audacia/nyquist/xm.lsp

2768 lines
98 KiB
Common Lisp

;; X-Music, inspired by Commmon Music
#|
PATTERN SEMANTICS
Patterns are objects that are generally accessed by calling (next
pattern). Each call returns the next item in an infinite sequence
generated by the pattern. Items are organized into periods. You can
access all (remaining) items in the current period using (next pattern
t).
Patterns mark the end-of-period with +eop+, a distinguished atom. The
+eop+ markers are filtered out by the next() function but returned by
the :next method.
Pattern items may be patterns. This is called a nested pattern. When
patterns are nested, you return a period from the innermost pattern,
i.e. traversal is depth-first. This means when you are using something
like random, you select a random pattern and get an item from it. The
next time you handle :next, you get another item from the same pattern
until the pattern returns +eonp+, which you can read as "end of nested
pattern". Random would then advance to the next random pattern and get
an item from it.
While generating from a nested pattern, you might return many periods
including +eop+, but you do not advance to the next pattern at any
given level until that level receives +eonp+ from the next level down.
With nested patterns, i.e. patterns with items that are patterns, the
implementation requires that *all* items must be patterns. The
application does *not* have to make every item a pattern, so the
implementation "cleans up" the item list: Any item that is not a
pattern is be replaced with a cycle pattern whose list contains just
the one item.
PATTERN LENGTH
There are two sorts of cycles and lengths. The nominal pattern
behavior, illustrated by cycle patterns, is to cycle through a
list. There is a "natural" length computed by :start-period and stored
in count that keeps track of this.
The second cycle and length is established by the :for parameter,
which is optional. If a number or pattern is provided, it controls the
period length and overrides any default periods. When :for is given,
count is set and used as a counter to count the items remaining in
a period.
To summarize, there are 3 ways to determine lengths:
1) The length is implicit. The length can be computed by :start-period
and turned into an explicit length stored in count.
2) The length is explicitly set with :for. This overrides the implicit
length. The explicit length is stored as count that tells how many
more items to generate in the current period.
3) The length can be generated by a pattern. The pattern is evaluated
in :start-period to generate an explicit length.
In case (1), a pattern object does not return +eonp+ to the next level
up unless it receives an +eonp+ from one level down *and* is at the
end of its period. E.g. in the random pattern, if there are three
nested patterns, random must see +eonp+ three times and make three
random pattern selections before returning +eonp+ to the next level
up. This is the basic mechanism for achieving a "depth-first"
expansion of patterns.
However, there is still the question of periods. When a nested pattern
returns a period, do the containing pattern return that period or
merge the period with other periods from other nested patterns? The
default is to return periods as they are generated by sub-patterns. In
other words, when a nested pattern returns +eop+ (end of period), that
token is returned by the :next message. Thus, in one "natural" cycle
of a pattern of patterns, there can be many periods (+eop+'s) before
+eonp+ is returned, marking the end of the "natural" pattern at this
level.
The alternative strategy, which is to filter out all the +eop+'s and
form one giant pattern that runs up to the natural length (+eonp+) for
this level, can be selected by setting the :merge parameter to true.
Note that :merge is ignored if :for is specified because :for says
exactly how many items are in each period.
The Copier pattern is an interesting case. It's :start-pattern should
get the next period from its sub-pattern, a repeat count from the
:repeat pattern, and a boolean from the :merge pattern. Then, it
should make that many copies, returning them as multiple periods or as
one merged one, depending on :merge, followed by +eonp+, after which
:start-pattern is called and the process repeats. But if :for 10 is
provided, this means we need to return a single period of 10 items. We
call :start-pattern, then repeat the sub-pattern's period until we
have 10 items. Thus, we ignore the :merge flag and :repeat count.
This makes Copier with a :for parameter equivalent to Cycle with a
single sub-pattern in a list. If you think :for should not override
these parameters (:repeat and :merge), you can probably get what you
want by using a Length pattern to regroup the output of a Copier.
IMPLEMENTATION
Most pattern behavior is implemented in a few inherited methods.
:next gets the next item or period. If there is a length-pattern
(from :for), :next groups items into periods, filtering out +eop+ and
+eonp+. If there is no length-pattern, :next passes +eop+ through and
watches for +eonp+ to cause the pattern to re-evaluate pattern
parameters.
Several methods are implemented by subclasses of pattern-class:
:START-PERIOD is called before the first advance and before the first
item of a period controlled by :for. It sets count to the "natural"
length of the period. HAVE-CURRENT will be set to false.
:ADVANCE advances to the next item in the pattern. If there are nested
patterns, advance is called to select the first nested pattern, then
items are returned until +eonp+ is seen, then we advance to the next
pattern, etc. After :ADVANCE, HAVE-CURRENT is true.
CURRENT is set by advance to the current item. If this has nested
patterns, current is set to a pattern, and the pattern stays there in
current until advance is called, either at the end of period or when
+eonp+ is seen.
HAVE-CURRENT is a boolean to tell when CURRENT is valid.
IS-NESTED - set when there are nested patterns. If there are, make all
items of any nested pattern be patterns (no mix of patterns and
non-patterns is allowed; use
(MAKE-CYCLE (LIST item))
to convert a non-pattern to a pattern).
Patterns may be shared, so the state machines may be advanced by more
than one less-deeply nested pattern. Thus, patterns are really DAGs
and not trees. Since patterns are hard enough to understand, the
precise order of evaluation and therefore the behavior of shared
patterns in DAGs may not be well-defined. In this implementation
though, we only call on state machines to advance as needed (we try
not to read out whole periods).
The next() function gets an item or period by calling :next.
The :next method is shared by all pattern sub-classes and behaves
differently with :for vs. no :for parameter. With the :for parameter,
we just get items until the count is reached, but getting items is
a bit tricky, because the normal behavior (without :for) might reach
the end of the "natural" period (+eonp+) before count is
reached. So somehow, we need to override count. We could just set
count the count, but count is going to count items and due to
empty periods, count could go to zero before count does. We could
set count = 1000 * count with the idea that we're probably in an
infinite loop generating empty periods forever if count ever reaches
zero.
But then what about the Heap pattern? If count is greater than the
heap size, what happens when the heap is empty? Or should Heap not
allow :for? There are other "problem" patterns, and not all Vers. 1
patterns allowed :for, so let's make list of patterns that could use
:for:
:for is OK :for is not OK
---------- --------------
cycle heap
line accumulation
random copier
palindrome length
accumulate window
sum
product
eval
markov
It seems that we could use :for for all patterns and just extend the
behavior a bit, e.g. when the heap runs out, replenish it (without
getting another period from a sub-pattern, if any; accumulation could
just start over; copier could cycle as described earlier; length
really should not allow :for, and window could just generate :for
items before reevaluating :skip and :pattern-length parameters.
To implement this, the subclass patterns need :advance to do the right
next thing even if we are beyond the "natural" period. :advance should
go to the next sub-pattern or item without returning +eop+ or getting
the next item from any sub-pattern.
state transitions are based on count and something like this:
count
nil -> actions: :start-period, don't return, set count
N -> N-1, actions: :advance if not have-current, return next item
0 -> -1, actions: return +eop+
-1 -> nil, actions: return +eonp+
def :next()
if length-pattern: // the :for parameter value
if null(count): // initial state before every period
var forcount = next(length-pattern) // must be a number
// compute forcount first and pass to start-period in case there
// is no "natural" period length. If there is a "natural" period,
// the forcount parameter is ignored (the usual case)
self.:start-period(forcount)
have-current = false
// :start-period() sets count, but we replace it with :for parameter
count = forcount
if count == 0:
count = -1
return +eop+
if count == -1:
count = nil
return +eonp+
while true
// otherwise, here is where we return N items
if not have-current
self.:advance()
if not is-nested
// now current is updated
have-current = false
count = count - 1
return current
// nested, so get item from sub-pattern
rslt = current.:next
if rslt == +eonp+
// time to advance because sub-pattern has played out
have-current = false
elif rslt == +eop+
nil // skip ends of periods, we're merging them
// we got a real item to return
else
count = count - 1
return rslt
// here, we have no length-pattern, so use "natural" periods
// count is null, and we use count
while true
if null(count):
have-current = false
self.:start-period()
if is-nested:
if count == 0:
if merge-flag: // we filtered out +eop+ so return one here
count == -1
return +eop+
else
count = nil
return +eonp+
if count == -1
count = nil
return +eonp+
else
if count = 0:
count = -1
return +eop+
if count == -1:
count = nil
return +eonp+
// count is a number > 0
if not have-current:
self.:advance
have-current = true
if not is-nested
have-current = false
count = count - 1
return current
// nested, so get sub-pattern's next item or +eonp+ or +eop+
rslt = current.:next
if rslt == +eonp+
have-current = false // force advance next time, don't
// return +eonp+ until count == 0
else if rslt == +eop+ and merge-flag:
nil // iterate, skipping this +eop+ to merge periods
else
return rslt // either +eop+ or a real item
If the input is a list of patterns, then the pattern selects patterns
from the list, and the internal state advances as each selected
pattern completes a period. In this case, there is no way to control
the number of elements drawn from each selected pattern -- the number
is always the length of the period returned by the selected
pattern. If :for is specified, this controls the length of the period
delivered to the next less deeply nested pattern, but the delivered
period may be a mix of elements from the more deeply nested patterns.
|#
(setf SCORE-EPSILON 0.000001)
(setf pattern-class
(send class :new '(current have-current is-nested name count merge-flag
merge-pattern length-pattern trace)))
;; sub-classes should all call (send-super :isnew length-pattern name trace)
;;
(send pattern-class :answer :isnew '(mp lp nm tr)
'((setf merge-pattern mp length-pattern lp name nm trace tr)
(xm-traceif "pattern-class :isnew nm" nm "name" name)))
(defun patternp (x)
(and (objectp x) (send x :isa pattern-class)))
(setf +eop+ '+eop+)
(setf +eonp+ '+eonp+) ;; end of nested period, this indicates you
;; should advance yourself and call back to get the next element
(defun check-for-list (lis name)
(if (not (listp lis))
(error (format nil "~A, requires a list of elements" name))))
(defun check-for-list-or-pattern (lis name)
(if (not (or (listp lis) (patternp lis)))
(error (format nil "~A, requires a list of elements or a pattern" name))))
(defun list-has-pattern (lis)
(dolist (e lis)
(if (patternp e) (return t))))
(defun is-homogeneous (lis)
(let (type)
(dolist (elem lis t)
(cond ((null type)
(setf type (if (patternp elem) 'pattern 'atom)))
((and (eq type 'pattern)
(not (patternp elem)))
(return nil))
((and (eq type 'atom)
(patternp elem))
(return nil))))))
(defun make-homogeneous (lis traceflag)
(cond ((is-homogeneous lis) lis)
(t
(mapcar #'(lambda (item)
(if (patternp item) item
(make-cycle (list item)
;; help debugging by naming the new pattern
;; probably, the name could be item, but
;; here we coerce item to a string to avoid
;; surprises in code that assumes string names.
:name (format nil "~A" item) :trace traceflag)))
lis))))
;; used for both "advanced to" and ":next returns" messages
;;
(send pattern-class :answer :write-trace '(verb value)
'((format t "pattern ~A ~A ~A~%"
(if name name "<no-name>")
verb
(if (patternp value)
(if (send value :name)
(send value :name)
"<a-pattern>")
value))))
;; :next returns the next value, including +eop+ and +eonp+ markers
;;
(send pattern-class :answer :next '()
'((xm-traceif ":next of" name "is-nested" is-nested "length-pattern" length-pattern)
(incf xm-next-nesting)
(let ((rslt
(cond (length-pattern (send self :next-for))
(t (send self :next-natural)))))
(if trace (send self :write-trace ":next returns" rslt))
(xm-traceif-return ":next" self rslt))))
;; :next-for returns the next value, including +eop+ and +eonp+ markers
;; this code handles the cases where :for is specified, so the length
;; of each period is explicitly given, non intrinsic to the pattern
;;
(send pattern-class :answer :next-for '()
'((block pattern:next-for-block ;; so we can return from inside while loop
(cond ((null count)
(let ((forcount (next length-pattern)))
;; in the case of window-class, there is no "natural" length
;; so for that case, we pass in forcount
(send self :start-period forcount) ;; :start-period sets count,
(setf count forcount) ;; but it is replaced here by a number
(setf have-current nil))))
;; note that merge-flag is ignored if length-pattern
(cond ((zerop count)
(setf count -1)
(return-from pattern:next-for-block +eop+))
((eql count -1)
(setf count nil)
(return-from pattern:next-for-block +eonp+)))
(while t ;; after rejecting special cases, here is where we return N items
(cond ((not have-current)
(send self :advance)
(setf have-current t)
(if trace (send self :write-trace "advanced to" current))))
(cond ((not is-nested) ;; now current is updated
(setf have-current nil)
(decf count)
(return-from pattern:next-for-block current)))
;; is-nested, so get item from sub-pattern
(let ((rslt (send current :next)))
(cond ((eq rslt +eonp+)
;; time to advance because sub-pattern has played out
(setf have-current nil))
((eq rslt +eop+)) ;; skip ends of periods; we merge them
(t
(decf count)
(return-from pattern:next-for-block rslt))))))))
;; :next-natural returns the next value, including +eop+ and +eonp+ markers
;; this code handles the cases where :for is not specified, so the length
;; of each period is implicitly determined from the pattern
;;
(send pattern-class :answer :next-natural '()
'((block pattern:next-natural-block ;; so we can return from inside while loop
(xm-traceif ":next-natural current" current)
(while t
(cond ((null count)
(setf have-current nil)
;; :merge parameter is not used by every pattern, but it does not
;; hurt to evaluate it here
(setf merge-flag (if merge-pattern (next merge-pattern)))
(send self :start-period nil))) ;; sets count
(xm-traceif "count" count "is-nested" is-nested)
(cond (is-nested
(cond ((zerop count)
(cond (merge-flag ;; we filtered out +eop+; return one here
(setf count -1)
(return-from pattern:next-natural-block +eop+))
(t
(setf count nil)
(return-from pattern:next-natural-block +eonp+))))
((eql count -1)
(setf count nil)
(return-from pattern:next-natural-block +eonp+))))
(t
(cond ((zerop count)
(setf count -1)
(return-from pattern:next-natural-block +eop+))
((eql count -1)
(setf count nil)
(return-from pattern:next-natural-block +eonp+)))))
(cond ((not have-current)
(send self :advance)
(setf have-current t)
(if trace (send self :write-trace "advanced to" current))
(xm-traceif ":advance current" current)))
(cond ((not is-nested)
(setf have-current nil)
(decf count)
(return-from pattern:next-natural-block current)))
;; nested, so get sub-pattern's next item or +eonp+ or +eop+
(let ((rslt (send current :next)))
(xm-traceif "in :next-natural got from sub-pattern " rslt)
(cond ((eq rslt +eonp+)
(setf have-current nil) ;; force advance next time, don't
;; return +eonp+ until count == 0
(decf count))
((and (eq rslt +eop+) merge-flag)) ;; iterate, skip +eop+
(t
(return-from pattern:next-natural-block rslt))))))))
(send pattern-class :answer :is-nested '() '(is-nested))
(send pattern-class :answer :name '() '(name))
(send pattern-class :answer :set-current '(c)
'((setf current c)
(let ((value
(if (patternp current)
(send current :name)
current)))
(xm-traceif ":set-current" name "value" value)
)))
;; get-pattern-name - used for debugging, handles non-patterns safely
;;
(defun get-pattern-name (pattern)
(cond ((patternp pattern) (send pattern :name))
(t pattern)))
;; more debugging support
(setf xm-next-nesting -1)
(setf *xm-trace* nil)
;; use xm-traceif for verbose printing. It only prints if *xm-trace*
;;
(defun xm-traceif (&rest items)
(if *xm-trace* (apply #'xm-trace items)))
;; use xm-traceif-return for verbose printing of return values.
;; It only prints if *xm-trace*. Includes decrement of xm-next-nesting.
;;
(defun xm-traceif-return (method pattern val)
(xm-traceif method (get-pattern-name pattern) "returning" val)
(decf xm-next-nesting)
val)
;; use xm-trace for normal tracing enabled by the trace flag in patterns
;;
(defun xm-trace (&rest items)
(princ "|")
(dotimes (i xm-next-nesting) (princ " |"))
(dolist (item items) (princ item) (princ " "))
(terpri))
;; next -- get the next element in a pattern
;;
;; any non-pattern value is simply returned
;;
(defun next (pattern &optional period-flag)
(incf xm-next-nesting)
(xm-traceif "next" (get-pattern-name pattern) period-flag)
(cond ((and period-flag (patternp pattern))
(let (rslt elem)
(incf xm-next-nesting)
(xm-traceif "next sending :next to" (get-pattern-name pattern))
(while (not (eq (setf elem (send pattern :next)) +eop+))
(xm-traceif "next got" elem "from" (get-pattern-name pattern))
(if (not (eq elem +eonp+))
(push elem rslt))
(if (null elem) (error "got null elem"))) ;;;;;;;; DEBUG ;;;;;;;;;;;
(decf xm-next-nesting)
(xm-traceif-return "next" pattern (reverse rslt))))
(period-flag
(xm-traceif "next with period-flag" (get-pattern-name pattern))
(error (format nil "~A, next expected a pattern"
(get-pattern-name pattern))))
((patternp pattern)
(xm-traceif "next with pattern" (get-pattern-name pattern) pattern)
(let (rslt)
(dotimes (i 10000 (error
(format nil
"~A, just retrieved 10000 empty periods -- is there a bug?"
(get-pattern-name pattern))))
(if (not (member (setf rslt (send pattern :next))
'(+eop+ +eonp+)))
(return (xm-traceif-return "next" pattern rslt))))))
(t ;; pattern not a pattern, so just return it:
(xm-traceif "next not pattern" pattern)
(xm-traceif-return "next" pattern pattern))))
;; ---- LENGTH Class ----
(setf length-class
(send class :new '(pattern length-pattern) '() pattern-class))
(send length-class :answer :isnew '(p l nm tr)
'((send-super :isnew nil l nm tr) ;; note: no merge pattern is applicable
(setf pattern p)))
;; note that count is used as a flag as well as a counter.
;; If count is nil, then the pattern-length has not been
;; determined. Count is nil intitially and again at the
;; end of each period. Otherwise, count is an integer
;; used to count down the number of items remaining in
;; the period.
(send length-class :answer :start-period '(forcount)
'((setf count (next length-pattern))))
(send length-class :answer :advance '()
'((send self :set-current (next pattern))))
(defun make-length (pattern length-pattern &key (name "length") trace)
(send length-class :new pattern length-pattern name trace))
;; ---- CYCLE Class ---------
(setf cycle-class (send class :new
'(lis cursor lis-pattern)
'() pattern-class))
(send cycle-class :answer :isnew '(l mp for nm tr)
'((send-super :isnew mp for nm tr)
(cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l tr))
(t
(error (format nil "~A, expected list" nm) l)))))
(send cycle-class :answer :set-list '(l tr)
'((setf lis l)
(check-for-list lis "cycle-class :set-list")
(setf is-nested (list-has-pattern lis))
(setf lis (make-homogeneous lis tr))))
(send cycle-class :answer :start-period '(forcount)
'((xm-traceif "cycle-class :start-period" "lis-pattern"
(get-pattern-name lis-pattern) "lis" lis "count" count
"length-pattern" (get-pattern-name length-pattern))
(cond (lis-pattern
(send self :set-list (next lis-pattern t) trace)))
;; notice that list gets reset at the start of the period
(setf cursor lis)
(if (null count)
(setf count (length lis)))))
(send cycle-class :answer :advance '()
'((cond ((and (null cursor) lis)
(setf cursor lis))
((null cursor)
(error (format nil "~A, :advance - no items" name))))
(send self :set-current (car cursor))
(pop cursor)))
(defun make-cycle (lis &key merge for (name "cycle") trace)
(check-for-list-or-pattern lis "make-cycle")
(send cycle-class :new lis merge for name trace))
;; ---- LINE class ----
(setf line-class (send class :new '(lis cursor lis-pattern)
'() pattern-class))
(send line-class :answer :isnew '(l mp for nm tr)
'((send-super :isnew mp for nm tr)
(cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l tr))
(t
(error (format nil "~A, expected list" nm) l)))))
(send line-class :answer :set-list '(l tr)
'((setf lis l)
(check-for-list lis "line-class :set-list")
(setf is-nested (list-has-pattern lis))
(setf lis (make-homogeneous l tr))
(setf cursor lis)))
(send line-class :answer :start-period '(forcount)
'((cond (lis-pattern
(send self :set-list (next lis-pattern t) trace)
(setf cursor lis)))
(if (null count)
(setf count (length lis)))))
(send line-class :answer :advance '()
'((cond ((null cursor)
(error (format nil "~A, :advance - no items" name))))
(send self :set-current (car cursor))
(if (cdr cursor) (pop cursor))))
(defun make-line (lis &key merge for (name "line") trace)
(check-for-list-or-pattern lis "make-line")
(send line-class :new lis merge for name trace))
;; ---- RANDOM class -----
(setf random-class (send class :new
'(lis lis-pattern len previous repeats mincnt maxcnt)
'() pattern-class))
;; the structure is (value weight weight-pattern max max-pattern min min-pattern)
(setfn rand-item-value car)
(defun set-rand-item-value (item value) (setf (car item) value))
(setfn rand-item-weight cadr)
(defun set-rand-item-weight (item weight) (setf (car (cdr item)) weight))
(setfn rand-item-weight-pattern caddr)
(setfn rand-item-max cadddr)
(defun set-rand-item-max (item max) (setf (car (cdddr item)) max))
(defun rand-item-max-pattern(item) (car (cddddr item)))
(defun rand-item-min (lis) (cadr (cddddr lis)))
(defun set-rand-item-min (item min) (setf (car (cdr (cddddr item))) min))
(defun rand-item-min-pattern(item) (car (cddr (cddddr item))))
(defun select-random (len lis previous repeats mincnt maxcnt)
(let (sum items r)
(cond ((zerop len)
(break "random-class has no list to choose from")
nil)
(t
(setf sum 0)
(dolist (item lis)
(setf sum (+ sum (rand-item-weight item))))
(setf items lis)
(setf r (rrandom))
(setf sum (* sum r))
(loop
(setf sum (- sum (rand-item-weight (car items))))
(if (<= sum 0) (return (car items)))
(setf items (cdr items)))))))
(defun random-convert-spec (item)
;; convert (value :weight wp :min min :max max) to (value nil wp max min)
(let (value (wp 1) minpat maxpat lis)
(setf value (car item))
(setf lis (cdr item))
(while lis
(cond ((eq (car lis) :weight)
(setf wp (cadr lis)))
((eq (car lis) :min)
(setf minpat (cadr lis)))
((eq (car lis) :max)
(setf maxpat (cadr lis)))
(t
(error "(make-random) item syntax error" item)))
(setf lis (cddr lis)))
(list value nil wp nil maxpat nil minpat)))
(defun random-atom-to-list (a)
(if (atom a)
(list a nil 1 nil nil nil nil)
(random-convert-spec a)))
(send random-class :answer :isnew '(l mp for nm tr)
;; there are two things we have to normalize:
;; (1) make all items lists
;; (2) if any item is a pattern, make all items patterns
'((xm-traceif "random :isnew list" l "merge" mp "for" for "name" nm "trace" tr)
(send-super :isnew mp for nm tr)
(cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l))
(t
(error (format nil "~A, expected list") l)))))
(send random-class :answer :set-list '(l)
'((check-for-list l "random-class :set-list")
(setf lis (mapcar #'random-atom-to-list l))
; (display "random set-list" lis)
(dolist (item lis)
(if (patternp (rand-item-value item))
(setf is-nested t)))
(if is-nested
(mapcar #'(lambda (item)
(if (not (patternp (rand-item-value item)))
(set-rand-item-value item
(make-cycle (list (rand-item-value item))))))
lis))
(xm-traceif "random is-new" name lis)
(setf repeats 0)
(setf len (length lis))))
(send random-class :answer :start-period '(forcount)
'((xm-traceif "random-class :start-period" name "count" count "len" len
"lis" lis "lis-pattern" (get-pattern-name lis-pattern))
(cond (lis-pattern
(send self :set-list (next lis-pattern t))))
(if (null count)
(setf count len))
(dolist (item lis)
(set-rand-item-weight item (next (rand-item-weight-pattern item)))
(set-rand-item-max item (next (rand-item-max-pattern item)))
(set-rand-item-min item (next (rand-item-min-pattern item))))
; (display "random start-period" lis-pattern lis)
))
(send random-class :answer :advance '()
'((let (selection (iterations 0))
(xm-traceif "random-class :advance" name "mincnt" mincnt
"repeats" repeats)
(cond ((and mincnt (< repeats mincnt))
(setf selection previous))
(t
(setf selection
(select-random len lis previous repeats mincnt maxcnt))))
(loop ; make sure selection is ok, otherwise try again
(cond ((and (eq selection previous)
maxcnt
(>= repeats maxcnt)) ; hit maximum limit, try again
(setf selection
(select-random len lis previous repeats mincnt maxcnt))
(incf iterations)
(cond ((> iterations 10000)
(error
(format nil
"~A, unable to pick next item after 10000 tries"
name)
lis))))
(t (return)))) ; break from loop, we found a selection
; otherwise, we are ok
; notice that we could have selected based on an older maxcnt and
; maxcnt may now be smaller. This is allowed. Perhaps another
; rule would be better, e.g. update maxcnt and check against it
; with each selection.
(if (not (eq selection previous))
(setf repeats 1)
(incf repeats))
(setf mincnt (rand-item-min selection))
(setf maxcnt (rand-item-max selection))
(setf previous selection)
(xm-traceif "new selection" name "repeats" repeats "mincnt" mincnt
"maxcnt" maxcnt "selection" selection)
(send self :set-current (rand-item-value selection)))))
(defun make-random (lis &key merge for (name "random") trace)
(check-for-list-or-pattern lis "make-random")
(send random-class :new lis merge for name trace))
;; ---- PALINDROME class -----
#| Palindrome includes elide, which is either t, nil, :first, or :last.
The pattern length is the "natural" length of the pattern, which goes
forward and backward through the list. Thus, if the list is of length N,
the palindrome length depends on elide as follows:
elide length
nil 2N
t 2N - 2
:first 2N - 1
:last 2N - 1
If elide is a pattern, and if length is not specified, then length should
be computed based on elide.
|#
(setf palindrome-class (send class :new
'(lis revlis lis-pattern
direction elide-pattern
elide cursor)
'() pattern-class))
(send palindrome-class :answer :set-list '(l tr)
'((setf lis l)
(check-for-list lis "palindrome-class :start-period")
(setf is-nested (list-has-pattern lis))
(setf lis (make-homogeneous l tr))
(send self :set-cursor)))
(send palindrome-class :answer :set-cursor '()
'((setf revlis (reverse lis)
direction t
cursor lis)))
(send palindrome-class :answer :isnew '(l e mp for nm tr)
'((send-super :isnew mp for nm tr)
(cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l tr))
(t
(error (format nil "~A, expected list" nm) l)))
(setf elide-pattern e)))
(send palindrome-class :answer :start-period '(forcount)
'((cond (lis-pattern
(send self :set-list (next lis-pattern t) trace)))
;; like cycle, list is reset at the start of the period
(send self :set-cursor)
(setf elide (next elide-pattern))
(if (and elide (null lis))
(error (format nil "~A, cannot elide if list is empty" name)))
(if (null count)
(setf count (- (* 2 (length lis))
(if (member elide '(:first :last))
1
(if elide 2 0)))))
(if (<= count 0)
(error (format nil "palindrome ~A period is <= 0"
(get-pattern-name self))))))
(send palindrome-class :answer :next-item '()
'((send self :set-current (car cursor))
(pop cursor)
(cond ((and cursor (not (cdr cursor))
(or (and direction (member elide '(:last t)))
(and (not direction) (member elide '(:first t)))))
(pop cursor)))))
(send palindrome-class :answer :advance '()
'(
(cond (cursor
(send self :next-item))
(direction ;; we're going forward
(setf direction nil) ;; now going backward
(setf cursor revlis)
(xm-traceif "palindrome at end" (get-pattern-name self)
"current" (get-pattern-name (car cursor)))
(send self :next-item))
(t ;; direction is reverse
(setf direction t)
(setf cursor lis)
(send self :next-item)))))
(defun make-palindrome (lis &key elide merge for (name "palindrome") trace)
(check-for-list-or-pattern lis "make-palindrome")
(send palindrome-class :new lis elide merge for name trace))
;; ================= HEAP CLASS ======================
;; to handle the :max keyword, which tells the object to avoid
;; repeating the last element of the previous period:
;;
;; maxcnt = 1 means "avoid the repetition"
;; check-repeat signals we are at the beginning of the period and must check
;; prev holds the previous value (initially nil)
;; after each item is generated, check-repeat is cleared. It is
;; recalculated when a new period is started.
(setf heap-class (send class :new '(lis used maxcnt maxcnt-pattern prev
check-repeat lis-pattern len)
'() pattern-class))
(send heap-class :answer :isnew '(l mp for mx nm tr)
'((send-super :isnew mp for nm tr)
(cond ((patternp l)
(setf lis-pattern l))
((listp l)
; make a copy of l to avoid side effects
(send self :set-list (append l nil) tr))
(t
(error (format nil "~A, expected list" nm) l)))
(cond ((patternp mx)
(setf maxcnt-pattern mx))
((not (numberp mx))
(error (format nil "~A, expected number" nm) mx))
(t
(setf maxcnt mx)))))
(send heap-class :answer :set-list '(l tr)
'((setf lis l)
(check-for-list lis "heap-class :set-list")
(setf is-nested (list-has-pattern lis))
(setf lis (make-homogeneous lis tr))
(setf len (length lis))))
(send heap-class :answer :start-period '(forcount)
'((xm-traceif "heap-class :start-period" name "lis-pattern"
(get-pattern-name lis-pattern) "count" count "lis" lis)
(cond (lis-pattern
(send self :set-list (next lis-pattern t) trace)))
(cond (maxcnt-pattern
(setf maxcnt (next maxcnt-pattern))))
; start of period -- may need to avoid repeating previous item
(if (= maxcnt 1) (setf check-repeat t))
(if (null count)
(setf count len))))
(defun delete-first (elem lis)
(cond ((null lis) nil)
((eq elem (car lis))
(cdr lis))
(t
(cons (car lis) (delete-first elem (cdr lis))))))
;; NO-DISTINCT-ELEM -- check if any element of list is not val
;;
(defun no-distinct-elem (lis val)
(not
(dolist (elem lis)
(if (not (equal elem val))
;; there is a distinct element, return t from dolist
(return t)))))
;; if no distinct element, dolist returns nil, but this is negated
;; by the NOT so the function will return t
(send heap-class :answer :advance '()
'((cond ((null lis)
(setf lis used)
(setf used nil)))
(let (n elem)
(cond ((and check-repeat (no-distinct-elem lis prev))
(error (format nil "~A, cannot avoid repetition, but :max is 1"
name))))
(loop
(setf n (random (length lis)))
(setf elem (nth n lis))
(if (or (not check-repeat) (not (equal prev elem)))
(return))) ;; loop until suitable element is chosen
(setf lis (delete-first elem lis))
(push elem used)
(setf check-repeat nil)
(setf prev elem)
(send self :set-current elem))))
(defun make-heap (lis &key merge for (max 2) (name "heap") trace)
(send heap-class :new lis merge for max name trace))
;;================== COPIER CLASS ====================
(setf copier-class (send class :new '(sub-pattern repeat repeat-pattern
period cursor)
'() pattern-class))
(send copier-class :answer :isnew '(p r m for nm tr)
'((send-super :isnew m for nm tr)
(setf sub-pattern p repeat-pattern r)))
#| copier-class makes copies of periods from sub-pattern
If merge is true, the copies are merged into one big period.
If merge is false, then repeat separate periods are returned.
If repeat is negative, then -repeat periods of sub-pattern
are skipped.
merge-flag and repeat are computed from merge-pattern and
repeat-pattern initially and after making repeat copies
To repeat individual items, set the :for keyword parameter of
the sub-pattern to 1.
|#
(send copier-class :answer :start-period '(forcount)
'((cond ((null count)
(cond ((or (null repeat) (zerop repeat))
(send self :really-start-period))
(t
(setf count (length period))))))))
(send copier-class :answer :really-start-period '()
'((xm-traceif "copier-class :really-start-period" name "count" count)
(setf repeat (next repeat-pattern))
(while (minusp repeat)
(dotimes (i (- repeat))
(setf period (next sub-pattern t)))
(setf repeat (next repeat-pattern))
(setf merge-flag (next merge-pattern)))
; (print "** STARTING NEXT PATTERN IN COPIER-CLASS")
(setf period (next sub-pattern t))
; (display "copier-class really-start-period got" period)
; (print "** ENDING NEXT PATTERN IN COPIER-CLASS")
(setf cursor nil)
(if (null count)
(setf count (* (if merge-flag repeat 1)
(length period))))))
(send copier-class :answer :advance '()
'((let ((loop-count 0))
(loop
(xm-traceif "copier loop" name "repeat" repeat "cursor" cursor
"period" period)
(cond (cursor
(send self :set-current (car cursor))
(pop cursor)
(return))
((plusp repeat)
(decf repeat)
(setf cursor period))
((> loop-count 10000)
(error (format nil
"~A, copier-class :advance encountered 10000 empty periods"
name)))
(t
(send self :really-start-period)))
(incf loop-count)))))
(defun make-copier (sub-pattern &key for (repeat 1) merge (name "copier") trace)
(send copier-class :new sub-pattern repeat merge for name trace))
;; ================= ACCUMULATE-CLASS ===================
(setf accumulate-class (send class :new '(sub-pattern period cursor sum
mini maxi minimum maximum)
'() pattern-class))
(send accumulate-class :answer :isnew '(p mp for nm tr mn mx)
'((send-super :isnew mp for nm tr)
(setf sub-pattern p sum 0 mini mn maxi mx)
;(xm-trace "accumulate isnew" self nm)
))
#|
accumulate-class creates sums of numbers from another pattern
The output periods are the same as the input periods (by default).
(send accumulate-class :answer :start-period '(forcount)
'((cond ((null count)
(send self :really-start-period)))))
(send accumulate-class :answer :really-start-period '()
|#
(send accumulate-class :answer :start-period '(forcount)
'((setf period (next sub-pattern t))
(setf cursor period)
(xm-traceif "accumulate-class :start-period" name "period" period
"cursor" cursor "count" count)
(if maxi (setf maximum (next maxi)))
(if mini (setf minimum (next mini)))
(if (null count)
(setf count (length period)))))
(send accumulate-class :answer :advance '()
'((let ((loop-count 0))
(loop
(cond (cursor
(setf sum (+ sum (car cursor)))
(cond ((and (numberp minimum) (< sum minimum))
(setf sum minimum)))
(cond ((and (numberp maximum) (> sum maximum))
(setf sum maximum)))
(send self :set-current sum)
(pop cursor)
(return))
((> loop-count 10000)
(error (format nil
"~A, :advance encountered 10000 empty periods" name)))
(t
(send self :start-period nil)))
(incf loop-count)))))
(defun make-accumulate (sub-pattern &key merge for min max (name "accumulate") trace)
(send accumulate-class :new sub-pattern merge for name trace min max))
;;================== ACCUMULATION CLASS ===================
;; for each item, generate all items up to and including the item, e.g.
;; (a b c) -> (a a b a b c)
(setf accumulation-class (send class :new '(lis lis-pattern outer inner len)
'() pattern-class))
(send accumulation-class :answer :isnew '(l mp for nm tr)
'((send-super :isnew mp for nm tr)
(cond ((patternp l)
(setf lis-pattern l))
((listp l)
(send self :set-list l))
(t
(error (format nil "~A, expected list" nm) l)))))
(send accumulation-class :answer :set-list '(l)
'((setf lis l)
(check-for-list lis "heap-class :set-list")
(setf lis (make-homogeneous lis trace))
(setf inner lis)
(setf outer lis)
(setf len (length lis))))
(send accumulation-class :answer :start-period '(forcount)
'((cond (lis-pattern
(send self :set-list (next lis-pattern t))))
; start of period, length = (n^2 + n) / 2
(if (null count) (setf count (/ (+ (* len len) len) 2)))))
(send accumulation-class :answer :advance '()
;; inner traverses lis from first to outer
;; outer traverses lis
'((let ((elem (car inner)))
(cond ((eq inner outer)
(setf outer (rest outer))
(setf outer (if outer outer lis))
(setf inner lis))
(t
(setf inner (rest inner))))
(send self :set-current elem))))
(defun make-accumulation (lis &key merge for (name "accumulation") trace)
(send accumulation-class :new lis merge for name trace))
;;================== SUM CLASS =================
(setf sum-class (send class :new '(x y period cursor fn) '() pattern-class))
(send sum-class :answer :isnew '(xx yy mp for nm tr)
'((send-super :isnew mp for nm tr)
(setf x xx y yy fn #'+)))
#|
sum-class creates pair-wise sums of numbers from 2 streams.
The output periods are the same as the input periods of the first
pattern argument (by default).
|#
(send sum-class :answer :start-period '(forcount)
'((cond ((null count)
(send self :really-start-period)))))
(send sum-class :answer :really-start-period '()
'((setf period (next x t))
(setf cursor period)
(if (null count)
(setf count (length period)))))
(send sum-class :answer :advance '()
'((let ((loop-count 0) rslt)
(loop
(cond (cursor
(setf rslt (funcall fn (car cursor) (next y)))
(send self :set-current rslt)
(pop cursor)
(return))
((> loop-count 10000)
(error (format nil
"~A, :advance encountered 10000 empty periods" name)))
(t
(send self :really-start-period)))
(incf loop-count)))))
(defun make-sum (x y &key merge for (name "sum") trace)
(send sum-class :new x y merge for name trace))
;;================== PRODUCT CLASS =================
(setf product-class (send class :new '() '() sum-class))
(send product-class :answer :isnew '(xx yy mp for nm tr)
'((send-super :isnew xx yy mp for nm tr)
(setf x xx y yy fn #'*)))
(defun make-product (x y &key merge for (name "product") trace)
(send product-class :new x y merge for name trace))
;;================== EVAL CLASS =================
;;
;; (1) if :for, then period is determined by :for and we should
;; just fetch the next item from expr-pattern or use expr
;; (this case is length-pattern)
;; (2) if expr-pattern and not :for, then we should fetch a whole
;; period from expr-pattern and use it to determine period len
;; (this case is (and expr-pattern (not length-pattern)))
;; (3) if not expr-pattern and not :for, then the pattern len is 1
;; (this case is (and (not expr-pattern) (not length-pattern)))
(setf eval-class (send class :new '(expr expr-pattern)
'() pattern-class))
(send eval-class :answer :isnew '(e mp for nm tr)
'((send-super :isnew mp for nm tr)
(cond ((patternp e)
(setf expr-pattern e))
(t
(setf expr e)))))
(send eval-class :answer :start-period '(forcount)
'((xm-traceif "eval-class :start-period" name "lis-pattern"
(get-pattern-name expr-pattern) "expr" expr "count" count
"length-pattern" (get-pattern-name expr-pattern))
(cond (length-pattern t) ;; case 1
(expr-pattern ;; case 2
(setf expr (next expr-pattern t))
(setf count (length expr)))
(t ;; case 3
(setf count 1)))))
(send eval-class :answer :advance '()
'((send self :set-current
(cond ((and length-pattern expr-pattern)
(eval (next expr-pattern)))
(length-pattern
(eval expr))
(expr-pattern
(let ((item (car expr)))
(setf expr (cdr expr))
item))
(t (eval expr))))))
(defun make-eval (expr &key merge (for 1) (name "eval") trace)
(send eval-class :new expr merge for name trace))
;;================== MARKOV CLASS ====================
(setf markov-class (send class :new
'(rules order state produces pattern len)
'() pattern-class))
(defun is-produces-homogeneous (produces)
(let (type elem)
(setf *rslt* nil)
(loop
(cond ((or (null produces) (eq produces :eval) (null (cadr produces)))
(return t)))
(setf elem (cadr produces))
(cond ((null type)
(setf type (if (patternp elem) 'pattern 'atom))
(xm-traceif "is-produces-homogeneous type" type)
(setf *rslt* (eq type 'pattern))
(xm-traceif "is-produces-homogeneous *rslt*" *rslt*)
)
((and (eq type 'pattern) (not (patternp elem)))
(return nil))
((and (eq type 'atom)
(patternp elem))
(return nil)))
(setf produces (cddr produces)))))
(defun make-produces-homogeneous (produces)
(let (result item)
(loop
(if (null produces) (return nil))
(push (car produces) result)
(setf produces (cdr produces))
(setf item (car produces))
(setf produces (cdr produces))
(if (not (patternp item))
(setf item (make-cycle (list item))))
(push item result))
(reverse result)))
(send markov-class :answer :isnew '(r o s p mp for nm tr)
;; input parameters are rules, order, state, produces, for, name, trace
'((send-super :isnew mp for nm tr)
(setf order o state s produces p)
(setf len (length r))
;; input r looks like this:
;; ((prev1 prev2 -> next1 next2 (next3 weight) ... ) ...)
;; transition table will look like a list of these:
;; ((prev1 prev2 ... prevn) (next1 weight weight-pattern) ...)
(dolist (rule r)
(let ((targets (cdr (nthcdr order rule)))
entry pattern)
;; build entry in reverse order
(dolist (target targets)
(push (if (atom target)
(list target 1 1)
(list (first target)
(next (second target))
(second target)))
entry))
(xm-traceif "markov-class isnew" name "entry" entry "rule" rule
"targets" targets "order" order (nthcdr order rule))
(dotimes (i order)
(push (nth i rule) pattern))
(push (cons (reverse pattern) entry) rules)))
(setf rules (reverse rules)) ;; keep rules in original order
(setf *rslt* nil) ;; in case produces is nil
(cond ((and produces (not (is-produces-homogeneous produces)))
(setf produces (make-produces-homogeneous produces))))
(xm-traceif "markov-class :isnew" name "is-nested" *rslt*)
(setf is-nested *rslt*) ;; returned by is-produces-homogeneous
))
(defun markov-match (state pattern)
(dolist (p pattern t) ;; return true if no mismatch
;; compare element-by-element
(cond ((eq p '*)) ; anything matches '*
((eql p (car state)))
(t (return nil))) ; a mismatch: return false
(setf state (cdr state))))
(defun markov-pick-target (sum rule)
(let ((total 0.0)
;; want to choose a value in the interval [0, sum)
;; but real-random is not open on the right, so fudge
;; the range by a small amount:
(r (real-random 0.0 (- sum SCORE-EPSILON))))
(dolist (target (cdr rule))
(setf total (+ total (second target)))
(cond ((> total r) (return (car target)))))))
(defun markov-update-weights (rule)
(dolist (target (cdr rule))
(setf (car (cdr target)) (next (caddr target)))))
(defun markov-map-target (target produces)
(while (and produces (not (eq target (car produces))))
(setf produces (cddr produces)))
(let ((rslt (cadr produces)))
(if (not rslt) (setf rslt target)) ;; if lookup fails return target
(if (patternp rslt) (setf rslt (next rslt)))
rslt))
(send markov-class :answer :sum-of-weights '(rule)
'((let ((sum 0.0))
(dolist (target (cdr rule))
(xm-traceif "markov-sum-of-weights" name "target" target)
(setf sum (+ sum (second target))))
sum)))
(send markov-class :answer :find-rule '()
'((let (rslt)
(xm-traceif "markov-class find-rule" name "rules" rules)
(dolist (rule rules)
(xm-traceif "markov find-rule" name "state" state "rule" rule)
(cond ((markov-match state (car rule))
(setf rslt rule)
(return rslt))))
(cond ((null rslt)
(display "Error, no matching rule found" state rules)
(error (format nil "~A, (markov-class)" name))))
rslt)))
(send markov-class :answer :start-period '(forcount)
'((if (null count)
(setf count len))))
(defun markov-general-rule-p (rule)
(let ((pre (car rule)))
(cond ((< (length pre) 2) nil) ;; 1st-order mm
(t
;; return false if any member not *
;; return t if all members are *
(dolist (s pre t)
(if (eq s '*) t (return nil)))))))
(defun markov-find-state-leading-to (target rules)
(let (candidates)
(dolist (rule rules)
(let ((targets (cdr rule)))
(dolist (targ targets)
(cond ((eql (car targ) target)
(push (car rule) candidates))))))
(cond (candidates ;; found at least one
(nth (random (length candidates)) candidates))
(t
nil))))
(send markov-class :answer :advance '()
'((let (rule sum target rslt new-state)
(xm-traceif "markov :advance" name "pattern" pattern "rules" rules)
(setf rule (send self :find-rule))
(markov-update-weights rule)
(xm-traceif "markov sum-of-weights" name "rule" rule)
(setf sum (send self :sum-of-weights rule))
;; the target can be a pattern, so apply NEXT to it
(setf target (next (markov-pick-target sum rule)))
;; if the matching rule is multiple *'s, then this
;; is a higher-order Markov model, and we may now
;; wander around in parts of the state space that
;; never appeared in the training data. To avoid this
;; we violate the strict interpretation of the rules
;; and pick a random state sequence from the rule set
;; that might have let to the current state. We jam
;; this state sequence into state so that when we
;; append target, we'll have a history that might
;; have a corresponding rule next time.
(cond ((markov-general-rule-p rule)
(setf new-state (markov-find-state-leading-to target rules))
(cond (new-state
(xm-trace "markov state replacement" name
"new-state" new-state "target" target)
(setf state new-state)))))
(setf state (append (cdr state) (list target)))
(xm-traceif "markov next" name "rule" rule "sum" sum "target" target
"state" state)
;; target is the symbol for the current state. We can
;; return target (default), the value of target, or a
;; mapped value:
(cond ((eq produces :eval)
(setf target (eval target)))
((and produces (listp produces))
(xm-traceif "markov-produce" name "target" target
"produces" produces)
(setf target (markov-map-target target produces))))
(if (not (eq is-nested (patternp target)))
(error (format nil
"~A :is-nested keyword (~A) not consistent with result (~A)"
name is-nested target)))
(send self :set-current target))))
(defun make-markov (rules &key produces past merge for (name "markov") trace)
;; check to make sure past and rules are consistent
(let ((order (length past)))
(dolist (rule rules)
(dotimes (i order)
(if (eq (car rule) '->)
(error (format nil "~A, a rule does not match the length of :past"
name)))
(pop rule))
(if (eq (car rule) '->) nil
(error (format nil "~A, a rule does not match the length of :past"
name)))))
(cond ((null for)
(setf for (length rules))))
(send markov-class :new rules (length past) past produces merge for name trace))
(defun markov-rule-match (rule state)
(cond ((null state) t)
((eql (car rule) (car state))
(markov-rule-match (cdr rule) (cdr state)))
(t nil)))
(defun markov-find-rule (rules state)
(dolist (rule rules)
(xm-traceif "markov find-rule" name "rule" rule)
(cond ((markov-rule-match rule state)
(return rule)))))
;; ------- functions below are for MARKOV-CREATE-RULES --------
;; MARKOV-FIND-CHOICE -- given a next state, find it in rule
;;
;; use state to get the order of the Markov model, e.g. how
;; many previous states to skip in the rule, (add 1 for '->).
;; then use assoc to do a quick search
;;
;; example:
;; (markov-find-choice '(a b -> (c 1) (d 2)) '(a b) 'd)
;; returns (d 2) from the rule
;;
(defun markov-find-choice (rule state next)
(assoc next (nthcdr (1+ (length state)) rule)))
(defun markov-update-rule (rule state next)
(let ((choice (markov-find-choice rule state next)))
(cond (choice
(setf (car (cdr choice)) (1+ (cadr choice))))
(t
(nconc rule (list (list next 1)))))
rule))
(defun markov-update-rules (rules state next)
(let ((rule (markov-find-rule rules state)))
(cond (rule
(markov-update-rule rule state next))
(t
(setf rules
(nconc rules
(list (append state
(cons '-> (list
(list next 1)))))))))
rules))
;; MARKOV-UPDATE-HISTOGRAM -- keep a list of symbols and counts
;;
;; This histogram will become the right-hand part of a rule, so
;; the format is ((symbol count) (symbol count) ...)
;;
(defun markov-update-histogram (histogram next)
(let ((pair (assoc next histogram)))
(cond (pair
(setf (car (cdr pair)) (1+ (cadr pair))))
(t
(setf histogram (cons (list next 1) histogram))))
histogram))
(defun markov-create-rules (sequence order &optional generalize)
(let ((seqlen (length sequence)) state rules next histogram rule)
(cond ((<= seqlen order)
(error "markov-create-rules: sequence must be longer than order"))
((< order 1)
(error "markov-create-rules: order must be 1 or greater")))
; build initial state sequence
(dotimes (i order)
(setf state (nconc state (list (car sequence))))
(setf sequence (cdr sequence)))
; for each symbol, either update a rule or add a rule
(while sequence
(setf next (car sequence))
(setf sequence (cdr sequence))
(setf rules (markov-update-rules rules state next))
(setf histogram (markov-update-histogram histogram next))
; shift next state onto current state list
(setf state (nconc (cdr state) (list next))))
; generalize?
(cond (generalize
(setf rule (cons '-> histogram))
(dotimes (i order)
(setf rule (cons '* rule)))
(setf rules (nconc rules (list rule)))))
rules))
;; ----- WINDOW Class ---------
(setf window-class (send class :new
'(pattern skip-pattern lis cursor)
'() pattern-class))
(send window-class :answer :isnew '(p for sk nm tr)
'((send-super :isnew nil for nm tr)
(setf pattern p skip-pattern sk)))
(send window-class :answer :start-period '(forcount)
'((if (null length-pattern)
(error (format nil "~A, :start-period -- length-pattern is null"
name)))
(setf count forcount)
(cond ((null lis) ;; first time
(dotimes (i count)
(push (next pattern) lis))
(setf lis (reverse lis))
(setf cursor lis))
(t
(let ((skip (next skip-pattern)))
(dotimes (i skip)
(if lis (pop lis) (next pattern))))
(setf lis (reverse lis))
;; now lis is in reverse order; if not long enough, push
(let ((len (length lis)) rslt)
(while (< len count)
(incf len)
(push (next pattern) lis))
(setf lis (reverse lis))
;; lis is in order, copy it to rstl and take what we need
(setf rslt (reverse (append lis nil))) ;; copy lis
(while (> len count)
(decf len)
(pop rslt))
(setf cursor (reverse rslt)))))
(xm-traceif "window start-period cursor" cursor "lis" lis)))
(send window-class :answer :advance '()
'((send self :set-current (car cursor))
(pop cursor)))
(defun make-window (pattern length-pattern skip-pattern
&key (name "window") trace)
(send window-class :new pattern length-pattern skip-pattern name trace))
;; SCORE-SORTED -- test if score is sorted
;;
(defun score-sorted (score)
(let ((result t))
(while (cdr score)
(cond ((event-before (cadr score) (car score))
(setf result nil)
(return nil)))
(setf score (cdr score)))
result))
(defmacro score-gen (&rest args)
(let (key val tim dur (name ''note) ioi trace save
score-len score-dur others pre post
next-expr (score-begin 0) score-end)
(while (and args (cdr args))
(setf key (car args))
(setf val (cadr args))
(setf args (cddr args))
(case key
(:time (setf tim val))
(:dur (setf dur val))
(:name (setf name val))
(:ioi (setf ioi val))
(:trace (setf trace val))
(:save (setf save val))
(:pre (setf pre val))
(:post (setf post val))
(:score-len (setf score-len val))
(:score-dur (setf score-dur val))
(:begin (setf score-begin val))
(:end (setf score-end val))
(t (setf others (cons key (cons val others))))))
;; make sure at least one of score-len, score-dur is present
(cond ((and (null score-len) (null score-dur))
(error
"score-gen needs either :score-len or :score-dur to limit length")))
;; compute expression for dur
(cond ((null dur)
(setf dur 'sg:ioi)))
;; compute expression for ioi
(cond ((null ioi)
(setf ioi 1)))
;; compute expression for next start time
(setf next-expr '(+ sg:start sg:ioi))
; (display "score-gen" others)
`(let (sg:seq (sg:start ,score-begin) sg:ioi
(sg:score-len ,score-len) (sg:score-dur ,score-dur)
(sg:count 0) (sg:save ,save)
(sg:begin ,score-begin) (sg:end ,score-end) sg:det-end)
;; sg:det-end is a flag that tells us to determine the end time
(cond ((null sg:end) (setf sg:end 0 sg:det-end t)))
;; make sure at least one of score-len, score-dur is present
(loop
(cond ((or (and sg:score-len (<= sg:score-len sg:count))
(and sg:score-dur (<= (+ sg:begin sg:score-dur) sg:start)))
(return)))
,pre
,(cond (tim (list 'setf 'sg:start tim)))
(setf sg:ioi ,ioi)
(setf sg:dur ,dur)
(push (list sg:start sg:dur (list ,name ,@others))
sg:seq)
,post
(cond (,trace
(format t "get-seq trace at ~A stretch ~A: ~A~%"
sg:start sg:dur (car sg:seq))))
(incf sg:count)
(setf sg:start ,next-expr)
;; end time of score will be max over start times of the next note
;; this bases the score duration on ioi's rather than durs. But
;; if user specified sg:end, sg:det-end is false and we do not
;; try to compute sg:end.
(cond ((and sg:det-end (> sg:start sg:end))
(setf sg:end sg:start))))
(setf sg:seq (reverse sg:seq))
;; avoid sorting a sorted list -- XLisp's quicksort can overflow the
;; stack if the list is sorted because (apparently) the pivot points
;; are not random.
(cond ((not (score-sorted sg:seq))
(setf sg:seq (bigsort sg:seq #'event-before))))
(push (list 0 0 (list 'SCORE-BEGIN-END ,score-begin sg:end)) sg:seq)
(cond (sg:save (set sg:save sg:seq)))
sg:seq)))
;; ============== score manipulation ===========
(defun must-be-valid-score (caller score)
(if (not (score-validp score))
(error (strcat "In " caller ", not a valid score") score)))
(defun invalid-score () (return-from validp nil))
(defun score-validp (score)
(block validp
(if (listp score) nil (invalid-score)) ;; tricky: return nil if NOT condition
(dolist (event score)
(if (listp event) nil (invalid-score))
(if (and (event-time event) (numberp (event-time event))) nil
(invalid-score))
(if (and (event-dur event) (numberp (event-dur event))) nil
(invalid-score))
(if (and (event-expression event) (consp (event-expression event))) nil
(invalid-score)))
t))
(defun event-before (a b)
(< (car a) (car b)))
;; EVENT-END -- get the ending time of a score event
;;
(defun event-end (e) (+ (car e) (cadr e)))
;; EVENT-TIME -- time of an event
;;
(setfn event-time car)
;; EVENT-DUR -- duration of an event
;;
(setfn event-dur cadr)
;; EVENT-SET-TIME -- new event with new time
;;
(defun event-set-time (event time)
(cons time (cdr event)))
;; EVENT-SET-DUR -- new event with new dur
;;
(defun event-set-dur (event dur)
(list (event-time event)
dur
(event-expression event)))
;; EVENT-SET-EXPRESSION -- new event with new expression
;;
(defun event-set-expression (event expression)
(list (event-time event)
(event-dur event)
expression))
;; EXPR-HAS-ATTR -- test if expression has attribute
;;
(defun expr-has-attr (expression attr)
(member attr expression))
;; EXPR-GET-ATTR -- get value of attribute from expression
;;
(defun expr-get-attr (expression attr &optional default)
(let ((m (member attr expression)))
(if m (cadr m) default)))
;; EXPR-SET-ATTR -- set value of an attribute in expression
;; (returns new expression)
(defun expr-set-attr (expr attr value)
(cons (car expr) (expr-parameters-set-attr (cdr expr) attr value)))
(defun expr-parameters-set-attr (lis attr value)
(cond ((null lis) (list attr value))
((eq (car lis) attr) (cons attr (cons value (cddr lis))))
(t (cons (car lis)
(cons (cadr lis)
(expr-parameters-set-attr (cddr lis) attr value))))))
;; EXPR-REMOVE-ATTR -- expression without attribute value pair
(defun expr-remove-attr (event attr)
(cons (car expr) (expr-parameters-remove-attr (cdr expr) attr)))
(defun expr-parameters-remove-attr (lis attr)
(cond ((null lis) nil)
((eq (car lis) attr) (cddr lis))
(t (cons (car lis)
(cons (cadr lis)
(expr-parameters-remove-attr (cddr lis) attr))))))
;; EVENT-GET-ATTR -- get value of attribute from event
;;
(defun event-get-attr (note attr &optional default)
(expr-get-attr (event-expression note) attr default))
;; EVENT-SET-ATTR -- new event with attribute = value
(defun event-set-attr (event attr value)
(event-set-expression
event
(expr-set-attr (event-expression event) attr value)))
;; EVENT-REMOVE-ATTR -- new event without atttribute value pair
(defun event-remove-attr (event attr)
(event-set-expression
event
(event-remove-attr (event-expression event) attr)))
;; SCORE-GET-BEGIN -- get the begin time of a score
;;
(defun score-get-begin (score)
(setf score (score-must-have-begin-end score))
(cadr (event-expression (car score))))
;; SCORE-SET-BEGIN -- set the begin time of a score
;;
(defun score-set-begin (score time)
(setf score (score-must-have-begin-end score))
(cons (list 0 0 (list 'score-begin-end time
(caddr (event-expression (car score)))))
(cdr score)))
;; SCORE-GET-END -- get the end time of a score
;;
(defun score-get-end (score)
(setf score (score-must-have-begin-end score))
(caddr (event-expression (car score))))
;; SCORE-SET-END -- set the end time of a score
;;
(defun score-set-end (score time)
(setf score (score-must-have-begin-end score))
(cons (list 0 0 (list 'score-begin-end
(cadr (event-expression (car score))) time))
(cdr score)))
;; FIND-FIRST-NOTE -- use keywords to find index of first selected note
;;
(defun find-first-note (score from-index from-time)
(let ((s (cdr score)))
;; offset by one because we removed element 0
(setf from-index (if from-index (max 0 (- from-index 1)) 0))
(setf from-time (if from-time
(- from-time SCORE-EPSILON)
(- SCORE-EPSILON)))
(if s (setf s (nthcdr from-index s)))
(while (and s (>= from-time (event-time (car s))))
(setf s (cdr s))
(incf from-index))
(1+ from-index)))
;; EVENT-BEFORE -- useful function for sorting scores
;;
(defun event-before (a b)
(< (car a) (car b)))
;; bigsort -- a sort routine that avoids recursion in order
;; to sort large lists without overflowing the evaluation stack
;;
;; Does not modify input list. Does not minimize cons-ing.
;;
;; Algorithm: first accumulate sorted sub-sequences into lists
;; Then merge pairs iteratively until only one big list remains
;;
(defun bigsort (lis cmp) ; sort lis using cmp function
;; if (funcall cmp a b) then a and b are in order
(prog (rslt sub pairs)
;; first, convert to sorted sublists stored on rslt
;; accumulate sublists in sub
get-next-sub
(if (null lis) (go done-1))
(setf sub (list (car lis)))
(setf lis (cdr lis))
fill-sub
;; invariant: sub is non-empty, in reverse order
(cond ((and lis (funcall cmp (car sub) (car lis)))
(setf sub (cons (car lis) sub))
(setf lis (cdr lis))
(go fill-sub)))
(setf sub (reverse sub)) ;; put sub in correct order
(setf rslt (cons sub rslt)) ;; build rslt in reverse order
(go get-next-sub)
done-1
;; invariant: rslt is list of sorted sublists
(if (cdr rslt) nil (go done-2))
;; invariant: rslt has at least one list
(setf pairs rslt)
(setf rslt nil)
merge-pairs ;; merge a pair and save on rslt
(if (car pairs) nil (go end-of-pass)) ;; loop until all pairs merged
;; invariant: pairs has at least one list
(setf list1 (car pairs)) ;; list1 is non-empty
(setf list2 (cadr pairs)) ;; list2 could be empty
(setf pairs (cddr pairs))
(cond (list2
(setf rslt (cons (list-merge list1 list2 cmp) rslt)))
(t
(setf rslt (cons list1 rslt))))
(go merge-pairs)
end-of-pass
(go done-1)
done-2
;; invariant: rslt has one sorted list!
(return (car rslt))))
(defun list-merge (list1 list2 cmp)
(prog (rslt)
merge-loop
(cond ((and list1 list2)
(cond ((funcall cmp (car list1) (car list2))
(setf rslt (cons (car list1) rslt))
(setf list1 (cdr list1)))
(t
(setf rslt (cons (car list2) rslt))
(setf list2 (cdr list2)))))
(list1
(return (nconc (reverse rslt) list1)))
(t
(return (nconc (reverse rslt) list2))))
(go merge-loop)))
;; SCORE-SORT -- sort a score into time order
;;
;; If begin-end exists, preserve it. If not, compute
;; it from the sorted score.
;;
(defun score-sort (score &optional (copy-flag t))
(let* ((score1 (score-must-have-begin-end score))
(begin-end (car score1))
;; if begin-end already existed, then it will
;; be the first of score. Otherwise, one must
;; have been generated above by score-must-have-begin-end
;; in which case we should create it again after sorting.
(needs-begin-end (not (eq begin-end (first score)))))
(setf score1 (cdr score1)) ;; don't include begin-end in sort.
(if copy-flag (setf score1 (append score1 nil)))
(setf score1 (bigsort score1 #'event-before))
(if needs-begin-end (score-must-have-begin-end score1)
(cons begin-end score1))
))
;; PUSH-SORT -- insert an event in (reverse) sorted order
;;
;; Note: Score should NOT have a score-begin-end expression
;;
(defun push-sort (event score)
(let (insert-after)
(cond ((null score) (list event))
((event-before (car score) event)
(cons event score))
(t
(setf insert-after score)
(while (and (cdr insert-after)
(event-before event (cadr insert-after)))
(setf insert-after (cdr insert-after)))
(setf (cdr insert-after) (cons event (cdr insert-after)))
score))))
(setf FOREVER 3600000000.0) ; 1 million hours
;; FIND-LAST-NOTE -- use keywords to find index beyond last selected note
;;
;; note that the :to-index keyword is the index of the last note (numbered
;; from zero), whereas this function returns the index of the last note
;; plus one, i.e. selected notes have an index *less than* this one
;;
(defun find-last-note (score to-index to-time)
;; skip past score-begin-end event
(let ((s (cdr score))
(n 1))
(setf to-index (if to-index (1+ to-index) (length score)))
(setf to-time (if to-time (- to-time SCORE-EPSILON) FOREVER))
(while (and s (< n to-index) (< (event-time (car s)) to-time))
(setf s (cdr s))
(incf n))
n))
;; SCORE-MUST-HAVE-BEGIN-END -- add score-begin-end event if necessary
;;
(defun score-must-have-begin-end (score)
(cond ((null score)
(list (list 0 0 (list 'SCORE-BEGIN-END 0 0))))
((eq (car (event-expression (car score))) 'SCORE-BEGIN-END)
score)
(t (cons (list 0 0 (list 'SCORE-BEGIN-END (event-time (car score))
(event-end (car (last score)))))
score))))
;; SCORE-SHIFT -- add offset to times of score events
;;
(defun score-shift (score offset &key from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
(begin (cadr (event-expression (car score))))
(end (caddr (event-expression (car score))))
result)
(dolist (event (cdr score))
(cond ((and (<= start i) (< i stop))
(setf event (event-set-time
event (+ (event-time event) offset)))
(setf begin (min begin (event-time event)))
(setf end (max end (event-end event)))))
(setf result (push-sort event result))
(incf i))
(cons (list 0 0 (list 'SCORE-BEGIN-END begin end))
(reverse result))))
;; TIME-STRETCH -- map a timestamp according to stretch factor
;;
(defun time-stretch (time stretch start-time stop-time)
(cond ((< time start-time) time)
((< time stop-time)
(+ start-time (* stretch (- time start-time))))
(t ; beyond stop-time
(+ (- time stop-time) ; how much beyond stop-time
start-time
(* stretch (- stop-time start-time))))))
;; EVENT-STRETCH -- apply time warp to an event
(defun event-stretch (event stretch dur-flag time-flag start-time stop-time)
(let* ((new-time (event-time event))
(new-dur (event-dur event))
(end-time (+ new-time new-dur)))
(cond (time-flag
(setf new-time (time-stretch new-time stretch
start-time stop-time))))
(cond ((and time-flag dur-flag)
;; both time and dur are stretched, so map the end time just
;; like the start time, then subtract to get new duration
(setf end-time (time-stretch end-time stretch
start-time stop-time))
(setf new-dur (- end-time new-time)))
((and dur-flag (>= new-time start-time) (< new-time stop-time))
;; stretch only duration, not time. If note starts in range
;; scale to get the new duration.
(setf new-dur (* stretch new-dur))))
(list new-time new-dur (event-expression event))))
;; SCORE-STRETCH -- stretch a region of the score
;;
(defun score-stretch (score factor &key (dur t) (time t)
from-index to-index (from-time 0) (to-time FOREVER))
(if (zerop factor) (print "WARNING: score-stretch called with zero stretch factor."))
(setf score (score-must-have-begin-end score))
(let ((begin-end (event-expression (car score)))
(i 1))
(if from-index
(setf from-time (max from-time
(event-time (nth from-index score)))))
(if to-index
(setf to-time (min to-time
(event-end (nth to-index score)))))
; stretch from start-time to stop-time
(cons (list 0 0 (list 'SCORE-BEGIN-END
(time-stretch (cadr begin-end) factor
from-time to-time)
(time-stretch (caddr begin-end) factor
from-time to-time)))
(mapcar #'(lambda (event)
(event-stretch event factor dur time
from-time to-time))
(cdr score)))))
;; Turn a value field into a numeric value if possible
;; (by looking up a global variable binding). This
;; allows scores to say C4 instead of 60.
;;
(defun get-numeric-value (v)
(cond ((and v (symbolp v) (boundp v) (numberp (symbol-value v)))
(symbol-value v))
(t v)))
(defun params-transpose (params keyword amount)
(cond ((null params) nil)
((eq keyword (car params))
(let ((v (get-numeric-value (cadr params))))
(cond ((numberp v)
(setf v (+ v amount)))
((and (eq keyword :pitch) (listp v))
(setf v (mapcar #'(lambda (x) (setf x (get-numeric-value x))
(+ x amount)) v))))
(cons (car params)
(cons v (cddr params)))))
(t (cons (car params)
(cons (cadr params)
(params-transpose (cddr params) keyword amount))))))
(defun score-transpose (score keyword amount &key
from-index to-index from-time to-time)
(score-apply score
#'(lambda (time dur expression)
(list time dur
(cons (car expression)
(params-transpose (cdr expression)
keyword amount))))
:from-index from-index :to-index to-index
:from-time from-time :to-time to-time))
(defun params-scale (params keyword amount)
(cond ((null params) nil)
((eq keyword (car params))
(let ((v (get-numeric-value (cadr params))))
(cond ((numberp v)
(setf v (* v amount))))
(cons (car params)
(cons v (cddr params)))))
(t (cons (car params)
(cons (cadr params)
(params-scale (cddr params) keyword amount))))))
(defun score-scale (score keyword amount &key
from-index to-index from-time to-time)
(score-apply score
#'(lambda (time dur expression)
(list time dur
(cons (car expression)
(params-scale (cdr expression)
keyword amount))))
:from-index from-index :to-index to-index
:from-time from-time :to-time to-time))
(defun score-sustain (score factor &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((i 0)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event score)
(cond ((and (<= start i) (< i stop))
(setf event (event-set-dur
event (* (event-dur event) factor)))))
(push event result)
(incf i))
(reverse result)))
;; MAP-VOICE - helper function for SCORE-VOICE
;; input: a score expression, e.g. '(note :pitch 60 :vel 100)
;; a replacement list, e.g. '((note foo) (* bar))
;; output: the score expression with substitutions, e.g.
;; '(foo :pitch 60 :vel 100)
;;
(defun map-voice (expression replacement-list)
(cond (replacement-list
(cond ((or (eq (car expression) (caar replacement-list))
(eq (caar replacement-list) '*))
(cons (cadar replacement-list) (cdr expression)))
(t (map-voice expression (cdr replacement-list)))))
(t expression)))
(defun ny:assert-replacement-list (fun-name index formal actual)
(let ((lis actual) r)
(while lis
(if (not (consp actual))
(error (format nil "In ~A,~A argument (~A) should be a list, got ~A"
fun-name (index-to-string index) formal actual)))
(setf r (car lis))
(if (not (and (listp r) (= 2 (length r)) (symbolp (car r)) (symbolp (cadr r))))
(error (format nil
"In ~A,~A argument (~A) should be a list of lists of two symbols, got ~A"
fun-name (index-to-string index) formal actual)))
(setf lis (cdr lis)) )))
(defun score-voice (score replacement-list &key
from-index to-index from-time to-time)
(ny:assert-replacement-list 'SCORE-VOICE 2 "replacement-list" replacement-list)
(setf score (score-must-have-begin-end score))
(let ((i 0)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event score)
(cond ((and (<= start i) (< i stop))
(setf event (event-set-expression
event (map-voice (event-expression event)
replacement-list)))))
(push event result)
(incf i))
(reverse result)))
(defun score-merge (&rest scores)
;; scores is a list of scores
(cond ((null scores) nil)
(t
(score-merge-1 (car scores) (cdr scores)))))
;; SCORE-MERGE-1 -- merge list of scores into score
;;
(defun score-merge-1 (score scores)
;; scores is a list of scores to merge
(cond ((null scores) score)
(t (score-merge-1 (score-merge-2 score (car scores))
(cdr scores)))))
;; SCORE-MERGE-2 -- merge 2 scores
;;
(defun score-merge-2 (score addin)
;(display "score-merge-2 before" score addin)
(setf score (score-must-have-begin-end score))
(setf addin (score-must-have-begin-end addin))
;(display "score-merge-2" score addin)
(let (start1 start2 end1 end2)
(setf start1 (score-get-begin score))
(setf start2 (score-get-begin addin))
(setf end1 (score-get-end score))
(setf end2 (score-get-end addin))
;; note: score-sort is destructive, but append copies score
;; and score-shift copies addin
(score-sort
(cons (list 0 0 (list 'SCORE-BEGIN-END (min start1 start2)
(max end1 end2)))
(append (cdr score) (cdr addin) nil)))))
;; SCORE-APPEND -- append scores together in sequence
;;
(defun score-append (&rest scores)
;; scores is a list of scores
(cond ((null scores) nil)
(t
(score-append-1 (car scores) (cdr scores)))))
;; SCORE-APPEND-1 -- append list of scores into score
;;
(defun score-append-1 (score scores)
;; scores is a list of scores to append
(cond ((null scores) score)
(t (score-append-1 (score-append-2 score (car scores))
(cdr scores)))))
;; SCORE-APPEND-2 -- append 2 scores
;;
(defun score-append-2 (score addin)
;(display "score-append-2" score addin)
(setf score (score-must-have-begin-end score))
(setf addin (score-must-have-begin-end addin))
(let (end1 start2 begin-end1 begin-end2)
(setf start1 (score-get-begin score))
(setf end1 (score-get-end score))
(setf start2 (score-get-begin addin))
(setf end2 (score-get-end addin))
(setf begin-end1 (event-expression (car score)))
(setf begin-end2 (event-expression (car addin)))
(setf addin (score-shift addin (- end1 start2)))
;; note: score-sort is destructive, but append copies score
;; and score-shift copies addin
(score-sort
(cons (list 0 0 (list 'SCORE-BEGIN-END start1 (+ end1 (- end2 start2))))
(append (cdr score) (cdr addin) nil)))))
(defun score-select (score predicate &key
from-index to-index from-time to-time reject)
(setf score (score-must-have-begin-end score))
(let ((begin-end (car score))
(i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
;; selected if start <= i AND i < stop AND predicate(...)
;; choose if not reject and selected or reject and not selected
;; so in other words choose if reject != selected. Use NULL to
;; coerce into boolean values and then use NOT EQ to compare
(dolist (event (cdr score))
(cond ((not (eq (null reject)
(null (and (<= start i) (< i stop)
(or (eq predicate t)
(funcall predicate
(event-time event)
(event-dur event)
(event-expression event)))))))
(push event result)))
(incf i))
(cons begin-end (reverse result))))
;; SCORE-FILTER-LENGTH -- remove notes beyond cutoff time
;;
(defun score-filter-length (score cutoff)
(let (result)
(dolist (event score)
(cond ((<= (event-end event) cutoff)
(push event result))))
(reverse result)))
;; SCORE-REPEAT -- make n copies of score in sequence
;;
(defun score-repeat (score n)
(let (result)
(dotimes (i n)
(setf result (score-append result score)))
result))
;; SCORE-STRETCH-TO-LENGTH -- stretch score to have given length
;;
(defun score-stretch-to-length (score length)
(let ((begin-time (score-get-begin score))
(end-time (score-get-end score))
duration stretch)
(setf duration (- end-time begin-time))
(cond ((< 0 duration)
(setf stretch (/ length (- end-time begin-time)))
(score-stretch score stretch))
(t score))))
(defun score-filter-overlap (score)
(setf score (score-must-have-begin-end score))
(prog (event end-time filtered-score
(begin-end (car score)))
(setf score (cdr score))
(cond ((null score) (return (list begin-end))))
loop
;; get event from score
(setf event (car score))
;; add a note to filtered-score
(push event filtered-score)
;; save the end-time of this event: start + duration
(setf end-time (+ (car event) (cadr event)))
;; now skip everything until end-time in score
loop2
(pop score) ;; move to next event in score
(cond ((null score)
(return (cons begin-end (reverse filtered-score)))))
(setf event (car score)) ;; examine next event
(setf start-time (car event))
;(display "overlap" start-time (- end-time SCORE-EPSILON))
(cond ((< start-time (- end-time SCORE-EPSILON))
;(display "toss" event start-time end-time)
(go loop2)))
(go loop)))
(defun score-print (score &optional lines)
(let ((len (length score))) ;; len will be how many events left
(format t "(")
(cond (lines
(setf lines (max lines 3))) ;; always allow up to 3 lines
(t ;; no limit on lines, pick a conservatively large number
(setf lines (+ 100 len))))
(dolist (event score)
(cond ((or (> lines 2) (= 1 len))
;; print if we have more than 2 lines left to print or
;; if we are at the last line (always printed)
(format t "~S~%" event)
(setf lines (1- lines)))
((and (= lines 2) (> len 2)) ;; need ellipsis
(format t "... skipping ~A events ...~%" (- len lines))
(setf lines (1- lines)))
(t nil)) ;; print nothing until end if lines is 1
(setf len (1- len)))
(format t ")~%")))
(defun score-play (score)
(play (timed-seq score)))
(defun score-adjacent-events (score function &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((begin-end (car score))
(a nil)
(b (second score))
(c-list (cddr score))
r newscore
(i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time)))
(dolist (event (cdr score))
(setf r b)
(cond ((and (<= start i) (< i stop))
(setf r (funcall function a b (car c-list)))))
(cond (r
(push r newscore)
(setf a r)))
(setf b (car c-list))
(setf c-list (cdr c-list))
(incf i))
(score-sort (cons begin-end newscore))))
(defun score-apply (score fn &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((begin-end (car score))
(i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event (cdr score))
(push
(cond ((and (<= start i) (< i stop))
(funcall fn (event-time event)
(event-dur event) (event-expression event)))
(t event))
result)
(incf i))
(score-sort (cons begin-end result))))
(defun score-indexof (score fn &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event (cdr score))
(cond ((and (<= start i) (< i stop)
(funcall fn (event-time event)
(event-dur event)
(event-expression event)))
(setf result i)
(return)))
(incf i))
result))
(defun score-last-indexof (score fn &key
from-index to-index from-time to-time)
(setf score (score-must-have-begin-end score))
(let ((i 1)
(start (find-first-note score from-index from-time))
(stop (find-last-note score to-index to-time))
result)
(dolist (event (cdr score))
(cond ((and (<= start i) (< i stop)
(funcall fn (event-time event)
(event-dur event)
(event-expression event)))
(setf result i)))
(incf i))
result))
;; SCORE-RANDOMIZE-START -- alter start times with offset
;; keywords: jitter, offset, feel factor
;;
(defun score-randomize-start (score amt &key
from-index to-index from-time to-time)
(score-apply score
(lambda (time dur expr)
(setf time (+ (real-random (- amt) amt) time))
(setf time (max 0.0 time))
(list time dur expr))))
;; SCORE-READ-SMF -- read a standard MIDI file to a score
;;
(defun score-read-smf (filename)
(let ((seq (seq-create))
(file (open-binary filename)))
(cond (file
(seq-read-smf seq file)
(close file)
(score-from-seq seq))
(t nil))))
;; SCORE-READ -- read a standard MIDI file to a score
;;
(defun score-read (filename)
(let ((seq (seq-create))
(file (open filename)))
(cond (file
(seq-read seq file)
(close file)
(score-from-seq seq))
(t nil))))
;; SET-PROGRAM-TO -- a helper function to set a list value
(defun set-program-to (lis index value default)
;; if length or lis <= index, extend the lis with default
(while (<= (length lis) index)
(setf lis (nconc lis (list default))))
;; set the nth element
(setf (nth index lis) value)
;; return the list
lis)
(defun score-from-seq (seq)
(prog (event tag score programs)
(seq-reset seq)
loop
(setf event (seq-get seq))
(setf tag (seq-tag event))
(cond ((= tag seq-done-tag)
(go exit))
((= tag seq-prgm-tag)
(let ((chan (seq-channel event))
(when (seq-time event))
(program (seq-program event)))
(setf programs (set-program-to programs chan program 0))
(push (list (* when 0.001) 1
(list 'NOTE :pitch nil :program program))
score)))
((= tag seq-note-tag)
(let ((chan (seq-channel event))
(pitch (seq-pitch event))
(vel (seq-velocity event))
(when (seq-time event))
(dur (seq-duration event)))
(push (list (* when 0.001) (* dur 0.001)
(list 'NOTE :chan (1- chan) :pitch pitch :vel vel))
score))))
(seq-next seq)
(go loop)
exit
(setf *rslt* programs) ;; extra return value
(return (score-sort score))))
(defun score-write (score filename &optional programs absolute)
(score-write-smf score filename programs t absolute))
(defun score-write-smf (score filename &optional programs as-adagio absolute)
(let ((file (if as-adagio (open filename :direction :output)
(open-binary filename :direction :output)))
(seq (seq-create))
(chan 1))
(cond (file
(dolist (program programs)
;; 6 = SEQ_PROGRAM
(seq-insert-ctrl seq 0 0 6 chan program)
;(display "insert ctrl" seq 0 0 6 chan program)
(incf chan))
(dolist (event (cdr (score-must-have-begin-end score)))
(let ((time (event-time event))
(dur (event-dur event))
(chan (event-get-attr event :chan 0))
(pitch (event-get-attr event :pitch))
(program (event-get-attr event :program))
(vel (event-get-attr event :vel 100)))
(cond (program
;(display "score-write-smf program" chan program)
(seq-insert-ctrl seq (round (* time 1000))
0 6 (1+ chan)
(round program))))
(cond ((consp pitch)
(dolist (p pitch)
(seq-insert-note seq (round (* time 1000))
0 (1+ chan) (round p)
(round (* dur 1000)) (round vel))))
(pitch
(seq-insert-note seq (round (* time 1000))
0 (1+ chan) (round pitch)
(round (* dur 1000)) (round vel))))))
(cond (as-adagio
(seq-write seq file absolute)
(close file)) ;; seq-write does not close file, so do it here
(t
(seq-write-smf seq file))))))) ; seq-write-smf closes file
;; make a default note function for scores
;;
(defun note (&key (pitch 60) (vel 100))
;; load the piano if it is not loaded already
(if (not (boundp '*piano-srate*))
(abs-env (load "piano/pianosyn")))
(piano-note-2 pitch vel))
;;================================================================
;; WORKSPACE functions have moved to envelopes.lsp
;; DESCRIBE -- add a description to a global variable
;;
(defun describe (symbol &optional description)
(add-to-workspace symbol)
(cond (description
(putprop symbol description 'description))
(t
(get symbol 'description))))
;; INTERPOLATE -- linear interpolation function
;;
;; compute y given x by interpolating between points (x1, y1) and (x2, y2)
(defun interpolate (x x1 y1 x2 y2)
(cond ((= x1 x2) x1)
(t (+ y1 (* (- x x1) (/ (- y2 y1) (- x2 (float x1))))))))
;; INTERSECTION -- set intersection
;;
;; compute the intersection of two lists
(defun intersection (a b)
(let (result)
(dolist (elem a)
(if (member elem b) (push elem result)))
result))
;; UNION -- set union
;;
;; compute the union of two lists
(defun union (a b)
(let (result)
(dolist (elem a)
(if (not (member elem result)) (push elem result)))
(dolist (elem b)
(if (not (member elem result)) (push elem result)))
result))
;; SET-DIFFERENCE -- set difference
;;
;; compute the set difference between two sets
(defun set-difference (a b)
(remove-if (lambda (elem) (member elem b)) a))
;; SUBSETP -- test is list is subset
;;
;; test if a is subset of b
(defun subsetp (a b)
(let ((result t))
(dolist (elem a)
(cond ((not (member elem b))
(setf result nil)
(return nil))))
result))
;; functions to support score editing in NyquistIDE
(if (not (boundp '*default-score-file*))
(setf *default-score-file* "score.dat"))
;; SCORE-EDIT -- save a score for editing by NyquistIDE
;;
;; file goes to a data file to be read by NyquistIDE
;; Note that the parameter is a global variable name, not a score,
;; but you do not quote the global variable name, e.g. call
;; (score-edit my-score)
;;
(defmacro score-edit (score-name)
`(score-edit-symbol (quote ,score-name)))
(defun score-edit-symbol (score-name)
(prog ((f (open *default-score-file* :direction :output))
score expr)
(cond ((symbolp score-name)
(setf score (eval score-name)))
(t
(error "score-edit expects a symbol naming the score to edit")))
(cond ((null f)
(format t "score-edit: error in output file ~A!~%" *default-score-file*)
(return nil)))
(format t "score-edit: writing ~A ...~%" *default-score-file*)
(format f "~A~%" score-name) ; put name on first line
(dolist (event score) ;cdr scor
(format f "~A " (event-time event)) ; print start time
(format f "~A " (event-dur event)) ; print duration
(setf expr (event-expression event))
; print the pitch and the rest of the attributes
(format f "~A " (expr-get-attr expr :pitch))
(format f "~A~%" (expr-parameters-remove-attr expr :pitch)))
(close f)
(format t "score-edit: wrote ~A events~%" (length score))))
;; Read in a data file stored in the score-edit format and save
;; it to the global variable it came from
(defun score-restore ()
(prog ((inf (open *default-score-file*))
name start dur pitch expr score)
(cond ((null inf)
(format t "score-restore: could not open ~A~%" *default-score-file*)
(return nil)))
(setf name (read inf)) ;; score name
(loop
(setf start (read inf))
(cond ((null start) (return)))
(setf dur (read inf))
(setf pitch (read inf))
(setf expr (read inf))
(cond (pitch
(setf expr (expr-set-attr expr :pitch pitch)))))
(close inf)
(setf (symbol-value name) score)))