audacia/lib-src/libscorealign/hillclimb.cpp

188 lines
6.3 KiB
C++

/*
* hillclimb.cpp
* scorealign
*
* Created by Roger Dannenberg on 10/20/07.
* Copyright 2007 __MyCompanyName__. All rights reserved.
*
* Hillclimb is an abstract class for optimization. It models problems where
* you have a vector of parameters (stored as an array), a corresponding set
* of step sizes, and a non-linear function. The function is a virtual
* member function that subclasses must implement.
*
* The optimization algorithm is as follows:
* An initial set of parameters and step sizes is given.
*
* Estimate the partial derivatives with respect to each parameter value
* by taking a step along that dimension (use step sizes to determine
* how far to go) and calling the evaluate virtual function.
* Find the parameter that causes the maximum absolute change. If the
* change is positive for that parameter, take the step along that
* dimension. If the change is negative, take a negative step along that
* dimension.
*
* Repeat the previous paragraph as long as the result of evaluate is
* increasing. When it stops, you are at the top of a hill, a local
* maximum.
*/
#include "stdio.h"
#include <stdlib.h>
#include "sautils.h"
#include "hillclimb.h"
#define HC_VERBOSE 0
#define V if (HC_VERBOSE)
Hillclimb::~Hillclimb()
{
if (parameters) FREE(parameters);
if (step_size) FREE(step_size);
if (min_param) FREE(min_param);
if (max_param) FREE(max_param);
}
void Hillclimb::setup(int n_) {
n = n_;
parameters = ALLOC(double, n);
step_size = ALLOC(double, n);
min_param = ALLOC(double, n);
max_param = ALLOC(double, n);
}
void Hillclimb::set_parameters(double *p, double *ss,
double *min_, double *max_, int plen)
{
parameters = p;
step_size = ss;
min_param = min_;
max_param = max_;
n = plen;
}
/* this optimize assumes that the surface is smooth enought that if the
* function decreases when parameter[i] increases, then the function will
* increase when parameter[i] decreases. The alternative version does more
* evaluation, but checks in both directions to find the best overall move.
double Hillclimb::optimize()
{
double best = evaluate();
while (true) {
printf("best %g ", best);
// eval partial derivatives
int i;
// variables to search for max partial derivative
double max = 0; // max of |dy| so far
int max_i; // index where max was found
int max_sign = 1; // sign of dy
double max_y; // value of evaluate() at max_i
// now search over all parameters for max change
for (i = 0; i < n; i++) {
int sign = 1; // sign of derivative in the +step direction
int step_direction = 1; // how to undo parameter variation
parameters[i] += step_size[i];
if (parameters[i] > max_param[i]) {
// try stepping in the other direction
parameters[i] -= step_size[i] * 2;
sign = -1;
step_direction = -1;
}
double y = evaluate();
// restore parameter i
parameters[i] -= step_size[i] * step_direction;
double dy = y - best;
if (dy < 0) {
dy = -dy;
sign = -sign;
}
// is this the best yet and legal move?
double proposal = parameters[i] + step_size[i] * sign;
if (dy > max && proposal <= max_param[i] &&
proposal >= min_param[i]) {
max = dy;
max_i = i;
max_y = y;
max_sign = sign;
}
}
// best move is parameter max_i in max_sign direction
parameters[max_i] += step_size[max_i] * max_sign;
printf("moved %d to %g", max_i, parameters[max_i]);
// what's the value now? put it in max_y
if (max_sign == -1) max_y = evaluate();
printf(" to get %g (vs. best %g)\n", max_y, best);
// otherwise, max_y already has the new value
if (max_y <= best) { // no improvement, we're done
parameters[max_i] -= step_size[max_i] * max_sign;
printf("\nCompleted hillclimbing, best %g\n", best);
return best;
}
// improvement because max_y higher than best:
best = max_y;
}
}
*/
double Hillclimb::optimize(Report_fn_ptr report, void *cookie)
{
double best = evaluate();
int iterations = 0;
while (true) {
(*report)(cookie, iterations, best);
V printf("best %g ", best);
// eval partial derivatives
int i;
// variables to search for max partial derivative
double max_y = best; // max of evaluate() so far
int max_i = 0; // index where best max was found
// the good parameter value for max_i:
double max_parameter = parameters[0];
// now search over all parameters for best improvement
for (i = 0; i < n; i++) {
V printf("optimize at %d param %g ", i, parameters[i]);
double save_param = parameters[i];
parameters[i] = save_param + step_size[i];
if (parameters[i] <= max_param[i]) {
double y = evaluate();
V printf("up->%g ", y);
if (y > max_y) {
V printf("NEW MAX! ");
max_y = y;
max_i = i;
max_parameter = parameters[i];
}
}
parameters[i] = save_param - step_size[i];
if (parameters[i] >= min_param[i]) {
double y = evaluate();
V printf("dn->%g ", y);
if (y > max_y) {
V printf("NEW MAX! ");
max_y = y;
max_i = i;
max_parameter = parameters[i];
}
}
parameters[i] = save_param;
V printf("\n");
}
iterations++; // for debugging, reporting
if (max_y <= best) { // no improvement, we're done
V printf("\nCompleted hillclimbing, best %g\n", best);
(*report)(cookie, iterations, best);
return best;
}
// improvement because max_y higher than best:
parameters[max_i] = max_parameter;
best = max_y;
}
}