want to leave any control changes scheduled for later if (time < 0 || mSendMidiState) time = 0; PmTimestamp timestamp = (PmTimestamp) (time * 1000); /* s to ms */ // The special event gAllNotesOffEvent means "end of playback, send // all notes off on all channels" if (mNextEvent == &gAllNotesOff) { AllNotesOff(); if (mPlayLooped) { // jump back to beginning of loop mMidiLoopOffset += (mT1 - mT0); PrepareMidiIterator(false, mMidiLoopOffset); } else { mNextEvent = NULL; } return; } // if mNextEvent's channel is visible, play it, visibility can // be updated while playing. Be careful: if we have a note-off, // then we must not pay attention to the channel selection // because we must turn the note off even if the user changed // the channel selection after the note began if (((mNextEventTrack->GetVisibleChannels() & (1 << channel)) && // only play if note is not muted: !((mHasSolo || mNextEventTrack->GetMute()) && !mNextEventTrack->GetSolo()))) { // || // the following allows note-offs even when muted or not selected // (mNextEvent->is_note() && !mNextIsNoteOn)) { // Note event if (mNextEvent->is_note() && !mSendMidiState) { // Pitch and velocity data1 = mNextEvent->get_pitch(); if (mNextIsNoteOn) { data2 = mNextEvent->get_loud(); // get velocity int offset = mNextEventTrack->GetGain(); data2 += offset; // offset comes from per-track slider // clip velocity to insure a legal note-on value data2 = (data2 < 0 ? 1 : (data2 > 127 ? 127 : data2)); // since we are going to play this note, we need to get a note_off mIterator->request_note_off(); } else data2 = 0; // 0 velocity means "note off" command = 0x90; // MIDI NOTE ON (or OFF when velocity == 0) // Update event } else if (mNextEvent->is_update()) { // this code is based on allegrosmfwr.cpp -- it could be improved // by comparing attribute pointers instead of string compares Alg_update_ptr update = (Alg_update_ptr) mNextEvent; const char *name = update->get_attribute(); if (!strcmp(name, "programi")) { // Instrument change data1 = update->parameter.i; data2 = 0; command = 0xC0; // MIDI PROGRAM CHANGE } else if (!strncmp(name, "control", 7)) { // Controller change // The number of the controller being changed is embedded // in the parameter name. data1 = atoi(name + 7); // Allegro normalizes controller values data2 = ROUND(update->parameter.r * 127); command = 0xB0; } else if (!strcmp(name, "bendr")) { // Bend change // Reverse Allegro's post-processing of bend values int temp = ROUND(0x2000 * (update->parameter.r + 1)); if (temp > 0x3fff) temp = 0x3fff; // 14 bits maximum if (temp < 0) temp = 0; data1 = temp & 0x7f; // low 7 bits data2 = temp >> 7; // high 7 bits command = 0xE0; // MIDI PITCH BEND } else if (!strcmp(name, "pressurer")) { // Pressure change data1 = (int) (update->parameter.r * 127); if (update->get_identifier() < 0) { // Channel pressure data2 = 0; command = 0xD0; // MIDI CHANNEL PRESSURE } else { // Key pressure data2 = data1; data1 = update->get_identifier(); command = 0xA0; // MIDI POLY PRESSURE } } } if (command != -1) { Pm_WriteShort(mMidiStream, timestamp, Pm_Message((int) (command + channel), (long) data1, (long) data2)); //printf("Pm_WriteShort %lx @ %d\n", // Pm_Message((int) (command + channel), // (long) data1, (long) data2), timestamp); } } } void AudioIO::GetNextEvent() { mNextEventTrack = NULL; // clear it just to be safe // now get the next event and the track from which it came double nextOffset; if (!mIterator) { mNextEvent = NULL; return; } mNextEvent = mIterator->next(&mNextIsNoteOn, (void **) &mNextEventTrack, &nextOffset, mT1 + mMidiLoopOffset); if (mNextEvent) { mNextEventTime = (mNextIsNoteOn ? mNextEvent->time : mNextEvent->get_end_time()) + nextOffset;; } else { // terminate playback at mT1 mNextEvent = &gAllNotesOff; mNextEventTime = mT1 + mMidiLoopOffset - ALG_EPS; mNextIsNoteOn = true; // do not look at duration mIterator->end(); delete mIterator; mIterator = NULL; // debugging aid } } bool AudioIO::SetHasSolo(bool hasSolo) { mHasSolo = hasSolo; return mHasSolo; } // returns estimated current track time void AudioIO::FillMidiBuffers() { bool hasSolo = false; int numPlaybackTracks = gAudioIO->mPlaybackTracks.GetCount(); int t; for(t = 0; t < numPlaybackTracks; t++ ) if( gAudioIO->mPlaybackTracks[t]->GetSolo() ) { hasSolo = true; break; } int numMidiPlaybackTracks = gAudioIO->mMidiPlaybackTracks.GetCount(); for(t = 0; t < numMidiPlaybackTracks; t++ ) if( gAudioIO->mMidiPlaybackTracks[t]->GetSolo() ) { hasSolo = true; break; } SetHasSolo(hasSolo); // Compute the current track time differently depending upon // whether audio playback is in effect: double time; if (mNumPlaybackChannels > 0) { time = AudioTime() - PauseTime(); } else { time = mT0 + Pt_Time() * 0.001 - PauseTime(); if (mNumCaptureChannels <= 0) { // no audio callback, so move the time cursor here: double track_time = time - mMidiLoopOffset; //printf("mTime set. mT0 %g Pt_Time() %gs PauseTime %g\n", // mT0, Pt_Time() * 0.001, PauseTime()); // Since loop offset is incremented when we fill the // buffer, the cursor tends to jump back to mT0 early. // Therefore, if we are in loop mode, and if mTime < mT0, // we must not be at the end of the loop yet. if (mPlayLooped && track_time < mT0) { track_time += (mT1 - mT0); } // mTime is shared with another thread so we stored // intermediate values in track_time. Do the update // atomically now that we have the final value: mTime = track_time; } // advance time so that midi messages are written a little early, // timestamps will insure accurate output timing. This is an "extra" // MIDI_SLEEP interval; another is added below to compensate for the // fact that we need to output messages that will become due while // we are sleeping. time += MIDI_SLEEP * 0.001; } while (mNextEvent && mNextEventTime < time + ((MIDI_SLEEP + mSynthLatency) * 0.001)) { OutputEvent(); GetNextEvent(); } } double AudioIO::PauseTime() { if (mNumPlaybackChannels > 0) { return mNumPauseFrames / mRate; } else { return mPauseTime * 0.001; } } PmTimestamp AudioIO::MidiTime() { if (mNumPlaybackChannels > 0) { //printf("AudioIO:MidiTime: PaUtil_GetTime() %g mAudioCallbackOutputTime %g time - outputTime %g\n", // PaUtil_GetTime(), mAudioCallbackOutputTime, PaUtil_GetTime() - mAudioCallbackOutputTime); // note: the extra 0.0005 is for rounding. Round down by casting to // unsigned long, then convert to PmTimeStamp (currently signed) return (PmTimestamp) ((unsigned long) (1000 * (AudioTime() + 1.0005 - mAudioFramesPerBuffer / mRate + PaUtil_GetTime() - mAudioCallbackOutputTime))); } else { return Pt_Time(); } } void AudioIO::AllNotesOff() { printf("AudioIO::AllNotesOff()\n"); for (int chan = 0; chan < 16; chan++) { Pm_WriteShort(mMidiStream, 0, Pm_Message(0xB0 + chan, 0x7B, 0)); } } #endif // Automated Input Level Adjustment - Automatically tries to find an acceptable input volume #ifdef AUTOMATED_INPUT_LEVEL_ADJUSTMENT void AudioIO::AILAInitialize() { gPrefs->Read(wxT("/AudioIO/AutomatedInputLevelAdjustment"), &mAILAActive, false); gPrefs->Read(wxT("/AudioIO/TargetPeak"), &mAILAGoalPoint, AILA_DEF_TARGET_PEAK); gPrefs->Read(wxT("/AudioIO/DeltaPeakVolume"), &mAILAGoalDelta, AILA_DEF_DELTA_PEAK); gPrefs->Read(wxT("/AudioIO/AnalysisTime"), &mAILAAnalysisTime, AILA_DEF_ANALYSIS_TIME); gPrefs->Read(wxT("/AudioIO/NumberAnalysis"), &mAILATotalAnalysis, AILA_DEF_NUMBER_ANALYSIS); mAILAGoalDelta /= 100.0; mAILAGoalPoint /= 100.0; mAILAAnalysisTime /= 1000.0; mAILAMax = 0.0; mAILALastStartTime = max(0.0, mT0); mAILAClipped = false; mAILAAnalysisCounter = 0; mAILAChangeFactor = 1.0; mAILALastChangeType = 0; mAILATopLevel = 1.0; mAILAAnalysisEndTime = -1.0; } void AudioIO::AILADisable() { mAILAActive = false; } bool AudioIO::AILAIsActive() { return mAILAActive; } void AudioIO::AILASetStartTime() { mAILAAbsolutStartTime = Pa_GetStreamTime(mPortStreamV19); printf("START TIME %f\n\n", mAILAAbsolutStartTime); } double AudioIO::AILAGetLastDecisionTime() { return mAILAAnalysisEndTime; } void AudioIO::AILAProcess(double maxPeak) { AudacityProject *proj = GetActiveProject(); if (proj && mAILAActive) { if (mInputMeter->IsClipping()) { mAILAClipped = true; printf("clipped"); } mAILAMax = max(mAILAMax, maxPeak); if ((mAILATotalAnalysis == 0 || mAILAAnalysisCounter < mAILATotalAnalysis) && mTime - mAILALastStartTime >= mAILAAnalysisTime) { putchar('\n'); mAILAMax = mInputMeter->ToLinearIfDB(mAILAMax); double iv = (double) Px_GetInputVolume(mPortMixer); unsigned short changetype = 0; //0 - no change, 1 - increase change, 2 - decrease change printf("mAILAAnalysisCounter:%d\n", mAILAAnalysisCounter); printf("\tmAILAClipped:%d\n", mAILAClipped); printf("\tmAILAMax (linear):%f\n", mAILAMax); printf("\tmAILAGoalPoint:%f\n", mAILAGoalPoint); printf("\tmAILAGoalDelta:%f\n", mAILAGoalDelta); printf("\tiv:%f\n", iv); printf("\tmAILAChangeFactor:%f\n", mAILAChangeFactor); if (mAILAClipped || mAILAMax > mAILAGoalPoint + mAILAGoalDelta) { printf("too high:\n"); mAILATopLevel = min(mAILATopLevel, iv); printf("\tmAILATopLevel:%f\n", mAILATopLevel); //if clipped or too high if (iv <= LOWER_BOUND) { //we can't improve it more now if (mAILATotalAnalysis != 0) { mAILAActive = false; proj->TP_DisplayStatusMessage(_("Automated Input Level Adjustment stopped. It was not possible to optimize it more. Still too high.")); } printf("\talready min vol:%f\n", iv); } else { float vol = (float) max(LOWER_BOUND, iv+(mAILAGoalPoint-mAILAMax)*mAILAChangeFactor); Px_SetInputVolume(mPortMixer, vol); wxString msg; msg.Printf(_("Automated Input Level Adjustment decreased the volume to %f."), vol); proj->TP_DisplayStatusMessage(msg); changetype = 1; printf("\tnew vol:%f\n", vol); float check = Px_GetInputVolume(mPortMixer); printf("\tverified %f\n", check); } } else if ( mAILAMax < mAILAGoalPoint - mAILAGoalDelta ) { //if too low printf("too low:\n"); if (iv >= UPPER_BOUND || iv + 0.005 > mAILATopLevel) { //condition for too low volumes and/or variable volumes that cause mAILATopLevel to decrease too much //we can't improve it more if (mAILATotalAnalysis != 0) { mAILAActive = false; proj->TP_DisplayStatusMessage(_("Automated Input Level Adjustment stopped. It was not possible to optimize it more. Still too low.")); } printf("\talready max vol:%f\n", iv); } else { float vol = (float) min(UPPER_BOUND, iv+(mAILAGoalPoint-mAILAMax)*mAILAChangeFactor); if (vol > mAILATopLevel) { vol = (iv + mAILATopLevel)/2.0; printf("\tTruncated vol:%f\n", vol); } Px_SetInputVolume(mPortMixer, vol); wxString msg; msg.Printf(_("Automated Input Level Adjustment increased the volume to %.2f."), vol); proj->TP_DisplayStatusMessage(msg); changetype = 2; printf("\tnew vol:%f\n", vol); float check = Px_GetInputVolume(mPortMixer); printf("\tverified %f\n", check); } } mAILAAnalysisCounter++; //const PaStreamInfo* info = Pa_GetStreamInfo(mPortStreamV19); //double latency = 0.0; //if (info) // latency = info->inputLatency; //mAILAAnalysisEndTime = mTime+latency; mAILAAnalysisEndTime = Pa_GetStreamTime(mPortStreamV19) - mAILAAbsolutStartTime; mAILAMax = 0; printf("\tA decision was made @ %f\n", mAILAAnalysisEndTime); mAILAClipped = false; mAILALastStartTime = mTime; if (changetype == 0) mAILAChangeFactor *= 0.8; //time factor else if (mAILALastChangeType == changetype) mAILAChangeFactor *= 1.1; //concordance factor else mAILAChangeFactor *= 0.7; //discordance factor mAILALastChangeType = changetype; putchar('\n'); } if (mAILAActive && mAILATotalAnalysis != 0 && mAILAAnalysisCounter >= mAILATotalAnalysis) { mAILAActive = false; if (mAILAMax > mAILAGoalPoint + mAILAGoalDelta) proj->TP_DisplayStatusMessage(_("Automated Input Level Adjustment stopped. The total number of analysis has been exceeded without finding an acceptable volume. Still too high.")); else if (mAILAMax < mAILAGoalPoint - mAILAGoalDelta) proj->TP_DisplayStatusMessage(_("Automated Input Level Adjustment stopped. The total number of analysis has been exceeded without finding an acceptable volume. Still too low.")); else { wxString msg; msg.Printf(_("Automated Input Level Adjustment stopped. %.2f seems an acceptable volume."), Px_GetInputVolume(mPortMixer)); proj->TP_DisplayStatusMessage(msg); } } } } #endif ////////////////////////////////////////////////////////////////////// // // PortAudio callback thread context // ////////////////////////////////////////////////////////////////////// #define MAX(a,b) ((a) > (b) ? (a) : (b)) void DoSoftwarePlaythrough(const void *inputBuffer, sampleFormat inputFormat, int inputChannels, float *outputBuffer, int len, float gain) { float *tempBuffer = (float *)alloca(len * sizeof(float)); int i, j; for(j=0; jmNumPlaybackChannels; int numPlaybackTracks = gAudioIO->mPlaybackTracks.GetCount(); int numCaptureChannels = gAudioIO->mNumCaptureChannels; int callbackReturn = paContinue; void *tempBuffer = alloca(framesPerBuffer*sizeof(float)* MAX(numCaptureChannels,numPlaybackChannels)); float *tempFloats = (float*)tempBuffer; // output meter may need samples untouched by volume emulation float *outputMeterFloats; outputMeterFloats = (outputBuffer && gAudioIO->mEmulateMixerOutputVol && gAudioIO->mMixerOutputVol != 1.0) ? (float *)alloca(framesPerBuffer*numPlaybackChannels * sizeof(float)) : (float *)outputBuffer; #ifdef EXPERIMENTAL_MIDI_OUT /* GSW: Save timeInfo in case MidiPlayback needs it */ gAudioIO->mAudioCallbackOutputTime = timeInfo->outputBufferDacTime; // printf("in callback, mAudioCallbackOutputTime %g\n", gAudioIO->mAudioCallbackOutputTime); //DBG gAudioIO->mAudioFramesPerBuffer = framesPerBuffer; if(gAudioIO->IsPaused()) gAudioIO->mNumPauseFrames += framesPerBuffer; gAudioIO->mNumFrames += framesPerBuffer; #endif unsigned int i; int t; /* Send data to recording VU meter if applicable */ if (gAudioIO->mInputMeter && !gAudioIO->mInputMeter->IsMeterDisabled() && inputBuffer) { // get here if meters are actually live , and being updated /* It's critical that we don't update the meters while StopStream is * trying to stop PortAudio, otherwise it can lead to a freeze. We use * two variables to synchronize: * mUpdatingMeters tells StopStream when the callback is about to enter * the code where it might update the meters, and * mUpdateMeters is how the rest of the code tells the callback when it * is allowed to actually do the updating. * Note that mUpdatingMeters must be set first to avoid a race condition. */ gAudioIO->mUpdatingMeters = true; if (gAudioIO->mUpdateMeters) { if (gAudioIO->mCaptureFormat == floatSample) gAudioIO->mInputMeter->UpdateDisplay(numCaptureChannels, framesPerBuffer, (float *)inputBuffer); else { CopySamples((samplePtr)inputBuffer, gAudioIO->mCaptureFormat, (samplePtr)tempFloats, floatSample, framesPerBuffer * numCaptureChannels); gAudioIO->mInputMeter->UpdateDisplay(numCaptureChannels, framesPerBuffer, tempFloats); } } gAudioIO->mUpdatingMeters = false; } // end recording VU meter update // Stop recording if 'silence' is detected if(gAudioIO->mPauseRec && inputBuffer && gAudioIO->mInputMeter) { if(gAudioIO->mInputMeter->GetMaxPeak() < gAudioIO->mSilenceLevel ) { if(!gAudioIO->IsPaused()) { AudacityProject *p = GetActiveProject(); wxCommandEvent dummyEvt; p->GetControlToolBar()->OnPause(dummyEvt); } } else { if(gAudioIO->IsPaused()) { AudacityProject *p = GetActiveProject(); wxCommandEvent dummyEvt; p->GetControlToolBar()->OnPause(dummyEvt); } } } if( gAudioIO->mPaused ) { if (outputBuffer && numPlaybackChannels > 0) { ClearSamples((samplePtr)outputBuffer, floatSample, 0, framesPerBuffer * numPlaybackChannels); if (inputBuffer && gAudioIO->mSoftwarePlaythrough) { DoSoftwarePlaythrough(inputBuffer, gAudioIO->mCaptureFormat, numCaptureChannels, (float *)outputBuffer, (int)framesPerBuffer, 1.0f); } } return paContinue; } if (gAudioIO->mStreamToken > 0) { // // Mix and copy to PortAudio's output buffer // if( outputBuffer && (numPlaybackChannels > 0) ) { bool cut = false; bool linkFlag = false; float *outputFloats = (float *)outputBuffer; for( i = 0; i < framesPerBuffer*numPlaybackChannels; i++) outputFloats[i] = 0.0; if (inputBuffer && gAudioIO->mSoftwarePlaythrough) { DoSoftwarePlaythrough(inputBuffer, gAudioIO->mCaptureFormat, numCaptureChannels, (float *)outputBuffer, (int)framesPerBuffer, 1.0f); } // Copy the results to outputMeterFloats if necessary if (outputMeterFloats != outputFloats) { for (i = 0; i < framesPerBuffer*numPlaybackChannels; ++i) { outputMeterFloats[i] = outputFloats[i]; } } if (gAudioIO->mSeek) { // Pause audio thread and wait for it to finish gAudioIO->mAudioThreadFillBuffersLoopRunning = false; while( gAudioIO->mAudioThreadFillBuffersLoopActive == true ) { wxMilliSleep( 50 ); } // Calculate the new time position gAudioIO->mTime += gAudioIO->mSeek; if (gAudioIO->mTime < gAudioIO->mT0) gAudioIO->mTime = gAudioIO->mT0; else if (gAudioIO->mTime > gAudioIO->mT1) gAudioIO->mTime = gAudioIO->mT1; gAudioIO->mSeek = 0.0; // Reset mixer positions and flush buffers for all tracks gAudioIO->mT = gAudioIO->mT0 + ((gAudioIO->mTime - gAudioIO->mT0)); for (i = 0; i < (unsigned int)numPlaybackTracks; i++) { gAudioIO->mPlaybackMixers[i]->Reposition(gAudioIO->mT); gAudioIO->mPlaybackBuffers[i]->Discard(gAudioIO->mPlaybackBuffers[i]->AvailForGet()); } // Reload the ring buffers gAudioIO->mAudioThreadShouldCallFillBuffersOnce = true; while( gAudioIO->mAudioThreadShouldCallFillBuffersOnce == true ) { wxMilliSleep( 50 ); } // Reenable the audio thread gAudioIO->mAudioThreadFillBuffersLoopRunning = true; return paContinue; } int numSolo = 0; for( t = 0; t < numPlaybackTracks; t++ ) if( gAudioIO->mPlaybackTracks[t]->GetSolo() ) numSolo++; #ifdef EXPERIMENTAL_MIDI_OUT int numMidiPlaybackTracks = gAudioIO->mMidiPlaybackTracks.GetCount(); for( t = 0; t < numMidiPlaybackTracks; t++ ) if( gAudioIO->mMidiPlaybackTracks[t]->GetSolo() ) numSolo++; #endif for( t = 0; t < numPlaybackTracks; t++) { WaveTrack *vt = gAudioIO->mPlaybackTracks[t]; if (linkFlag) linkFlag = false; else { cut = false; // Cut if somebody else is soloing if (numSolo>0 && !vt->GetSolo()) cut = true; // Cut if we're muted (unless we're soloing) if (vt->GetMute() && !vt->GetSolo()) cut = true; linkFlag = vt->GetLinked(); } // This code was reorganized so that if all audio tracks // are muted, we still return paComplete when the end of // a selection is reached. unsigned int len; if (cut) { len = (unsigned int) gAudioIO->mPlaybackBuffers[t]->Discard(framesPerBuffer); } else { len = (unsigned int) gAudioIO->mPlaybackBuffers[t]->Get((samplePtr)tempFloats, floatSample, (int)framesPerBuffer); } // If our buffer is empty and the time indicator is past // the end, then we've actually finished playing the entire // selection. // msmeyer: We never finish if we are playing looped if (len == 0 && gAudioIO->mTime >= gAudioIO->mT1 && !gAudioIO->mPlayLooped) { callbackReturn = paComplete; } if (cut) // no samples to process, they've been discarded continue; if (vt->GetChannel() == Track::LeftChannel || vt->GetChannel() == Track::MonoChannel) { float gain = vt->GetChannelGain(0); // Output volume emulation: possibly copy meter samples, then // apply volume, then copy to the output buffer if (outputMeterFloats != outputFloats) for (i = 0; i < len; ++i) outputMeterFloats[numPlaybackChannels*i] += gain*tempFloats[i]; if (gAudioIO->mEmulateMixerOutputVol) gain *= gAudioIO->mMixerOutputVol; for(i=0; iGetChannel() == Track::RightChannel || vt->GetChannel() == Track::MonoChannel) { float gain = vt->GetChannelGain(1); // Output volume emulation (as above) if (outputMeterFloats != outputFloats) for (i = 0; i < len; ++i) outputMeterFloats[numPlaybackChannels*i+1] += gain*tempFloats[i]; if (gAudioIO->mEmulateMixerOutputVol) gain *= gAudioIO->mMixerOutputVol; for(i=0; i 1.0) outputFloats[i] = 1.0; else if (f < -1.0) outputFloats[i] = -1.0; } // Same for meter output if (outputMeterFloats != outputFloats) { for (i = 0; i < framesPerBuffer*numPlaybackChannels; ++i) { float f = outputMeterFloats[i]; if (f > 1.0) outputMeterFloats[i] = 1.0; else if (f < -1.0) outputMeterFloats[i] = -1.0; } } } // // Copy from PortAudio to our input buffers. // if( inputBuffer && (numCaptureChannels > 0) ) { unsigned int len = framesPerBuffer; for( t = 0; t < numCaptureChannels; t++) { unsigned int avail = (unsigned int)gAudioIO->mCaptureBuffers[t]->AvailForPut(); if (avail < len) len = avail; } if (len < framesPerBuffer) { gAudioIO->mLostSamples += (framesPerBuffer - len); wxPrintf(wxT("lost %d samples\n"), (int)(framesPerBuffer - len)); } if (len > 0) { for( t = 0; t < numCaptureChannels; t++) { // dmazzoni: // Un-interleave. Ugly special-case code required because the // capture channels could be in three different sample formats; // it'd be nice to be able to call CopySamples, but it can't // handle multiplying by the gain and then clipping. Bummer. switch(gAudioIO->mCaptureFormat) { case floatSample: { float *inputFloats = (float *)inputBuffer; for( i = 0; i < len; i++) tempFloats[i] = inputFloats[numCaptureChannels*i+t]; } break; case int24Sample: // We should never get here. Audacity's int24Sample format // is different from PortAudio's sample format and so we // make PortAudio return float samples when recording in // 24-bit samples. wxASSERT(false); break; case int16Sample: { short *inputShorts = (short *)inputBuffer; short *tempShorts = (short *)tempBuffer; for( i = 0; i < len; i++) { float tmp = inputShorts[numCaptureChannels*i+t]; if (tmp > 32767) tmp = 32767; if (tmp < -32768) tmp = -32768; tempShorts[i] = (short)(tmp); } } break; } // switch gAudioIO->mCaptureBuffers[t]->Put((samplePtr)tempBuffer, gAudioIO->mCaptureFormat, len); } } } // Calcuate the warp factor for this time position double factor = 1.0; if (gAudioIO->mTimeTrack) { factor = gAudioIO->mTimeTrack->GetEnvelope()->GetValue(gAudioIO->mTime); factor = (gAudioIO->mTimeTrack->GetRangeLower() * (1 - factor) + factor * gAudioIO->mTimeTrack->GetRangeUpper()) / 100.0; } // Wrap to start if looping if (gAudioIO->mPlayLooped && gAudioIO->mTime >= gAudioIO->mT1) { // LL: This is not exactly right, but I'm at my wits end trying to // figure it out. Feel free to fix it. :-) gAudioIO->mTime = gAudioIO->mT0 - ((gAudioIO->mTime - gAudioIO->mT1) * factor); } // Update the current time position gAudioIO->mTime += ((framesPerBuffer / gAudioIO->mRate) * factor); // Record the reported latency from PortAudio. // TODO: Don't recalculate this with every callback? // 01/21/2009: Disabled until a better solution presents itself. #if 0 // As of 06/17/2006, portaudio v19 returns inputBufferAdcTime set to // zero. It is being worked on, but for now we just can't do much // but follow the leader. // // 08/27/2006: too inconsistent for now...just leave it a zero. // // 04/16/2008: Looks like si->inputLatency comes back with something useful though. // This rearranged logic uses si->inputLatency, but if PortAudio fixes inputBufferAdcTime, // this code won't have to be modified to use it. // Also avoids setting mLastRecordingOffset except when simultaneously playing and recording. // if (numCaptureChannels > 0 && numPlaybackChannels > 0) // simultaneously playing and recording { if (timeInfo->inputBufferAdcTime > 0) gAudioIO->mLastRecordingOffset = timeInfo->inputBufferAdcTime - timeInfo->outputBufferDacTime; else if (gAudioIO->mLastRecordingOffset == 0.0) { const PaStreamInfo* si = Pa_GetStreamInfo( gAudioIO->mPortStreamV19 ); gAudioIO->mLastRecordingOffset = -si->inputLatency; } } #endif } // if mStreamToken > 0 else { // No tracks to play, but we should clear the output, and // possibly do software playthrough... if( outputBuffer && (numPlaybackChannels > 0) ) { float *outputFloats = (float *)outputBuffer; for( i = 0; i < framesPerBuffer*numPlaybackChannels; i++) outputFloats[i] = 0.0; if (inputBuffer && gAudioIO->mSoftwarePlaythrough) { DoSoftwarePlaythrough(inputBuffer, gAudioIO->mCaptureFormat, numCaptureChannels, (float *)outputBuffer, (int)framesPerBuffer, 1.0f); } // Copy the results to outputMeterFloats if necessary if (outputMeterFloats != outputFloats) { for (i = 0; i < framesPerBuffer*numPlaybackChannels; ++i) { outputMeterFloats[i] = outputFloats[i]; } } } } /* Send data to playback VU meter if applicable */ if (gAudioIO->mOutputMeter && !gAudioIO->mOutputMeter->IsMeterDisabled() && outputMeterFloats) { // Get here if playback meter is live /* It's critical that we don't update the meters while StopStream is * trying to stop PortAudio, otherwise it can lead to a freeze. We use * two variables to synchronize: * mUpdatingMeters tells StopStream when the callback is about to enter * the code where it might update the meters, and * mUpdateMeters is how the rest of the code tells the callback when it * is allowed to actually do the updating. * Note that mUpdatingMeters must be set first to avoid a race condition. */ gAudioIO->mUpdatingMeters = true; if (gAudioIO->mUpdateMeters) { gAudioIO->mOutputMeter->UpdateDisplay(numPlaybackChannels, framesPerBuffer, outputMeterFloats); } gAudioIO->mUpdatingMeters = false; } // end playback VU meter update return callbackReturn; } #ifdef EXPERIMENTAL_MIDI_OUT int compareTime( const void* a, const void* b ) { return( (int)((*(PmEvent*)a).timestamp - (*(PmEvent*)b).timestamp ) ); } #endif // Indentation settings for Vim and Emacs and unique identifier for Arch, a // version control system. Please do not modify past this point. // // Local Variables: // c-basic-offset: 3 // indent-tabs-mode: nil // End: // // vim: et sts=3 sw=3 // arch-tag: 7ee3c9aa-b58b-4069-8a07-8866f2303963