audacia/nyquist/dspprims.lsp

729 lines
23 KiB
Common Lisp

;; dspprims.lsp -- interface to dsp primitives
;; ARESON - notch filter
;;
(defun areson (s c b &optional (n 0))
(multichan-expand "ARESON" #'nyq:areson
'(((SOUND) nil) ((NUMBER SOUND) "center")
((NUMBER SOUND) "bandwidth") ((INTEGER) nil))
s c b n))
(setf areson-implementations
(vector #'snd-areson #'snd-aresonvc #'snd-aresoncv #'snd-aresonvv))
;; NYQ:ARESON - notch filter, single channel
;;
(defun nyq:areson (signal center bandwidth normalize)
(select-implementation-1-2 "ARESON" areson-implementations
signal center bandwidth normalize))
;; hp - highpass filter
;;
(defun hp (s c)
(multichan-expand "HP" #'nyq:hp
'(((SOUND) "snd") ((NUMBER SOUND) "cutoff")) s c))
(setf hp-implementations
(vector #'snd-atone #'snd-atonev))
;; NYQ:hp - highpass filter, single channel
;;
(defun nyq:hp (s c)
(select-implementation-1-1 "HP" hp-implementations s c))
;; comb-delay-from-hz -- compute the delay argument
;;
(defun comb-delay-from-hz (hz)
(recip hz))
;; comb-feedback -- compute the feedback argument
;;
(defun comb-feedback (decay delay)
(s-exp (mult -6.9087 delay (recip decay))))
;; COMB - comb filter
;;
;; this is just a feedback-delay with different arguments
;;
(defun comb (snd decay hz)
(multichan-expand "COMB" #'nyq:comb
'(((SOUND) "snd") ((NUMBER SOUND) "decay") ((POSITIVE) "hz"))
snd decay hz))
(defun nyq:comb (snd decay hz)
(let (delay feedback len d)
; convert decay to feedback
(setf delay (/ (float hz)))
(setf feedback (comb-feedback decay delay))
(nyq:feedback-delay snd delay feedback "COMB")))
;; ALPASS - all-pass filter
;;
(defun alpass (snd decay hz &optional min-hz)
(multichan-expand "ALPASS" #'nyq:alpass
'(((SOUND) "snd") ((NUMBER SOUND) "decay")
((POSITIVE SOUND) "hz") ((POSITIVE-OR-NULL) "min-hz"))
snd decay hz min-hz))
(defun nyq:alpass (snd decay hz min-hz)
(let (delay feedback len d)
; convert decay to feedback, iterate over array if necessary
(setf delay (comb-delay-from-hz hz))
(setf feedback (comb-feedback decay delay))
(nyq:alpass1 snd delay feedback min-hz)))
;; CONST -- a constant at control-srate
;;
(defun const (value &optional (dur 1.0))
(ny:typecheck (not (numberp value))
(ny:error "CONST" 1 '((NUMBER) "value") value))
(ny:typecheck (not (numberp dur))
(ny:error "CONST" 2 '((NUMBER) "dur") dur))
(let ((d (get-duration dur)))
(snd-const value *rslt* *CONTROL-SRATE* d)))
;; CONVOLVE - fast convolution
;;
(defun convolve (s r)
(multichan-expand "CONVOLVE" #'nyq:convolve
'(((SOUND) nil) ((SOUND) nil)) s r))
(defun nyq:convolve (s r)
(snd-convolve s (force-srate (snd-srate s) r)))
;; FEEDBACK-DELAY -- (delay is quantized to sample period)
;;
(defun feedback-delay (snd delay feedback)
(multichan-expand "FEEDBACK-DELAY" #'nyq:feedback-delay
'(((SOUND) "snd") ((NUMBER) "delay") ((NUMBER SOUND) "feedback"))
snd delay feedback))
;; SND-DELAY-ERROR -- report type error
;;
(defun snd-delay-error (snd delay feedback)
(error "FEEDBACK-DELAY with variable delay is not implemented"))
(setf feedback-delay-implementations
(vector #'snd-delay #'snd-delay-error #'snd-delaycv #'snd-delay-error))
;; NYQ:FEEDBACK-DELAY -- single channel delay
;;
(defun nyq:feedback-delay (snd delay feedback &optional (src "FEEDBACK-DELAY"))
(select-implementation-1-2 src feedback-delay-implementations
snd delay feedback))
;; SND-ALPASS-ERROR -- report type error
;;
(defun snd-alpass-error (snd delay feedback)
(error "ALPASS with constant decay and variable hz is not implemented"))
(if (not (fboundp 'snd-alpasscv))
(defun snd-alpasscv (snd delay feedback min-hz)
(error "snd-alpasscv (ALPASS with variable decay) is not implemented")))
(if (not (fboundp 'snd-alpassvv))
(defun snd-alpassvv (snd delay feedback min-hz)
(error "snd-alpassvv (ALPASS with variable decay and feedback) is not implemented")))
(defun nyq:alpassvv (the-snd delay feedback min-hz)
(let (max-delay)
(ny:typecheck (or (not (numberp min-hz)) (<= min-hz 0))
(ny:error "ALPASS" 4 '((POSITIVE) "min-hz") min-hz))
(setf max-delay (/ (float min-hz)))
; make sure delay is between 0 and max-delay
; use clip function, which is symmetric, with an offset
(setf delay (snd-offset (clip (snd-offset delay (* max-delay -0.5))
(* max-delay 0.5))
(* max-delay 0.5)))
; now delay is between 0 and max-delay, so we won't crash nyquist when
; we call snd-alpassvv, which doesn't test for out-of-range data
(snd-alpassvv the-snd delay feedback max-delay)))
;; NYQ:SND-ALPASS -- ignores min-hz argument and calls snd-alpass
;;
(defun nyq:snd-alpass (snd delay feedback min-hz)
(snd-alpass snd delay feedback))
;; NYQ:SND-ALPASSCV -- ignores min-hz argument and calls snd-alpasscv
;;
(defun nyq:snd-alpasscv (snd delay feedback min-hz)
(snd-alpasscv snd delay feedback))
(setf alpass-implementations
(vector #'nyq:snd-alpass #'snd-alpass-error
#'nyq:snd-alpasscv #'nyq:alpassvv))
;; NYQ:ALPASS1 -- single channel alpass
;;
(defun nyq:alpass1 (snd delay feedback min-hz)
(select-implementation-1-2 "ALPASS" alpass-implementations
snd delay feedback min-hz))
;; CONGEN -- contour generator, patterned after gated analog env gen
;;
(defun congen (gate rise fall)
(multichan-expand "CONGEN" #'snd-congen
'(((SOUND) "gate") ((NONNEGATIVE) "rise") ((NONNEGATIVE) "fall"))
gate rise fall))
;; S-EXP -- exponentiate a sound
;;
(defun s-exp (s)
(multichan-expand "S-EXP" #'nyq:exp
'(((NUMBER SOUND) nil)) s))
;; NYQ:EXP -- exponentiate number or sound
;;
(defun nyq:exp (s) (if (soundp s) (snd-exp s) (exp s)))
;; S-ABS -- absolute value of a sound
;;
(defun s-abs (s)
(multichan-expand "S-ABS" #'nyq:abs
'(((NUMBER SOUND) nil)) s))
;; NYQ:ABS -- absolute value of number or sound
;;
(defun nyq:abs (s)
(if (soundp s) (snd-abs s) (abs s)))
;; S-AVG -- moving average or peak computation
;;
(defun s-avg (s blocksize stepsize operation)
(multichan-expand "S-AVG" #'snd-avg
'(((SOUND) nil) ((INTEGER) "blocksize") ((INTEGER) "stepsize")
((INTEGER) "operation"))
s blocksize stepsize operation))
;; S-SQRT -- square root of a sound
;;
(defun s-sqrt (s)
(multichan-expand "S-SQRT" #'nyq:sqrt
'(((NUMBER SOUND) nil)) s))
;; NYQ:SQRT -- square root of a number or sound
;;
(defun nyq:sqrt (s)
(if (soundp s) (snd-sqrt s) (sqrt s)))
;; INTEGRATE -- integration
;;
(defun integrate (s)
(multichan-expand "INTEGRATE" #'snd-integrate
'(((SOUND) nil)) s))
;; S-LOG -- natural log of a sound
;;
(defun s-log (s)
(multichan-expand "S-LOG" #'nyq:log
'(((NUMBER SOUND) nil)) s))
;; NYQ:LOG -- log of a number or sound
;;
(defun nyq:log (s)
(if (soundp s) (snd-log s) (log s)))
;; NOISE -- white noise
;;
(defun noise (&optional (dur 1.0))
(ny:typecheck (not (numberp dur))
(ny:error "NOISE" 1 number-anon dur))
(let ((d (get-duration dur)))
(snd-white *rslt* *SOUND-SRATE* d)))
(defun noise-gate (snd &optional (lookahead 0.5) (risetime 0.02) (falltime 0.5)
(floor 0.01) (threshold 0.01) &key (rms nil) (link t))
(let ((sense (if rms (rms snd 100.0 nil "NOISE-GATE") (s-abs snd))))
(cond (link
(mult snd (gate sense lookahead risetime falltime floor
threshold "NOISE-GATE")))
(t
(mult snd (multichan-expand "NOISE-GATE" #'gate
'(((SOUND) "sound") ((NUMBER) "lookahead")
((NUMBER) "risetime") ((NUMBER) "falltime")
((NUMBER) "floor") ((NUMBER) "threshold")
((STRING) "source"))
sense lookahead risetime falltime
floor threshold "NOISE-GATE"))))))
;; QUANTIZE -- quantize a sound
;;
(defun quantize (s f)
(multichan-expand "QUANTIZE" #'snd-quantize
'(((SOUND) nil) ((POSITIVE) nil)) s f))
;; RECIP -- reciprocal of a sound
;;
(defun recip (s)
(multichan-expand "RECIP" #'nyq:recip
'(((NUMBER SOUND) nil)) s))
;; NYQ:RECIP -- reciprocal of a number or sound
;;
(defun nyq:recip (s)
(if (soundp s) (snd-recip s) (/ (float s))))
;; RMS -- compute the RMS of a sound
;;
(defun rms (s &optional (rate 100.0) window-size (source "RMS"))
(multichan-expand "RMS" #'ny:rms
'(((SOUND) nil) ((POSITIVE) "rate") ((POSITIVE-OR-NULL) "window-size")
((STRING) "source"))
s rate window-size source))
;; NY:RMS -- single channel RMS
;;
(defun ny:rms (s &optional (rate 100.0) window-size source)
(let (rslt step-size)
(ny:typecheck (not (or (soundp s) (multichannel-soundp s)))
(ny:error source 1 '((SOUND) NIL) s t))
(ny:typecheck (not (numberp rate))
(ny:error source 2 '((NUMBER) "rate") rate))
(setf step-size (round (/ (snd-srate s) rate)))
(cond ((null window-size)
(setf window-size step-size))
((not (integerp window-size))
(ny:error source 3 '((INTEGER) "window-size" window-size))))
(setf s (prod s s))
(setf result (snd-avg s window-size step-size OP-AVERAGE))
;; compute square root of average
(s-exp (scale 0.5 (s-log result)))))
;; RESON - bandpass filter
;;
(defun reson (s c b &optional (n 0))
(multichan-expand "RESON" #'nyq:reson
'(((SOUND) "snd") ((NUMBER SOUND) "center")
((NUMBER SOUND) "bandwidth") ((INTEGER) "n"))
s c b n))
(setf reson-implementations
(vector #'snd-reson #'snd-resonvc #'snd-resoncv #'snd-resonvv))
;; NYQ:RESON - bandpass filter, single channel
;;
(defun nyq:reson (signal center bandwidth normalize)
(select-implementation-1-2 "RESON" reson-implementations
signal center bandwidth normalize))
;; SHAPE -- waveshaper
;;
(defun shape (snd shape origin)
(multichan-expand "SHAPE" #'snd-shape
'(((SOUND) "snd") ((SOUND) "shape") ((NUMBER) "origin"))
snd shape origin))
;; SLOPE -- calculate the first derivative of a signal
;;
(defun slope (s)
(multichan-expand "SLOPE" #'nyq:slope
'(((SOUND) nil)) s))
;; NYQ:SLOPE -- first derivative of single channel
;;
(defun nyq:slope (s)
(let* ((sr (snd-srate s))
(sr-inverse (/ sr)))
(snd-xform (snd-slope s) sr 0 sr-inverse MAX-STOP-TIME 1.0)))
;; lp - lowpass filter
;;
(defun lp (s c)
(multichan-expand "LP" #'nyq:lp
'(((SOUND) "snd") ((NUMBER SOUND) "cutoff")) s c))
(setf lp-implementations
(vector #'snd-tone #'snd-tonev))
;; NYQ:lp - lowpass filter, single channel
;;
(defun nyq:lp (s c)
(select-implementation-1-1 "LP" lp-implementations s c))
;;; fixed-parameter filters based on snd-biquad
;;; note: snd-biquad is implemented in biquadfilt.[ch],
;;; while BiQuad.{cpp,h} is part of STK
(setf Pi 3.14159265358979)
(defun square (x) (* x x))
(defun sinh (x) (* 0.5 (- (exp x) (exp (- x)))))
; remember that snd-biquad uses the opposite sign convention for a_i's
; than Matlab does.
;
; Stability: Based on courses.cs.washington.edu/courses/cse490s/11au/
; Readings/Digital_Sound_Generation_2.pdf, the stable region is
; (a2 < 1) and ((a2 + 1) > |a1|)
; It doesn't look to me like our a0, a1, a2 match the paper's a0, a1, a2,
; and I'm not convinced the paper's derivation is correct, but at least
; the predicted region of stability is correct if we swap signs on a1 and
; a2 (but due to the |a1| term, only the sign of a2 matters). This was
; tested manually at a number of points inside and outside the stable
; triangle. Previously, the stability test was (>= a0 1.0) which seems
; generally wrong. The old test has been removed.
; convenient biquad: normalize a0, and use zero initial conditions.
(defun nyq:biquad (x b0 b1 b2 a0 a1 a2)
(ny:typecheck (<= a0 0.0)
(error (format nil "In BIQUAD, a0 < 0 (unstable parameter a0 = ~A)" a0)))
(let ((a0r (/ (float a0))))
(setf a1 (* a0r a1)
a2 (* a0r a2))
(ny:typecheck (or (<= a2 -1.0) (<= (- 1.0 a2) (abs a1)))
(error (format nil
"In BIQUAD, (a2 <= -1) or (1 - a2 <= |a1|) (~A a1 = ~A, a2 = ~A)"
"unstable parameters" a1 a2)))
(snd-biquad x (* a0r b0) (* a0r b1) (* a0r b2)
a1 a2 0 0)))
(defun biquad (x b0 b1 b2 a0 a1 a2 &optional (source "BIQUAD"))
(multichan-expand "BIQUAD" #'nyq:biquad
'(((SOUND) "snd") ((NUMBER) "b0") ((NUMBER) "b1")
((NUMBER) "b2") ((NUMBER) "a0") ((NUMBER) "a1")
((NUMBER) "a2"))
x b0 b1 b2 a0 a1 a2))
; biquad with Matlab sign conventions for a_i's.
(defun biquad-m (x b0 b1 b2 a0 a1 a2)
(multichan-expand "BIQUAD-M" #'nyq:biquad-m
'(((SOUND) "snd") ((NUMBER) "b0") ((NUMBER) "b1")
((NUMBER) "b2") ((NUMBER) "a0") ((NUMBER) "a1")
((NUMBER) "a2"))
x b0 b1 b2 a0 a1 a2))
(defun nyq:biquad-m (x b0 b1 b2 a0 a1 a2 &optional (source "BIQUAD-M"))
(nyq:biquad x b0 b1 b2 a0 (- a1) (- a2)))
; two-pole lowpass
(defun lowpass2 (x hz &optional (q 0.7071) (source "LOWPASS2"))
(multichan-expand source #'nyq:lowpass2
'(((SOUND) "snd") ((POSITIVE) "hz") ((POSITIVE) "q") ((STRING) "source"))
x hz q source))
;; NYQ:LOWPASS2 -- operates on single channel
(defun nyq:lowpass2 (x hz q source)
(if (or (> hz (* 0.5 (snd-srate x)))
(< hz 0))
(error "cutoff frequency out of range" hz))
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b1 (- 1.0 cw))
(b0 (* 0.5 b1))
(b2 b0))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2 source)))
; two-pole highpass
(defun highpass2 (x hz &optional (q 0.7071) (source "HIGHPASS2"))
(multichan-expand source #'nyq:highpass2
'(((SOUND) "snd") ((POSITIVE) "hz") ((POSITIVE) "q") ((STRING) "source"))
x hz q source))
(defun nyq:highpass2 (x hz q source)
(if (or (> hz (* 0.5 (snd-srate x)))
(< hz 0))
(error "cutoff frequency out of range" hz))
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b1 (- -1.0 cw))
(b0 (* -0.5 b1))
(b2 b0))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2 source)))
; two-pole bandpass. max gain is unity.
(defun bandpass2 (x hz q)
(multichan-expand "BANDPASS2" #'nyq:bandpass2
'(((SOUND) "snd") ((POSITIVE) "hz") ((POSITIVE) "q"))
x hz q))
(defun nyq:bandpass2 (x hz q)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b0 alpha)
(b1 0.0)
(b2 (- alpha)))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2 "BANDPASS2")))
; two-pole notch.
(defun notch2 (x hz q)
(multichan-expand "NOTCH2" #'nyq:notch2
'(((SOUND) "snd") ((POSITIVE) "hz") ((POSITIVE) "q"))
x hz q))
(defun nyq:notch2 (x hz q)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(alpha (* sw (sinh (/ 0.5 q))))
(a0 (+ 1.0 alpha))
(a1 (* -2.0 cw))
(a2 (- 1.0 alpha))
(b0 1.0)
(b1 (* -2.0 cw))
(b2 1.0))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2 "NOTCH2")))
; two-pole allpass.
(defun allpass2 (x hz q)
(multichan-expand "ALLPASS2" #'nyq:allpass
'(((SOUND) "snd") ((POSITIVE) "hz") ((POSITIVE) "q"))
x hz q))
(defun nyq:allpass (x hz q)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(cw (cos w))
(sw (sin w))
(k (exp (* -0.5 w (/ (float q)))))
(a0 1.0)
(a1 (* -2.0 cw k))
(a2 (* k k))
(b0 a2)
(b1 a1)
(b2 1.0))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2 "ALLPASS2")))
; bass shelving EQ. gain in dB; Fc is halfway point.
; response becomes peaky at slope > 1.
(defun eq-lowshelf (x hz gain &optional (slope 1.0))
(multichan-expand "EQ-LOWSHELF" #'nyq:eq-lowshelf
'(((SOUND) "snd") ((POSITIVE) "hz") ((NUMBER) "gain") ((NUMBER) "slope"))
x hz gain slope))
(defun nyq:eq-lowshelf (x hz gain slope)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(sw (sin w))
(cw (cos w))
(A (expt 10.0 (/ gain (* 2.0 20.0))))
(b (sqrt (- (/ (+ 1.0 (square A)) slope) (square (- A 1.0)))))
(apc (* cw (+ A 1.0)))
(amc (* cw (- A 1.0)))
(bs (* b sw))
(b0 (* A (+ A 1.0 (- amc) bs )))
(b1 (* 2.0 A (+ A -1.0 (- apc) )))
(b2 (* A (+ A 1.0 (- amc) (- bs) )))
(a0 (+ A 1.0 amc bs ))
(a1 (* -2.0 (+ A -1.0 apc )))
(a2 (+ A 1.0 amc (- bs) )))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2)))
; treble shelving EQ. gain in dB; Fc is halfway point.
; response becomes peaky at slope > 1.
(defun eq-highshelf (x hz gain &optional (slope 1.0))
(multichan-expand "EQ-HIGHSHELF" #'nyq:eq-highshelf
'(((SOUND) "snd") ((POSITIVE) "hz") ((NUMBER) "gain") ((NUMBER) "slope"))
x hz gain slope))
(defun nyq:eq-highshelf (x hz gain slope)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(sw (sin w))
(cw (cos w))
(A (expt 10.0 (/ gain (* 2.0 20.0))))
(b (sqrt (- (/ (+ 1.0 (square A)) slope) (square (- A 1.0)))))
(apc (* cw (+ A 1.0)))
(amc (* cw (- A 1.0)))
(bs (* b sw))
(b0 (* A (+ A 1.0 amc bs )))
(b1 (* -2.0 A (+ A -1.0 apc )))
(b2 (* A (+ A 1.0 amc (- bs) )))
(a0 (+ A 1.0 (- amc) bs ))
(a1 (* 2.0 (+ A -1.0 (- apc) )))
(a2 (+ A 1.0 (- amc) (- bs) )))
(nyq:biquad-m x b0 b1 b2 a0 a1 a2)))
(defun nyq:eq-band (x hz gain width)
(cond ((and (numberp hz) (numberp gain) (numberp width))
(eq-band-ccc x hz gain width))
((and (soundp hz) (soundp gain) (soundp width))
(snd-eqbandvvv x hz (db-to-linear gain) width))
(t (error
(strcat
"In EQ-BAND, hz, gain, and width must be all numbers"
" or all sounds (if any parameter is an array, there"
" is a problem with at least one channel), hz is "
(param-to-string hz) ", gain is " (param-to-string gain)
", width is " (param-to-string width)) )) ))
; midrange EQ. gain in dB, width in octaves (half-gain width).
(defun eq-band (x hz gain width)
(multichan-expand "EQ-BAND" #'nyq:eq-band
'(((SOUND) "snd") ((POSITIVE SOUND) "hz")
((NUMBER SOUND) "gain") ((POSITIVE SOUND) "width"))
x hz gain width))
(defun eq-band-ccc (x hz gain width)
(let* ((w (* 2.0 Pi (/ hz (snd-srate x))))
(sw (sin w))
(cw (cos w))
(J (sqrt (expt 10.0 (/ gain 20.0))))
;(dummy (display "eq-band-ccc" gain J))
(g (* sw (sinh (* 0.5 (log 2.0) width (/ w sw)))))
;(dummy2 (display "eq-band-ccc" width w sw g))
(b0 (+ 1.0 (* g J)))
(b1 (* -2.0 cw))
(b2 (- 1.0 (* g J)))
(a0 (+ 1.0 (/ g J)))
(a1 (- b1))
(a2 (- (/ g J) 1.0)))
(biquad x b0 b1 b2 a0 a1 a2)))
; see failed attempt in eub-reject.lsp to do these with higher-order fns:
; four-pole Butterworth lowpass
(defun lowpass4 (x hz)
(lowpass2 (lowpass2 x hz 0.60492333 "LOWPASS4")
hz 1.33722126 "LOWPASS4"))
; six-pole Butterworth lowpass
(defun lowpass6 (x hz)
(lowpass2 (lowpass2 (lowpass2 x hz 0.58338080 "LOWPASS6")
hz 0.75932572 "LOWPASS6")
hz 1.95302407 "LOWPASS6"))
; eight-pole Butterworth lowpass
(defun lowpass8 (x hz)
(lowpass2 (lowpass2 (lowpass2 (lowpass2 x hz 0.57622191 "LOWPASS8")
hz 0.66045510 "LOWPASS8")
hz 0.94276399 "LOWPASS8")
hz 2.57900101 "LOWPASS8"))
; four-pole Butterworth highpass
(defun highpass4 (x hz)
(highpass2 (highpass2 x hz 0.60492333 "HIGHPASS4")
hz 1.33722126 "HIGHPASS4"))
; six-pole Butterworth highpass
(defun highpass6 (x hz)
(highpass2 (highpass2 (highpass2 x hz 0.58338080 "HIGHPASS6")
hz 0.75932572 "HIGHPASS6")
hz 1.95302407 "HIGHPASS6"))
; eight-pole Butterworth highpass
(defun highpass8 (x hz)
(highpass2 (highpass2 (highpass2 (highpass2 x hz 0.57622191 "HIGHPASS8")
hz 0.66045510 "HIGHPASS8")
hz 0.94276399 "HIGHPASS8")
hz 2.57900101 "HIGHPASS8"))
; YIN
; maybe this should handle multiple channels, etc.
(defun yin (sound minstep maxstep stepsize)
(ny:typecheck (not (soundp sound))
(ny:error "YIN" 1 '((SOUND) "sound") sound))
(ny:typecheck (not (numberp minstep))
(ny:error "YIN" 2 '((NUMBER) "minstep") minstep))
(ny:typecheck (not (numberp maxstep))
(ny:error "YIN" 3 '((NUMBER) "maxstep") maxstep))
(ny:typecheck (not (integerp stepsize))
(ny:error "YIN" 4 '((INTEGER) "stepsize") stepsize))
(snd-yin sound minstep maxstep stepsize))
; FOLLOW
(defun follow (sound floor risetime falltime lookahead)
(ny:typecheck (not (soundp sound))
(ny:error "FOLLOW" 1 '((SOUND) "sound") sound))
(ny:typecheck (not (numberp floor))
(ny:error "FOLLOW" 2 '((NUMBER) "floor") floor))
(ny:typecheck (not (numberp risetime))
(ny:error "FOLLOW" 3 '((NUMBER) "risetime") risetime))
(ny:typecheck (not (numberp falltime))
(ny:error "FOLLOW" 4 '((NUMBER) "stepsize") falltime))
(ny:typecheck (not (numberp lookahead))
(ny:error "FOLLOW" 5 '((NUMBER) "lookahead") lookahead))
;; use 10000s as "infinite" -- that's about 2^30 samples at 96K
(setf lookahead (round (* lookahead (snd-srate sound))))
(extract (/ lookahead (snd-srate sound)) 10000
(snd-follow sound floor risetime falltime lookahead)))
;; PHASE VOCODER
(defun phasevocoder (s map &optional (fftsize -1) (hopsize -1) (mode 0))
(multichan-expand "PHASEVOCODER" #'snd-phasevocoder
'(((SOUND) nil) ((SOUND) "map") ((INTEGER) "fftsize")
((INTEGER) "hopsize") ((INTEGER) "mode"))
s map fftsize hopsize mode))
;; PV-TIME-PITCH
;; PV-TIME-PITCH -- control time stretch and transposition
;;
;; stretchfn maps from input time to output time
;; pitchfn maps from input time to transposition factor (2 means octave up)
(defun pv-time-pitch (input stretchfn pitchfn dur &optional
(fftsize 2048) (hopsize nil) (mode 0))
(multichan-expand "PV-TIME-PITCH" #'nyq:pv-time-pitch
'(((SOUND) "input") ((SOUND) "stretchfn") ((SOUND) "pitchfn")
((NUMBER) "dur") ((INTEGER) "fftsize") ((INT-OR-NULL) "hopsize")
((INTEGER) "mode"))
input stretchfn pitchfn dur fftsize hopsize mode))
(defun nyq:pv-time-pitch (input stretchfn pitchfn dur fftsize hopsize mode)
(let (wrate u v w vinv)
(if (null hopsize) (setf hopsize (/ fftsize 8)))
(setf wrate (/ 3000 dur))
(setf vinv (integrate (prod stretchfn pitchfn)))
(setf v (snd-inverse vinv (local-to-global 0) wrate))
(setf w (integrate (snd-recip (snd-compose pitchfn v))))
(sound-warp w (phasevocoder input v fftsize hopsize mode) wrate)))