audacia/src/NoteTrack.cpp

1156 lines
35 KiB
C++

/**********************************************************************
Audacity: A Digital Audio Editor
NoteTrack.cpp
Dominic Mazzoni
*******************************************************************//*!
\class NoteTrack
\brief A Track that is used for Midi notes. (Somewhat old code).
*//*******************************************************************/
#include "NoteTrack.h"
#include <wx/wxcrtvararg.h>
#include <wx/dc.h>
#include <wx/brush.h>
#include <wx/pen.h>
#include <wx/intl.h>
#if defined(USE_MIDI)
#include "../lib-src/header-substitutes/allegro.h"
#include <sstream>
#define ROUND(x) ((int) ((x) + 0.5))
#include "AColor.h"
#include "Prefs.h"
#include "ProjectFileIORegistry.h"
#include "prefs/ImportExportPrefs.h"
#include "InconsistencyException.h"
#include "effects/TimeWarper.h"
#include "tracks/ui/TrackView.h"
#include "tracks/ui/TrackControls.h"
#include "AllThemeResources.h"
#include "Theme.h"
#ifdef SONIFY
#include "../lib-src/portmidi/pm_common/portmidi.h"
#define SON_PROGRAM 0
#define SON_AutoSave 67
#define SON_ModifyState 60
#define SON_NoteBackground 72
#define SON_NoteForeground 74
#define SON_Measures 76 /* "bar line" */
#define SON_Serialize 77
#define SON_Unserialize 79
#define SON_VEL 100
PmStream *sonMidiStream;
bool sonificationStarted = false;
void SonifyBeginSonification()
{
PmError err = Pm_OpenOutput(&sonMidiStream, Pm_GetDefaultOutputDeviceID(),
NULL, 0, NULL, NULL, 0);
if (err) sonMidiStream = NULL;
if (sonMidiStream)
Pm_WriteShort(sonMidiStream, 0, Pm_Message(0xC0, SON_PROGRAM, 0));
sonificationStarted = true;
}
void SonifyEndSonification()
{
if (sonMidiStream) Pm_Close(sonMidiStream);
sonificationStarted = false;
}
void SonifyNoteOnOff(int p, int v)
{
if (!sonificationStarted)
SonifyBeginSonification();
if (sonMidiStream)
Pm_WriteShort(sonMidiStream, 0, Pm_Message(0x90, p, v));
}
#define SONFNS(name) \
void SonifyBegin ## name() { SonifyNoteOnOff(SON_ ## name, SON_VEL); } \
void SonifyEnd ## name() { SonifyNoteOnOff(SON_ ## name, 0); }
SONFNS(NoteBackground)
SONFNS(NoteForeground)
SONFNS(Measures)
SONFNS(Serialize)
SONFNS(Unserialize)
SONFNS(ModifyState)
SONFNS(AutoSave)
#undef SONFNS
#endif
static ProjectFileIORegistry::Entry registerFactory{
wxT( "notetrack" ),
[]( AudacityProject &project ){
auto &tracks = TrackList::Get( project );
auto result = tracks.Add( std::make_shared<NoteTrack>());
TrackView::Get( *result );
TrackControls::Get( *result );
return result;
}
};
NoteTrack::NoteTrack()
: NoteTrackBase()
{
SetDefaultName(_("Note Track"));
SetName(GetDefaultName());
mSeq = NULL;
mSerializationLength = 0;
#ifdef EXPERIMENTAL_MIDI_OUT
mVelocity = 0;
#endif
mBottomNote = MinPitch;
mTopNote = MaxPitch;
mVisibleChannels = ALL_CHANNELS;
}
NoteTrack::~NoteTrack()
{
}
Alg_seq &NoteTrack::GetSeq() const
{
if (!mSeq) {
if (!mSerializationBuffer)
mSeq = std::make_unique<Alg_seq>();
else {
std::unique_ptr<Alg_track> alg_track
{ Alg_seq::unserialize
( mSerializationBuffer.get(), mSerializationLength ) };
wxASSERT(alg_track->get_type() == 's');
mSeq.reset( static_cast<Alg_seq*>(alg_track.release()) );
// Preserve the invariant that at most one of the representations is
// valid
mSerializationBuffer.reset();
mSerializationLength = 0;
}
}
wxASSERT(mSeq);
return *mSeq;
}
Track::Holder NoteTrack::Clone() const
{
auto duplicate = std::make_shared<NoteTrack>();
duplicate->Init(*this);
// The duplicate begins life in serialized state. Often the duplicate is
// pushed on the Undo stack. Then we want to un-serialize it (or a further
// copy) only on demand after an Undo.
if (mSeq) {
SonifyBeginSerialize();
wxASSERT(!mSerializationBuffer);
// serialize from this to duplicate's mSerializationBuffer
void *buffer;
mSeq->serialize(&buffer,
&duplicate->mSerializationLength);
duplicate->mSerializationBuffer.reset( (char*)buffer );
SonifyEndSerialize();
}
else if (mSerializationBuffer) {
// Copy already serialized data.
wxASSERT(!mSeq);
duplicate->mSerializationLength = this->mSerializationLength;
duplicate->mSerializationBuffer.reset
( safenew char[ this->mSerializationLength ] );
memcpy( duplicate->mSerializationBuffer.get(),
this->mSerializationBuffer.get(), this->mSerializationLength );
}
else {
// We are duplicating a default-constructed NoteTrack, and that's okay
}
// copy some other fields here
duplicate->SetBottomNote(mBottomNote);
duplicate->SetTopNote(mTopNote);
duplicate->mVisibleChannels = mVisibleChannels;
duplicate->SetOffset(GetOffset());
#ifdef EXPERIMENTAL_MIDI_OUT
duplicate->SetVelocity(GetVelocity());
#endif
return duplicate;
}
double NoteTrack::GetOffset() const
{
return mOffset;
}
double NoteTrack::GetStartTime() const
{
return GetOffset();
}
double NoteTrack::GetEndTime() const
{
return GetStartTime() + GetSeq().get_real_dur();
}
void NoteTrack::WarpAndTransposeNotes(double t0, double t1,
const TimeWarper &warper,
double semitones)
{
double offset = this->GetOffset(); // track is shifted this amount
auto &seq = GetSeq();
seq.convert_to_seconds(); // make sure time units are right
t1 -= offset; // adjust time range to compensate for track offset
t0 -= offset;
if (t1 > seq.get_dur()) { // make sure t0, t1 are within sequence
t1 = seq.get_dur();
if (t0 >= t1) return;
}
Alg_iterator iter(mSeq.get(), false);
iter.begin();
Alg_event_ptr event;
while (0 != (event = iter.next()) && event->time < t1) {
if (event->is_note() && event->time >= t0) {
event->set_pitch(event->get_pitch() + semitones);
}
}
iter.end();
// now, use warper to warp the tempo map
seq.convert_to_beats(); // beats remain the same
Alg_time_map_ptr map = seq.get_time_map();
map->insert_beat(t0, map->time_to_beat(t0));
map->insert_beat(t1, map->time_to_beat(t1));
int i, len = map->length();
for (i = 0; i < len; i++) {
Alg_beat &beat = map->beats[i];
beat.time = warper.Warp(beat.time + offset) - offset;
}
// about to redisplay, so might as well convert back to time now
seq.convert_to_seconds();
}
// Draws the midi channel toggle buttons within the given rect.
// The rect should be evenly divisible by 4 on both axis.
void NoteTrack::DrawLabelControls
( const NoteTrack *pTrack, wxDC & dc, const wxRect &rect, int highlightedChannel )
{
dc.SetTextForeground(theTheme.Colour(clrLabelTrackText));
wxASSERT_MSG(rect.width % 4 == 0, "Midi channel control rect width must be divisible by 4");
wxASSERT_MSG(rect.height % 4 == 0, "Midi channel control rect height must be divisible by 4");
auto cellWidth = rect.width / 4;
auto cellHeight = rect.height / 4;
wxRect box;
for (int row = 0; row < 4; row++) {
for (int col = 0; col < 4; col++) {
// chanName is the "external" channel number (1-16)
// used by AColor and button labels
int chanName = row * 4 + col + 1;
box.x = rect.x + col * cellWidth;
box.y = rect.y + row * cellHeight;
box.width = cellWidth;
box.height = cellHeight;
bool visible = pTrack ? pTrack->IsVisibleChan(chanName - 1) : true;
if (visible) {
// highlightedChannel counts 0 based
if ( chanName == highlightedChannel + 1 )
AColor::LightMIDIChannel(&dc, chanName);
else
AColor::MIDIChannel(&dc, chanName);
dc.DrawRectangle(box);
// two choices: channel is enabled (to see and play) when button is in
// "up" position (original Audacity style) or in "down" position
//
#define CHANNEL_ON_IS_DOWN 1
#if CHANNEL_ON_IS_DOWN
AColor::DarkMIDIChannel(&dc, chanName);
#else
AColor::LightMIDIChannel(&dc, chanName);
#endif
AColor::Line(dc, box.x, box.y, box.x + box.width - 1, box.y);
AColor::Line(dc, box.x, box.y, box.x, box.y + box.height - 1);
#if CHANNEL_ON_IS_DOWN
AColor::LightMIDIChannel(&dc, chanName);
#else
AColor::DarkMIDIChannel(&dc, chanName);
#endif
AColor::Line(dc,
box.x + box.width - 1, box.y,
box.x + box.width - 1, box.y + box.height - 1);
AColor::Line(dc,
box.x, box.y + box.height - 1,
box.x + box.width - 1, box.y + box.height - 1);
} else {
if ( chanName == highlightedChannel + 1 )
AColor::LightMIDIChannel(&dc, chanName);
else
AColor::MIDIChannel(&dc, 0);
dc.DrawRectangle(box);
#if CHANNEL_ON_IS_DOWN
AColor::LightMIDIChannel(&dc, 0);
#else
AColor::DarkMIDIChannel(&dc, 0);
#endif
AColor::Line(dc, box.x, box.y, box.x + box.width - 1, box.y);
AColor::Line(dc, box.x, box.y, box.x, box.y + box.height - 1);
#if CHANNEL_ON_IS_DOWN
AColor::DarkMIDIChannel(&dc, 0);
#else
AColor::LightMIDIChannel(&dc, 0);
#endif
AColor::Line(dc,
box.x + box.width - 1, box.y,
box.x + box.width - 1, box.y + box.height - 1);
AColor::Line(dc,
box.x, box.y + box.height - 1,
box.x + box.width - 1, box.y + box.height - 1);
}
wxString text;
wxCoord w;
wxCoord h;
text.Printf(wxT("%d"), chanName);
dc.GetTextExtent(text, &w, &h);
dc.DrawText(text, box.x + (box.width - w) / 2, box.y + (box.height - h) / 2);
}
}
dc.SetTextForeground(theTheme.Colour(clrTrackPanelText));
AColor::MIDIChannel(&dc, 0); // always return with gray color selected
}
int NoteTrack::FindChannel(const wxRect &rect, int mx, int my)
{
wxASSERT_MSG(rect.width % 4 == 0, "Midi channel control rect width must be divisible by 4");
wxASSERT_MSG(rect.height % 4 == 0, "Midi channel control rect height must be divisible by 4");
auto cellWidth = rect.width / 4;
auto cellHeight = rect.height / 4;
int col = (mx - rect.x) / cellWidth;
int row = (my - rect.y) / cellHeight;
return row * 4 + col;
}
// Handles clicking within the midi controls rect (same as DrawLabelControls).
// This is somewhat oddly written, as these aren't real buttons - they act
// when the mouse goes down; you can't hold it pressed and move off of it.
// Left-clicking toggles a single channel; right-clicking turns off all other channels.
bool NoteTrack::LabelClick(const wxRect &rect, int mx, int my, bool right)
{
auto channel = FindChannel(rect, mx, my);
if (right)
SoloVisibleChan(channel);
else
ToggleVisibleChan(channel);
return true;
}
void NoteTrack::SetSequence(std::unique_ptr<Alg_seq> &&seq)
{
mSeq = std::move(seq);
}
void NoteTrack::PrintSequence()
{
FILE *debugOutput;
debugOutput = fopen("debugOutput.txt", "wt");
wxFprintf(debugOutput, "Importing MIDI...\n");
// This is called for debugging purposes. Do not compute mSeq on demand
// with GetSeq()
if (mSeq) {
int i = 0;
while(i < mSeq->length()) {
wxFprintf(debugOutput, "--\n");
wxFprintf(debugOutput, "type: %c\n",
((Alg_event_ptr)mSeq->track_list.tracks[i])->get_type());
wxFprintf(debugOutput, "time: %f\n",
((Alg_event_ptr)mSeq->track_list.tracks[i])->time);
wxFprintf(debugOutput, "channel: %li\n",
((Alg_event_ptr)mSeq->track_list.tracks[i])->chan);
if(((Alg_event_ptr)mSeq->track_list.tracks[i])->get_type() == wxT('n'))
{
wxFprintf(debugOutput, "pitch: %f\n",
((Alg_note_ptr)mSeq->track_list.tracks[i])->pitch);
wxFprintf(debugOutput, "duration: %f\n",
((Alg_note_ptr)mSeq->track_list.tracks[i])->dur);
wxFprintf(debugOutput, "velocity: %f\n",
((Alg_note_ptr)mSeq->track_list.tracks[i])->loud);
}
else if(((Alg_event_ptr)mSeq->track_list.tracks[i])->get_type() == wxT('n'))
{
wxFprintf(debugOutput, "key: %li\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->get_identifier());
wxFprintf(debugOutput, "attribute type: %c\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_type());
wxFprintf(debugOutput, "attribute: %s\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_name());
if(((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_type() == wxT('r'))
{
wxFprintf(debugOutput, "value: %f\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.r);
}
else if(((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_type() == wxT('i')) {
wxFprintf(debugOutput, "value: %li\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.i);
}
else if(((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.attr_type() == wxT('s')) {
wxFprintf(debugOutput, "value: %s\n", ((Alg_update_ptr)mSeq->track_list.tracks[i])->parameter.s);
}
else {}
}
i++;
}
}
else {
wxFprintf(debugOutput, "No sequence defined!\n");
}
fclose(debugOutput);
}
Track::Holder NoteTrack::Cut(double t0, double t1)
{
if (t1 < t0)
THROW_INCONSISTENCY_EXCEPTION;
double len = t1-t0;
//auto delta = -(
//( std::min( t1, GetEndTime() ) ) - ( std::max( t0, GetStartTime() ) )
//);
auto newTrack = std::make_shared<NoteTrack>();
newTrack->Init(*this);
auto &seq = GetSeq();
seq.convert_to_seconds();
newTrack->mSeq.reset(seq.cut(t0 - GetOffset(), len, false));
newTrack->SetOffset(0);
// Not needed
// Alg_seq::cut seems to handle this
//AddToDuration( delta );
// What should be done with the rest of newTrack's members?
//(mBottomNote,
// mSerializationBuffer, mSerializationLength, mVisibleChannels)
return newTrack;
}
Track::Holder NoteTrack::Copy(double t0, double t1, bool) const
{
if (t1 < t0)
THROW_INCONSISTENCY_EXCEPTION;
double len = t1-t0;
auto newTrack = std::make_shared<NoteTrack>();
newTrack->Init(*this);
auto &seq = GetSeq();
seq.convert_to_seconds();
newTrack->mSeq.reset(seq.copy(t0 - GetOffset(), len, false));
newTrack->SetOffset(0);
// What should be done with the rest of newTrack's members?
// (mBottomNote, mSerializationBuffer,
// mSerializationLength, mVisibleChannels)
return newTrack;
}
bool NoteTrack::Trim(double t0, double t1)
{
if (t1 < t0)
return false;
auto &seq = GetSeq();
//auto delta = -(
//( GetEndTime() - std::min( GetEndTime(), t1 ) ) +
//( std::max(t0, GetStartTime()) - GetStartTime() )
//);
seq.convert_to_seconds();
// DELETE way beyond duration just in case something is out there:
seq.clear(t1 - GetOffset(), seq.get_dur() + 10000.0, false);
// Now that stuff beyond selection is cleared, clear before selection:
seq.clear(0.0, t0 - GetOffset(), false);
// want starting time to be t0
SetOffset(t0);
// Not needed
// Alg_seq::clear seems to handle this
//AddToDuration( delta );
return true;
}
void NoteTrack::Clear(double t0, double t1)
{
if (t1 < t0)
THROW_INCONSISTENCY_EXCEPTION;
double len = t1-t0;
auto &seq = GetSeq();
auto offset = GetOffset();
auto start = t0 - offset;
if (start < 0.0) {
// AlgSeq::clear will shift the cleared interval, not changing len, if
// start is negative. That's not what we want to happen.
if (len > -start) {
seq.clear(0, len + start, false);
SetOffset(t0);
}
else
SetOffset(offset - len);
}
else {
//auto delta = -(
//( std::min( t1, GetEndTime() ) ) - ( std::max( t0, GetStartTime() ) )
//);
seq.clear(start, len, false);
// Not needed
// Alg_seq::clear seems to handle this
// AddToDuration( delta );
}
}
void NoteTrack::Paste(double t, const Track *src)
{
// Paste inserts src at time t. If src has a positive offset,
// the offset is treated as silence which is also inserted. If
// the offset is negative, the offset is ignored and the ENTIRE
// src is inserted (otherwise, we would either lose data from
// src by not inserting things at negative times, or inserting
// things at negative times could overlap things already in
// the destination track).
//Check that src is a non-NULL NoteTrack
bool bOk = src && src->TypeSwitch< bool >( [&](const NoteTrack *other) {
auto myOffset = this->GetOffset();
if (t < myOffset) {
// workaround strange behavior described at
// http://bugzilla.audacityteam.org/show_bug.cgi?id=1735#c3
SetOffset(t);
InsertSilence(t, myOffset - t);
}
double delta = 0.0;
auto &seq = GetSeq();
auto offset = other->GetOffset();
if ( offset > 0 ) {
seq.convert_to_seconds();
seq.insert_silence( t - GetOffset(), offset );
t += offset;
// Is this needed or does Alg_seq::insert_silence take care of it?
//delta += offset;
}
// This seems to be needed:
delta += std::max( 0.0, t - GetEndTime() );
// This, not:
//delta += other->GetSeq().get_real_dur();
seq.paste(t - GetOffset(), &other->GetSeq());
AddToDuration( delta );
return true;
});
if ( !bOk )
// THROW_INCONSISTENCY_EXCEPTION; // ?
(void)0;// intentionally do nothing
}
void NoteTrack::Silence(double t0, double t1)
{
if (t1 < t0)
THROW_INCONSISTENCY_EXCEPTION;
auto len = t1 - t0;
auto &seq = GetSeq();
seq.convert_to_seconds();
// XXX: do we want to set the all param?
// If it's set, then it seems like notes are silenced if they start or end in the range,
// otherwise only if they start in the range. --Poke
seq.silence(t0 - GetOffset(), len, false);
}
void NoteTrack::InsertSilence(double t, double len)
{
if (len < 0)
THROW_INCONSISTENCY_EXCEPTION;
auto &seq = GetSeq();
seq.convert_to_seconds();
seq.insert_silence(t - GetOffset(), len);
// is this needed?
// AddToDuration( len );
}
#ifdef EXPERIMENTAL_MIDI_OUT
void NoteTrack::SetVelocity(float velocity)
{
if (mVelocity != velocity) {
mVelocity = velocity;
Notify();
}
}
#endif
// Call this function to manipulate the underlying sequence data. This is
// NOT the function that handles horizontal dragging.
bool NoteTrack::Shift(double t) // t is always seconds
{
if (t > 0) {
auto &seq = GetSeq();
// insert an even number of measures
seq.convert_to_beats();
// get initial tempo
double tempo = seq.get_tempo(0.0);
double beats_per_measure = seq.get_bar_len(0.0);
int m = ROUND(t * tempo / beats_per_measure);
// need at least 1 measure, so if we rounded down to zero, fix it
if (m == 0) m = 1;
// compute NEW tempo so that m measures at NEW tempo take t seconds
tempo = beats_per_measure * m / t; // in beats per second
seq.insert_silence(0.0, beats_per_measure * m);
seq.set_tempo(tempo * 60.0 /* bpm */, 0.0, beats_per_measure * m);
seq.write("afterShift.gro");
} else if (t < 0) {
auto &seq = GetSeq();
seq.convert_to_seconds();
seq.clear(0, t, true);
} else { // offset is zero, no modifications
return false;
}
return true;
}
QuantizedTimeAndBeat NoteTrack::NearestBeatTime( double time ) const
{
// Alg_seq knows nothing about offset, so remove offset time
double seq_time = time - GetOffset();
double beat;
auto &seq = GetSeq();
seq_time = seq.nearest_beat_time(seq_time, &beat);
// add the offset back in to get "actual" audacity track time
return { seq_time + GetOffset(), beat };
}
Track::Holder NoteTrack::PasteInto( AudacityProject & ) const
{
auto pNewTrack = std::make_shared<NoteTrack>();
pNewTrack->Paste(0.0, this);
return pNewTrack;
}
auto NoteTrack::GetIntervals() const -> ConstIntervals
{
ConstIntervals results;
results.emplace_back( GetStartTime(), GetEndTime() );
return results;
}
auto NoteTrack::GetIntervals() -> Intervals
{
Intervals results;
results.emplace_back( GetStartTime(), GetEndTime() );
return results;
}
void NoteTrack::AddToDuration( double delta )
{
auto &seq = GetSeq();
#if 0
// PRL: Would this be better ?
seq.set_real_dur( seq.get_real_dur() + delta );
#else
seq.convert_to_seconds();
seq.set_dur( seq.get_dur() + delta );
#endif
}
bool NoteTrack::StretchRegion
( QuantizedTimeAndBeat t0, QuantizedTimeAndBeat t1, double newDur )
{
auto &seq = GetSeq();
bool result = seq.stretch_region( t0.second, t1.second, newDur );
if (result) {
const auto oldDur = t1.first - t0.first;
AddToDuration( newDur - oldDur );
}
return result;
}
namespace
{
void swap(std::unique_ptr<Alg_seq> &a, std::unique_ptr<Alg_seq> &b)
{
std::unique_ptr<Alg_seq> tmp = std::move(a);
a = std::move(b);
b = std::move(tmp);
}
}
Alg_seq *NoteTrack::MakeExportableSeq(std::unique_ptr<Alg_seq> &cleanup) const
{
cleanup.reset();
double offset = GetOffset();
if (offset == 0)
return &GetSeq();
// make a copy, deleting events that are shifted before time 0
double start = -offset;
if (start < 0) start = 0;
// notes that begin before "start" are not included even if they
// extend past "start" (because "all" parameter is set to false)
cleanup.reset( GetSeq().copy(start, GetSeq().get_dur() - start, false) );
auto seq = cleanup.get();
if (offset > 0) {
{
// swap cleanup and mSeq so that Shift operates on the NEW copy
swap( this->mSeq, cleanup );
auto cleanup2 = finally( [&] { swap( this->mSeq, cleanup ); } );
const_cast< NoteTrack *>( this )->Shift(offset);
}
#ifdef OLD_CODE
// now shift events by offset. This must be done with an integer
// number of measures, so first, find the beats-per-measure
double beats_per_measure = 4.0;
Alg_time_sig_ptr tsp = NULL;
if (seq->time_sig.length() > 0 && seq->time_sig[0].beat < ALG_EPS) {
// there is an initial time signature
tsp = &(seq->time_sig[0]);
beats_per_measure = (tsp->num * 4) / tsp->den;
}
// also need the initial tempo
double bps = ALG_DEFAULT_BPM / 60;
Alg_time_map_ptr map = seq->get_time_map();
Alg_beat_ptr bp = &(map->beats[0]);
if (bp->time < ALG_EPS) { // tempo change at time 0
if (map->beats.len > 1) { // compute slope to get tempo
bps = (map->beats[1].beat - map->beats[0].beat) /
(map->beats[1].time - map->beats[0].time);
} else if (seq->get_time_map()->last_tempo_flag) {
bps = seq->get_time_map()->last_tempo;
}
}
// find closest number of measures to fit in the gap
// number of measures is offset / measure_time
double measure_time = beats_per_measure / bps; // seconds per measure
int n = ROUND(offset / measure_time);
if (n == 0) n = 1;
// we will insert n measures. Compute the desired duration of each.
measure_time = offset / n;
bps = beats_per_measure / measure_time;
// insert integer multiple of measures at beginning
seq->convert_to_beats();
seq->insert_silence(0, beats_per_measure * n);
// make sure time signature at 0 is correct
if (tsp) {
seq->set_time_sig(0, tsp->num, tsp->den);
}
// adjust tempo to match offset
seq->set_tempo(bps * 60.0, 0, beats_per_measure * n);
#endif
} else {
auto &mySeq = GetSeq();
// if offset is negative, it might not be a multiple of beats, but
// we want to preserve the relative positions of measures. I.e. we
// should shift barlines and time signatures as well as notes.
// Insert a time signature at the first bar-line if necessary.
// Translate start from seconds to beats and call it beat:
double beat = mySeq.get_time_map()->time_to_beat(start);
// Find the time signature in mySeq in effect at start (beat):
int i = mySeq.time_sig.find_beat(beat);
// i is where you would insert a NEW time sig at beat,
// Case 1: beat coincides with a time sig at i. Time signature
// at beat means that there is a barline at beat, so when beat
// is shifted to 0, the relative barline positions are preserved
if (mySeq.time_sig.length() > 0 &&
within(beat, mySeq.time_sig[i].beat, ALG_EPS)) {
// beat coincides with time signature change, so offset must
// be a multiple of beats
/* do nothing */ ;
// Case 2: there is no time signature before beat.
} else if (i == 0 && (mySeq.time_sig.length() == 0 ||
mySeq.time_sig[i].beat > beat)) {
// If beat does not fall on an implied barline, we need to
// insert a time signature.
double measures = beat / 4.0;
double imeasures = ROUND(measures);
if (!within(measures, imeasures, ALG_EPS)) {
double bar_offset = ((int)(measures) + 1) * 4.0 - beat;
seq->set_time_sig(bar_offset, 4, 4);
}
// This case should never be true because if i == 0, either there
// are no time signatures before beat (Case 2),
// or there is one time signature at beat (Case 1)
} else if (i == 0) {
/* do nothing (might be good to assert(false)) */ ;
// Case 3: i-1 must be the effective time sig position
} else {
i -= 1; // index the time signature in effect at beat
Alg_time_sig_ptr tsp = &(mySeq.time_sig[i]);
double beats_per_measure = (tsp->num * 4) / tsp->den;
double measures = (beat - tsp->beat) / beats_per_measure;
int imeasures = ROUND(measures);
if (!within(measures, imeasures, ALG_EPS)) {
// beat is not on a measure, so we need to insert a time sig
// to force a bar line at the first measure location after
// beat
double bar = tsp->beat + beats_per_measure * ((int)(measures) + 1);
double bar_offset = bar - beat;
// insert NEW time signature at bar_offset in NEW sequence
// It will have the same time signature, but the position will
// force a barline to match the barlines in mSeq
seq->set_time_sig(bar_offset, tsp->num, tsp->den);
}
// else beat coincides with a barline, so no need for an extra
// time signature to force barline alignment
}
}
return seq;
}
bool NoteTrack::ExportMIDI(const wxString &f) const
{
std::unique_ptr<Alg_seq> cleanup;
auto seq = MakeExportableSeq(cleanup);
bool rslt = seq->smf_write(f.mb_str());
return rslt;
}
bool NoteTrack::ExportAllegro(const wxString &f) const
{
double offset = GetOffset();
auto in_seconds = ImportExportPrefs::AllegroStyleSetting.ReadEnum();
auto &seq = GetSeq();
if (in_seconds) {
seq.convert_to_seconds();
} else {
seq.convert_to_beats();
}
return seq.write(f.mb_str(), offset);
}
bool NoteTrack::HandleXMLTag(const wxChar *tag, const wxChar **attrs)
{
if (!wxStrcmp(tag, wxT("notetrack"))) {
while (*attrs) {
const wxChar *attr = *attrs++;
const wxChar *value = *attrs++;
if (!value)
break;
const wxString strValue = value;
long nValue;
double dblValue;
if (this->Track::HandleCommonXMLAttribute(attr, strValue))
;
else if (this->NoteTrackBase::HandleXMLAttribute(attr, value))
{}
else if (!wxStrcmp(attr, wxT("offset")) &&
XMLValueChecker::IsGoodString(strValue) &&
Internat::CompatibleToDouble(strValue, &dblValue))
SetOffset(dblValue);
else if (!wxStrcmp(attr, wxT("visiblechannels"))) {
if (!XMLValueChecker::IsGoodInt(strValue) ||
!strValue.ToLong(&nValue) ||
!XMLValueChecker::IsValidVisibleChannels(nValue))
return false;
mVisibleChannels = nValue;
}
#ifdef EXPERIMENTAL_MIDI_OUT
else if (!wxStrcmp(attr, wxT("velocity")) &&
XMLValueChecker::IsGoodString(strValue) &&
Internat::CompatibleToDouble(strValue, &dblValue))
mVelocity = (float) dblValue;
#endif
else if (!wxStrcmp(attr, wxT("bottomnote")) &&
XMLValueChecker::IsGoodInt(strValue) && strValue.ToLong(&nValue))
SetBottomNote(nValue);
else if (!wxStrcmp(attr, wxT("topnote")) &&
XMLValueChecker::IsGoodInt(strValue) && strValue.ToLong(&nValue))
SetTopNote(nValue);
else if (!wxStrcmp(attr, wxT("data"))) {
std::string s(strValue.mb_str(wxConvUTF8));
std::istringstream data(s);
mSeq = std::make_unique<Alg_seq>(data, false);
}
} // while
return true;
}
return false;
}
XMLTagHandler *NoteTrack::HandleXMLChild(const wxChar * WXUNUSED(tag))
{
return NULL;
}
void NoteTrack::WriteXML(XMLWriter &xmlFile) const
// may throw
{
std::ostringstream data;
Track::Holder holder;
const NoteTrack *saveme = this;
if (!mSeq) {
// replace saveme with an (unserialized) duplicate, which is
// destroyed at end of function.
holder = Clone();
saveme = static_cast<NoteTrack*>(holder.get());
}
saveme->GetSeq().write(data, true);
xmlFile.StartTag(wxT("notetrack"));
saveme->Track::WriteCommonXMLAttributes( xmlFile );
this->NoteTrackBase::WriteXMLAttributes(xmlFile);
xmlFile.WriteAttr(wxT("offset"), saveme->GetOffset());
xmlFile.WriteAttr(wxT("visiblechannels"), saveme->mVisibleChannels);
#ifdef EXPERIMENTAL_MIDI_OUT
xmlFile.WriteAttr(wxT("velocity"), (double) saveme->mVelocity);
#endif
xmlFile.WriteAttr(wxT("bottomnote"), saveme->mBottomNote);
xmlFile.WriteAttr(wxT("topnote"), saveme->mTopNote);
xmlFile.WriteAttr(wxT("data"), wxString(data.str().c_str(), wxConvUTF8));
xmlFile.EndTag(wxT("notetrack"));
}
void NoteTrack::SetBottomNote(int note)
{
if (note < MinPitch)
note = MinPitch;
else if (note > 96)
note = 96;
wxCHECK(note <= mTopNote, );
mBottomNote = note;
}
void NoteTrack::SetTopNote(int note)
{
if (note > MaxPitch)
note = MaxPitch;
wxCHECK(note >= mBottomNote, );
mTopNote = note;
}
void NoteTrack::SetNoteRange(int note1, int note2)
{
// Bounds check
if (note1 > MaxPitch)
note1 = MaxPitch;
else if (note1 < MinPitch)
note1 = MinPitch;
if (note2 > MaxPitch)
note2 = MaxPitch;
else if (note2 < MinPitch)
note2 = MinPitch;
// Swap to ensure ordering
if (note2 < note1) { auto tmp = note1; note1 = note2; note2 = tmp; }
mBottomNote = note1;
mTopNote = note2;
}
void NoteTrack::ShiftNoteRange(int offset)
{
// Ensure everything stays in bounds
if (mBottomNote + offset < MinPitch || mTopNote + offset > MaxPitch)
return;
mBottomNote += offset;
mTopNote += offset;
}
#if 0
void NoteTrack::StartVScroll()
{
mStartBottomNote = mBottomNote;
}
void NoteTrack::VScroll(int start, int end)
{
int ph = GetPitchHeight();
int delta = ((end - start) + ph / 2) / ph;
ShiftNoteRange(delta);
}
#endif
void NoteTrack::Zoom(const wxRect &rect, int y, float multiplier, bool center)
{
NoteTrackDisplayData data = NoteTrackDisplayData(this, rect);
int clickedPitch = data.YToIPitch(y);
int extent = mTopNote - mBottomNote + 1;
int newExtent = (int) (extent / multiplier);
float position;
if (center) {
// center the pitch that the user clicked on
position = .5;
} else {
// align to keep the pitch that the user clicked on in the same place
position = extent / (clickedPitch - mBottomNote);
}
int newBottomNote = clickedPitch - (newExtent * position);
int newTopNote = clickedPitch + (newExtent * (1 - position));
SetNoteRange(newBottomNote, newTopNote);
}
void NoteTrack::ZoomTo(const wxRect &rect, int start, int end)
{
wxRect trackRect(0, rect.GetY(), 1, rect.GetHeight());
NoteTrackDisplayData data = NoteTrackDisplayData(this, trackRect);
int pitch1 = data.YToIPitch(start);
int pitch2 = data.YToIPitch(end);
if (pitch1 == pitch2) {
// Just zoom in instead of zooming to show only one note
Zoom(rect, start, 1, true);
return;
}
// It's fine for this to be in either order
SetNoteRange(pitch1, pitch2);
}
void NoteTrack::ZoomAllNotes()
{
Alg_iterator iterator( &GetSeq(), false );
iterator.begin();
Alg_event_ptr evt;
// Go through all of the notes, finding the minimum and maximum value pitches.
bool hasNotes = false;
int minPitch = MaxPitch;
int maxPitch = MinPitch;
while (NULL != (evt = iterator.next())) {
if (evt->is_note()) {
int pitch = (int) evt->get_pitch();
hasNotes = true;
if (pitch < minPitch)
minPitch = pitch;
if (pitch > maxPitch)
maxPitch = pitch;
}
}
if (!hasNotes) {
// Semi-arbitrary default values:
minPitch = 48;
maxPitch = 72;
}
SetNoteRange(minPitch, maxPitch);
}
NoteTrackDisplayData::NoteTrackDisplayData(const NoteTrack* track, const wxRect &r)
{
auto span = track->GetTopNote() - track->GetBottomNote() + 1; // + 1 to make sure it includes both
mMargin = std::min((int) (r.height / (float)(span)) / 2, r.height / 4);
// Count the number of dividers between B/C and E/F
int numC = 0, numF = 0;
auto botOctave = track->GetBottomNote() / 12, botNote = track->GetBottomNote() % 12;
auto topOctave = track->GetTopNote() / 12, topNote = track->GetTopNote() % 12;
if (topOctave == botOctave)
{
if (botNote == 0) numC = 1;
if (topNote <= 5) numF = 1;
}
else
{
numC = topOctave - botOctave;
numF = topOctave - botOctave - 1;
if (botNote == 0) numC++;
if (botNote <= 5) numF++;
if (topOctave <= 5) numF++;
}
// Effective space, excluding the margins and the lines between some notes
auto effectiveHeight = r.height - (2 * (mMargin + 1)) - numC - numF;
// Guaranteed that both the bottom and top notes will be visible
// (assuming that the clamping below does not happen)
mPitchHeight = effectiveHeight / ((float) span);
if (mPitchHeight < MinPitchHeight)
mPitchHeight = MinPitchHeight;
if (mPitchHeight > MaxPitchHeight)
mPitchHeight = MaxPitchHeight;
mBottom = r.y + r.height - GetNoteMargin() - 1 - GetPitchHeight(1) +
botOctave * GetOctaveHeight() + GetNotePos(botNote);
}
int NoteTrackDisplayData::IPitchToY(int p) const
{ return mBottom - (p / 12) * GetOctaveHeight() - GetNotePos(p % 12); }
int NoteTrackDisplayData::YToIPitch(int y) const
{
y = mBottom - y; // pixels above pitch 0
int octave = (y / GetOctaveHeight());
y -= octave * GetOctaveHeight();
// result is approximate because C and G are one pixel taller than
// mPitchHeight.
// Poke 1-13-18: However in practice this seems not to be an issue,
// as long as we use mPitchHeight and not the rounded version
return (y / mPitchHeight) + octave * 12;
}
const float NoteTrack::ZoomStep = powf( 2.0f, 0.25f );
#endif // USE_MIDI