audacia/src/Track.h

1655 lines
53 KiB
C++

/**********************************************************************
Audacity: A Digital Audio Editor
Track.h
Dominic Mazzoni
**********************************************************************/
#ifndef __AUDACITY_TRACK__
#define __AUDACITY_TRACK__
#include "Audacity.h" // for USE_* macros
#include "Experimental.h"
#include <vector>
#include <list>
#include <functional>
#include <wx/longlong.h>
#include "ClientData.h"
#include "SampleFormat.h"
#include "tracks/ui/CommonTrackPanelCell.h"
#include "xml/XMLTagHandler.h"
#ifdef __WXMSW__
#pragma warning(disable:4284)
#endif
class wxTextFile;
class DirManager;
class Track;
class AudioTrack;
class PlayableTrack;
class LabelTrack;
class TimeTrack;
class TrackControls;
class TrackVRulerControls;
class TrackPanelResizerCell;
class WaveTrack;
class NoteTrack;
class AudacityProject;
class ZoomInfo;
class SelectHandle;
class TimeShiftHandle;
using TrackArray = std::vector< Track* >;
using WaveTrackArray = std::vector < std::shared_ptr< WaveTrack > > ;
using WaveTrackConstArray = std::vector < std::shared_ptr < const WaveTrack > >;
using NoteTrackConstArray = std::vector < std::shared_ptr< const NoteTrack > >;
#if defined(USE_MIDI)
class NoteTrack;
#endif
class TrackList;
using ListOfTracks = std::list< std::shared_ptr< Track > >;
using TrackNodePointer =
std::pair< ListOfTracks::iterator, ListOfTracks* >;
inline bool operator == (const TrackNodePointer &a, const TrackNodePointer &b)
{ return a.second == b.second && a.first == b.first; }
inline bool operator != (const TrackNodePointer &a, const TrackNodePointer &b)
{ return !(a == b); }
enum class TrackKind
{
None,
Wave,
#if defined(USE_MIDI)
Note,
#endif
Label,
Time,
Audio,
Playable,
All
};
/// Compile-time function on enum values.
/// It knows all inheritance relations among Track subclasses
/// even where the track types are only forward declared.
constexpr bool CompatibleTrackKinds( TrackKind desired, TrackKind actual )
{
return
(desired == actual)
||
(desired == TrackKind::All)
||
(desired == TrackKind::Audio && actual == TrackKind::Wave)
#ifdef USE_MIDI
||
(desired == TrackKind::Audio && actual == TrackKind::Note)
#endif
||
(desired == TrackKind::Playable && actual == TrackKind::Wave)
#ifdef EXPERIMENTAL_MIDI_OUT
||
(desired == TrackKind::Playable && actual == TrackKind::Note)
#endif
;
}
/// \brief Metaprogramming in TrackTyper lets track_cast work even when the track
/// subclasses are visible only as incomplete types
namespace TrackTyper {
template<typename, TrackKind> struct Pair;
using List = std::tuple<
Pair<Track, TrackKind::All>,
Pair<AudioTrack, TrackKind::Audio>,
Pair<PlayableTrack, TrackKind::Playable>,
Pair<LabelTrack, TrackKind::Label>,
Pair<NoteTrack, TrackKind::Note>,
Pair<TimeTrack, TrackKind::Time>,
Pair<WaveTrack, TrackKind::Wave>
// New classes can be added easily to this list
>;
template<typename...> struct Lookup;
template<typename TrackType, TrackKind Here, typename... Rest>
struct Lookup< TrackType, std::tuple< Pair<TrackType, Here>, Rest... > > {
static constexpr TrackKind value() {
return Here;
}
};
template<typename TrackType, typename NotHere, typename... Rest>
struct Lookup< TrackType, std::tuple< NotHere, Rest... > > {
static constexpr TrackKind value() {
return Lookup< TrackType, std::tuple< Rest... > >::value();
}
};
};
template<typename TrackType> constexpr TrackKind track_kind ()
{
using namespace TrackTyper;
return Lookup< typename std::remove_const<TrackType>::type, List >::value();
}
// forward declarations, so we can make them friends
template<typename T>
typename std::enable_if< std::is_pointer<T>::value, T >::type
track_cast(Track *track);
template<typename T>
typename std::enable_if<
std::is_pointer<T>::value &&
std::is_const< typename std::remove_pointer< T >::type >::value,
T
>::type
track_cast(const Track *track);
class ViewInfo;
/// This is an in-session identifier of track objects across undo states
///
/// It does not persist between sessions
/// Default constructed value is not equal to the id of any track that has ever
/// been added to a TrackList, or (directly or transitively) copied from such
/// (A pending additional track that is not yet applied is not considered added)
/// TrackIds are assigned uniquely across projects
class TrackId
{
public:
TrackId() : mValue(-1) {}
explicit TrackId (long value) : mValue(value) {}
bool operator == (const TrackId &other) const
{ return mValue == other.mValue; }
bool operator != (const TrackId &other) const
{ return mValue != other.mValue; }
// Define this in case you want to key a std::map on TrackId
// The operator does not mean anything else
bool operator < (const TrackId &other) const
{ return mValue < other.mValue; }
private:
long mValue;
};
class AUDACITY_DLL_API Track /* not final */
: public CommonTrackPanelCell, public XMLTagHandler
, public std::enable_shared_from_this<Track> // see SharedPointer()
{
friend class TrackList;
// To be TrackDisplay
private:
TrackId mId;
protected:
std::weak_ptr<TrackList> mList;
TrackNodePointer mNode{};
int mIndex;
int mY;
int mHeight;
wxString mName;
wxString mDefaultName;
private:
bool mSelected;
protected:
bool mLinked;
bool mMinimized;
public:
using ChannelType = XMLValueChecker::ChannelType;
static const auto LeftChannel = XMLValueChecker::LeftChannel;
static const auto RightChannel = XMLValueChecker::RightChannel;
static const auto MonoChannel = XMLValueChecker::MonoChannel;
TrackId GetId() const { return mId; }
private:
void SetId( TrackId id ) { mId = id; }
public:
// Given a bare pointer, find a shared_ptr. Undefined results if the track
// is not yet managed by a shared_ptr. Undefined results if the track is
// not really of the subclass. (That is, trusts the caller and uses static
// not dynamic casting.)
template<typename Subclass = Track>
inline std::shared_ptr<Subclass> SharedPointer()
{
// shared_from_this is injected into class scope by base class
// std::enable_shared_from_this<Track>
return std::static_pointer_cast<Subclass>( shared_from_this() );
}
template<typename Subclass = const Track>
inline auto SharedPointer() const -> typename
std::enable_if<
std::is_const<Subclass>::value, std::shared_ptr<Subclass>
>::type
{
// shared_from_this is injected into class scope by base class
// std::enable_shared_from_this<Track>
return std::static_pointer_cast<Subclass>( shared_from_this() );
}
// Static overloads of SharedPointer for when the pointer may be null
template<typename Subclass = Track>
static inline std::shared_ptr<Subclass> SharedPointer( Track *pTrack )
{ return pTrack ? pTrack->SharedPointer<Subclass>() : nullptr; }
template<typename Subclass = const Track>
static inline std::shared_ptr<Subclass> SharedPointer( const Track *pTrack )
{ return pTrack ? pTrack->SharedPointer<Subclass>() : nullptr; }
// Find anything registered with TrackList::RegisterPendingChangedTrack and
// not yet cleared or applied; if no such exists, return this track
std::shared_ptr<const Track> SubstitutePendingChangedTrack() const;
// If this track is a pending changed track, return the corresponding
// original; else return this track
std::shared_ptr<const Track> SubstituteOriginalTrack() const;
// Cause certain overriding tool modes (Zoom; future ones?) to behave
// uniformly in all tracks, disregarding track contents.
// Do not further override this...
std::vector<UIHandlePtr> HitTest
(const TrackPanelMouseState &, const AudacityProject *pProject)
final override;
// Delegates the handling to the related TCP cell
std::shared_ptr<TrackPanelCell> ContextMenuDelegate() override;
public:
// Rather override this for subclasses:
virtual std::vector<UIHandlePtr> DetailedHitTest
(const TrackPanelMouseState &,
const AudacityProject *pProject, int currentTool, bool bMultiTool)
= 0;
mutable wxSize vrulerSize;
// Return another, associated TrackPanelCell object that implements the
// drop-down, close and minimize buttons, etc.
std::shared_ptr<TrackControls> GetTrackControl();
std::shared_ptr<const TrackControls> GetTrackControl() const;
// Return another, associated TrackPanelCell object that implements the
// mouse actions for the vertical ruler
std::shared_ptr<TrackVRulerControls> GetVRulerControl();
std::shared_ptr<const TrackVRulerControls> GetVRulerControl() const;
// Return another, associated TrackPanelCell object that implements the
// click and drag to resize
std::shared_ptr<TrackPanelCell> GetResizer();
// This just returns a constant and can be overriden by subclasses
// to specify a different height for the case that the track is minimized.
virtual int GetMinimizedHeight() const;
int GetActualHeight() const { return mHeight; }
int GetIndex() const;
void SetIndex(int index);
int GetY() const;
private:
// Always maintain a strictly contiguous layout of tracks.
// So client code is not permitted to modify this attribute directly.
void SetY(int y);
// No need yet to make this virtual
void DoSetY(int y);
public:
int GetHeight() const;
void SetHeight(int h);
protected:
virtual void DoSetHeight(int h);
public:
bool GetMinimized() const;
void SetMinimized(bool isMinimized);
protected:
virtual void DoSetMinimized(bool isMinimized);
public:
static void FinishCopy (const Track *n, Track *dest);
// For use when loading a file. Return true if ok, else make repair
bool LinkConsistencyCheck();
bool HasOwner() const { return static_cast<bool>(GetOwner());}
private:
std::shared_ptr<TrackList> GetOwner() const { return mList.lock(); }
Track *GetLink() const;
bool GetLinked () const { return mLinked; }
friend WaveTrack; // WaveTrack needs to call SetLinked when reloading project
void SetLinked (bool l);
void SetChannel(ChannelType c) { mChannel = c; }
private:
// No need yet to make this virtual
void DoSetLinked(bool l);
TrackNodePointer GetNode() const;
void SetOwner
(const std::weak_ptr<TrackList> &list, TrackNodePointer node);
// Keep in Track
protected:
ChannelType mChannel;
double mOffset;
mutable std::shared_ptr<DirManager> mDirManager;
public:
enum : unsigned { DefaultHeight = 150 };
Track(const std::shared_ptr<DirManager> &projDirManager);
Track(const Track &orig);
virtual ~ Track();
void Init(const Track &orig);
using Holder = std::shared_ptr<Track>;
virtual Holder Duplicate() const = 0;
// Called when this track is merged to stereo with another, and should
// take on some paramaters of its partner.
virtual void Merge(const Track &orig);
wxString GetName() const { return mName; }
void SetName( const wxString &n );
wxString GetDefaultName() const { return mDefaultName; }
void SetDefaultName( const wxString &n ) { mDefaultName = n; }
bool GetSelected() const { return mSelected; }
virtual void SetSelected(bool s);
public:
virtual ChannelType GetChannel() const { return mChannel;}
virtual double GetOffset() const = 0;
void Offset(double t) { SetOffset(GetOffset() + t); }
virtual void SetOffset (double o) { mOffset = o; }
virtual void SetPan( float ){ ;}
virtual void SetPanFromChannelType(){ ;};
// AS: Note that the dirManager is mutable. This is
// mostly to support "Duplicate" of const objects,
// but in general, mucking with the dir manager is
// separate from the Track.
const std::shared_ptr<DirManager> &GetDirManager() const { return mDirManager; }
// Create a NEW track and modify this track
// Return non-NULL or else throw
// May assume precondition: t0 <= t1
virtual Holder Cut(double WXUNUSED(t0), double WXUNUSED(t1)) = 0;
// Create a NEW track and don't modify this track
// Return non-NULL or else throw
// Note that subclasses may want to distinguish tracks stored in a clipboard
// from those stored in a project
// May assume precondition: t0 <= t1
virtual Holder Copy
(double WXUNUSED(t0), double WXUNUSED(t1), bool forClipboard = true) const = 0;
// May assume precondition: t0 <= t1
virtual void Clear(double WXUNUSED(t0), double WXUNUSED(t1)) = 0;
virtual void Paste(double WXUNUSED(t), const Track * WXUNUSED(src)) = 0;
// This can be used to adjust a sync-lock selected track when the selection
// is replaced by one of a different length.
virtual void SyncLockAdjust(double oldT1, double newT1);
// May assume precondition: t0 <= t1
virtual void Silence(double WXUNUSED(t0), double WXUNUSED(t1)) = 0;
// May assume precondition: t0 <= t1
virtual void InsertSilence(double WXUNUSED(t), double WXUNUSED(len)) = 0;
private:
virtual TrackKind GetKind() const { return TrackKind::None; }
template<typename T>
friend typename std::enable_if< std::is_pointer<T>::value, T >::type
track_cast(Track *track);
template<typename T>
friend typename std::enable_if<
std::is_pointer<T>::value &&
std::is_const< typename std::remove_pointer< T >::type >::value,
T
>::type
track_cast(const Track *track);
public:
bool SameKindAs(const Track &track) const
{ return GetKind() == track.GetKind(); }
template < typename R = void >
using Continuation = std::function< R() >;
using Fallthrough = Continuation<>;
private:
// Variadic template specialized below
template< typename ...Params >
struct Executor;
// This specialization grounds the recursion.
template< typename R, typename ConcreteType >
struct Executor< R, ConcreteType >
{
enum : unsigned { SetUsed = 0 };
// No functions matched, so do nothing.
R operator () (const void *) { return R{}; }
};
// And another specialization is needed for void return.
template< typename ConcreteType >
struct Executor< void, ConcreteType >
{
enum : unsigned { SetUsed = 0 };
// No functions matched, so do nothing.
void operator () (const void *) { }
};
// This struct groups some helpers needed to define the recursive cases of
// Executor.
struct Dispatcher {
// This implements the specialization of Executor
// for the first recursive case.
template< typename R, typename ConcreteType,
typename Function, typename ...Functions >
struct inapplicable
{
using Tail = Executor< R, ConcreteType, Functions... >;
enum : unsigned { SetUsed = Tail::SetUsed << 1 };
// Ignore the first, inapplicable function and try others.
R operator ()
(const Track *pTrack,
const Function &, const Functions &...functions)
{ return Tail{}( pTrack, functions... ); }
};
// This implements the specialization of Executor
// for the second recursive case.
template< typename R, typename BaseClass, typename ConcreteType,
typename Function, typename ...Functions >
struct applicable1
{
enum : unsigned { SetUsed = 1u };
// Ignore the remaining functions and call the first only.
R operator ()
(const Track *pTrack,
const Function &function, const Functions &...)
{ return function( (BaseClass *)pTrack ); }
};
// This implements the specialization of Executor
// for the third recursive case.
template< typename R, typename BaseClass, typename ConcreteType,
typename Function, typename ...Functions >
struct applicable2
{
using Tail = Executor< R, ConcreteType, Functions... >;
enum : unsigned { SetUsed = (Tail::SetUsed << 1) | 1u };
// Call the first function, which may request dispatch to the further
// functions by invoking a continuation.
R operator ()
(const Track *pTrack, const Function &function,
const Functions &...functions)
{
auto continuation = Continuation<R>{ [&] {
return Tail{}( pTrack, functions... );
} };
return function( (BaseClass *)pTrack, continuation );
}
};
// This variadic template chooses among the implementations above.
template< typename ... > struct Switch;
// Ground the recursion.
template< typename R, typename ConcreteType >
struct Switch< R, ConcreteType >
{
// No BaseClass of ConcreteType is acceptable to Function.
template< typename Function, typename ...Functions >
static auto test()
-> inapplicable< R, ConcreteType, Function, Functions... >;
};
// Recursive case.
template< typename R, typename ConcreteType,
typename BaseClass, typename ...BaseClasses >
struct Switch< R, ConcreteType, BaseClass, BaseClasses... >
{
using Retry = Switch< R, ConcreteType, BaseClasses... >;
// If ConcreteType is not compatible with BaseClass, or if
// Function does not accept BaseClass, try other BaseClasses.
template< typename Function, typename ...Functions >
static auto test( const void * )
-> decltype( Retry::template test< Function, Functions... >() );
// If BaseClass is a base of ConcreteType and Function can take it,
// then overload resolution chooses this.
// If not, then the sfinae rule makes this overload unavailable.
template< typename Function, typename ...Functions >
static auto test( std::true_type * )
-> decltype(
(void) std::declval<Function>()
( (BaseClass*)nullptr ),
applicable1< R, BaseClass, ConcreteType,
Function, Functions... >{}
);
// If BaseClass is a base of ConcreteType and Function can take it,
// with a second argument for a continuation,
// then overload resolution chooses this.
// If not, then the sfinae rule makes this overload unavailable.
template< typename Function, typename ...Functions >
static auto test( std::true_type * )
-> decltype(
(void) std::declval<Function>()
( (BaseClass*)nullptr,
std::declval< Continuation<R> >() ),
applicable2< R, BaseClass, ConcreteType,
Function, Functions... >{}
);
static constexpr bool Compatible = CompatibleTrackKinds(
track_kind<BaseClass>(), track_kind<ConcreteType>() );
template< typename Function, typename ...Functions >
static auto test()
-> decltype(
test< Function, Functions... >(
(std::integral_constant<bool, Compatible>*)nullptr) );
};
};
// This specialization is the recursive case for non-const tracks.
template< typename R, typename ConcreteType,
typename Function, typename ...Functions >
struct Executor< R, ConcreteType, Function, Functions... >
: decltype(
Dispatcher::Switch< R, ConcreteType,
Track, AudioTrack, PlayableTrack,
WaveTrack, LabelTrack, TimeTrack,
NoteTrack >
::template test<Function, Functions... >())
{};
// This specialization is the recursive case for const tracks.
template< typename R, typename ConcreteType,
typename Function, typename ...Functions >
struct Executor< R, const ConcreteType, Function, Functions... >
: decltype(
Dispatcher::Switch< R, ConcreteType,
const Track, const AudioTrack, const PlayableTrack,
const WaveTrack, const LabelTrack, const TimeTrack,
const NoteTrack >
::template test<Function, Functions... >())
{};
public:
// A variadic function taking any number of function objects, each taking
// a pointer to Track or a subclass, maybe const-qualified, and maybe a
// second argument which is a fall-through continuation.
// Each of the function objects (and supplied continuations) returns R.
// Call the first in the sequence that accepts the actual type of the track.
// If no function accepts the track, do nothing and return R{}
// if R is not void.
// If one of the functions invokes the call-through, then the next following
// applicable funtion is called.
template< typename R = void, typename ...Functions >
R TypeSwitch(const Functions &...functions)
{
using WaveExecutor =
Executor< R, WaveTrack, Functions... >;
using NoteExecutor =
Executor< R, NoteTrack, Functions... >;
using LabelExecutor =
Executor< R, LabelTrack, Functions... >;
using TimeExecutor =
Executor< R, TimeTrack, Functions... >;
using DefaultExecutor =
Executor< R, Track >;
enum { All = sizeof...( functions ) };
static_assert(
(1u << All) - 1u ==
(WaveExecutor::SetUsed |
NoteExecutor::SetUsed |
LabelExecutor::SetUsed |
TimeExecutor::SetUsed),
"Uncallable case in Track::TypeSwitch"
);
switch (GetKind()) {
case TrackKind::Wave:
return WaveExecutor{} (this, functions...);
#if defined(USE_MIDI)
case TrackKind::Note:
return NoteExecutor{} (this, functions...);
#endif
case TrackKind::Label:
return LabelExecutor{}(this, functions...);
case TrackKind::Time:
return TimeExecutor{} (this, functions...);
default:
return DefaultExecutor{} (this);
}
}
// This is the overload of TypeSwitch (see above) for const tracks, taking
// callable arguments that only accept arguments that are pointers to const
template< typename R = void, typename ...Functions >
R TypeSwitch(const Functions &...functions) const
{
using WaveExecutor =
Executor< R, const WaveTrack, Functions... >;
using NoteExecutor =
Executor< R, const NoteTrack, Functions... >;
using LabelExecutor =
Executor< R, const LabelTrack, Functions... >;
using TimeExecutor =
Executor< R, const TimeTrack, Functions... >;
using DefaultExecutor =
Executor< R, const Track >;
enum { All = sizeof...( functions ) };
static_assert(
(1u << All) - 1u ==
(WaveExecutor::SetUsed |
NoteExecutor::SetUsed |
LabelExecutor::SetUsed |
TimeExecutor::SetUsed),
"Uncallable case in Track::TypeSwitch"
);
switch (GetKind()) {
case TrackKind::Wave:
return WaveExecutor{} (this, functions...);
#if defined(USE_MIDI)
case TrackKind::Note:
return NoteExecutor{} (this, functions...);
#endif
case TrackKind::Label:
return LabelExecutor{}(this, functions...);
case TrackKind::Time:
return TimeExecutor{} (this, functions...);
default:
return DefaultExecutor{} (this);
}
}
// XMLTagHandler callback methods -- NEW virtual for writing
virtual void WriteXML(XMLWriter &xmlFile) const = 0;
// Returns true if an error was encountered while trying to
// open the track from XML
virtual bool GetErrorOpening() { return false; }
virtual double GetStartTime() const = 0;
virtual double GetEndTime() const = 0;
// Checks if sync-lock is on and any track in its sync-lock group is selected.
bool IsSyncLockSelected() const;
// Send an event to listeners when state of the track changes
// To do: define values for the argument to distinguish different parts
// of the state, perhaps with wxNewId
void Notify( int code = -1 );
// An always-true predicate useful for defining iterators
bool Any() const;
// Frequently useful operands for + and -
bool IsSelected() const;
bool IsSelectedOrSyncLockSelected() const;
bool IsLeader() const;
bool IsSelectedLeader() const;
protected:
std::shared_ptr<Track> DoFindTrack() override;
// These are called to create controls on demand:
virtual std::shared_ptr<TrackControls> DoGetControls() = 0;
virtual std::shared_ptr<TrackVRulerControls> DoGetVRulerControls() = 0;
// These hold the controls:
std::shared_ptr<TrackControls> mpControls;
std::shared_ptr<TrackVRulerControls> mpVRulerContols;
std::shared_ptr<TrackPanelResizerCell> mpResizer;
std::weak_ptr<SelectHandle> mSelectHandle;
std::weak_ptr<TimeShiftHandle> mTimeShiftHandle;
};
class AUDACITY_DLL_API AudioTrack /* not final */ : public Track
{
public:
AudioTrack(const std::shared_ptr<DirManager> &projDirManager)
: Track{ projDirManager } {}
AudioTrack(const Track &orig) : Track{ orig } {}
// Serialize, not with tags of its own, but as attributes within a tag.
void WriteXMLAttributes(XMLWriter &WXUNUSED(xmlFile)) const {}
// Return true iff the attribute is recognized.
bool HandleXMLAttribute(const wxChar * /*attr*/, const wxChar * /*value*/)
{ return false; }
};
class AUDACITY_DLL_API PlayableTrack /* not final */ : public AudioTrack
{
public:
PlayableTrack(const std::shared_ptr<DirManager> &projDirManager)
: AudioTrack{ projDirManager } {}
PlayableTrack(const Track &orig) : AudioTrack{ orig } {}
bool GetMute () const { return mMute; }
bool GetSolo () const { return mSolo; }
void SetMute (bool m);
void SetSolo (bool s);
void Init( const PlayableTrack &init );
void Merge( const Track &init ) override;
// Serialize, not with tags of its own, but as attributes within a tag.
void WriteXMLAttributes(XMLWriter &xmlFile) const;
// Return true iff the attribute is recognized.
bool HandleXMLAttribute(const wxChar *attr, const wxChar *value);
protected:
bool mMute { false };
bool mSolo { false };
};
// Functions to encapsulate the checked down-casting of track pointers,
// eliminating possibility of error -- and not quietly casting away const
// typical usage:
// if (auto wt = track_cast<WaveTrack*>(track)) { ... }
template<typename T>
inline typename std::enable_if< std::is_pointer<T>::value, T >::type
track_cast(Track *track)
{
using BareType = typename std::remove_pointer< T >::type;
if (track &&
CompatibleTrackKinds( track_kind<BareType>(), track->GetKind() ))
return reinterpret_cast<T>(track);
else
return nullptr;
}
// Overload for const pointers can cast only to other const pointer types
template<typename T>
inline typename std::enable_if<
std::is_pointer<T>::value &&
std::is_const< typename std::remove_pointer< T >::type >::value,
T
>::type
track_cast(const Track *track)
{
using BareType = typename std::remove_pointer< T >::type;
if (track &&
CompatibleTrackKinds( track_kind<BareType>(), track->GetKind() ))
return reinterpret_cast<T>(track);
else
return nullptr;
}
template < typename TrackType > struct TrackIterRange;
// new track iterators can eliminate the need to cast the result
template <
typename TrackType // Track or a subclass, maybe const-qualified
> class TrackIter
: public ValueIterator< TrackType *, std::bidirectional_iterator_tag >
{
public:
// Type of predicate taking pointer to const TrackType
// TODO C++14: simplify away ::type
using FunctionType = std::function< bool(
typename std::add_pointer<
typename std::add_const<
typename std::remove_pointer<
TrackType
>::type
>::type
>::type
) >;
template<typename Predicate = FunctionType>
TrackIter( TrackNodePointer begin, TrackNodePointer iter,
TrackNodePointer end, const Predicate &pred = {} )
: mBegin( begin ), mIter( iter ), mEnd( end ), mPred( pred )
{
// Establish the class invariant
if (this->mIter != this->mEnd && !this->valid())
this->operator ++ ();
}
// Return an iterator that replaces the predicate, advancing to the first
// position at or after the old position that satisfies the new predicate,
// or to the end.
template < typename Predicate2 >
TrackIter Filter( const Predicate2 &pred2 ) const
{
return { this->mBegin, this->mIter, this->mEnd, pred2 };
}
// Return an iterator that refines the subclass (and not removing const),
// advancing to the first position at or after the old position that
// satisfies the type constraint, or to the end
template < typename TrackType2 >
auto Filter() const
-> typename std::enable_if<
std::is_base_of< TrackType, TrackType2 >::value &&
(!std::is_const<TrackType>::value ||
std::is_const<TrackType2>::value),
TrackIter< TrackType2 >
>::type
{
return { this->mBegin, this->mIter, this->mEnd, this->mPred };
}
const FunctionType &GetPredicate() const
{ return this->mPred; }
// Unlike with STL iterators, this class gives well defined behavior when
// you increment an end iterator: you get the same.
TrackIter &operator ++ ()
{
// Maintain the class invariant
if (this->mIter != this->mEnd) do
++this->mIter.first;
while (this->mIter != this->mEnd && !this->valid() );
return *this;
}
TrackIter operator ++ (int)
{
TrackIter result { *this };
this-> operator ++ ();
return result;
}
// Unlike with STL iterators, this class gives well defined behavior when
// you decrement past the beginning of a range: you wrap and get an end
// iterator.
TrackIter &operator -- ()
{
// Maintain the class invariant
do {
if (this->mIter == this->mBegin)
// Go circularly
this->mIter = this->mEnd;
else
--this->mIter.first;
} while (this->mIter != this->mEnd && !this->valid() );
return *this;
}
TrackIter operator -- (int)
{
TrackIter result { *this };
this->operator -- ();
return result;
}
// Unlike with STL iterators, this class gives well defined behavior when
// you dereference an end iterator: you get a null pointer.
TrackType *operator * () const
{
if (this->mIter == this->mEnd)
return nullptr;
else
// Other methods guarantee that the cast is correct
// (provided no operations on the TrackList invalidated
// underlying iterators or replaced the tracks there)
return static_cast< TrackType * >( &**this->mIter.first );
}
// This might be called operator + ,
// but that might wrongly suggest constant time when the iterator is not
// random access.
TrackIter advance( long amount ) const
{
auto copy = *this;
std::advance( copy, amount );
return copy;
}
friend inline bool operator == (TrackIter a, TrackIter b)
{
// Assume the predicate is not stateful. Just compare the iterators.
return
a.mIter == b.mIter
// Assume this too:
// && a.mBegin == b.mBegin && a.mEnd == b.mEnd
;
}
friend inline bool operator != (TrackIter a, TrackIter b)
{
return !(a == b);
}
private:
bool valid() const
{
// assume mIter != mEnd
const auto pTrack = track_cast< TrackType * >( &**this->mIter.first );
if (!pTrack)
return false;
return !this->mPred || this->mPred( pTrack );
}
// This friendship is needed in TrackIterRange::StartingWith and
// TrackIterRange::EndingAfter()
friend TrackIterRange< TrackType >;
// The class invariant is that mIter == mEnd, or else, mIter != mEnd and
// **mIter is of the appropriate subclass and mPred(&**mIter) is true.
TrackNodePointer mBegin, mIter, mEnd;
FunctionType mPred;
};
template <
typename TrackType // Track or a subclass, maybe const-qualified
> struct TrackIterRange
: public IteratorRange< TrackIter< TrackType > >
{
TrackIterRange
( const TrackIter< TrackType > &begin,
const TrackIter< TrackType > &end )
: IteratorRange< TrackIter< TrackType > >
( begin, end )
{}
// Conjoin the filter predicate with another predicate
// Read + as "and"
template< typename Predicate2 >
TrackIterRange operator + ( const Predicate2 &pred2 ) const
{
const auto &pred1 = this->first.GetPredicate();
using Function = typename TrackIter<TrackType>::FunctionType;
const auto &newPred = pred1
? Function{ [=] (typename Function::argument_type track) {
return pred1(track) && pred2(track);
} }
: Function{ pred2 };
return {
this->first.Filter( newPred ),
this->second.Filter( newPred )
};
}
// Specify the added conjunct as a pointer to member function
// Read + as "and"
template< typename R, typename C >
TrackIterRange operator + ( R ( C ::* pmf ) () const ) const
{
return this->operator + ( std::mem_fn( pmf ) );
}
// Conjoin the filter predicate with the negation of another predicate
// Read - as "and not"
template< typename Predicate2 >
TrackIterRange operator - ( const Predicate2 &pred2 ) const
{
using ArgumentType =
typename TrackIterRange::iterator::FunctionType::argument_type;
auto neg = [=] (ArgumentType track) { return !pred2( track ); };
return this->operator + ( neg );
}
// Specify the negated conjunct as a pointer to member function
// Read - as "and not"
template< typename R, typename C >
TrackIterRange operator - ( R ( C ::* pmf ) () const ) const
{
return this->operator + ( std::not1( std::mem_fn( pmf ) ) );
}
template< typename TrackType2 >
TrackIterRange< TrackType2 > Filter() const
{
return {
this-> first.template Filter< TrackType2 >(),
this->second.template Filter< TrackType2 >()
};
}
TrackIterRange StartingWith( const Track *pTrack ) const
{
auto newBegin = this->find( pTrack );
// More careful construction is needed so that the independent
// increment and decrement of each iterator in the NEW pair
// has the expected behavior at boundaries of the range
return {
{ newBegin.mIter, newBegin.mIter, this->second.mEnd,
this->first.GetPredicate() },
{ newBegin.mIter, this->second.mEnd, this->second.mEnd,
this->second.GetPredicate() }
};
}
TrackIterRange EndingAfter( const Track *pTrack ) const
{
const auto newEnd = this->reversal().find( pTrack ).base();
// More careful construction is needed so that the independent
// increment and decrement of each iterator in the NEW pair
// has the expected behavior at boundaries of the range
return {
{ this->first.mBegin, this->first.mIter, newEnd.mIter,
this->first.GetPredicate() },
{ this->first.mBegin, newEnd.mIter, newEnd.mIter,
this->second.GetPredicate() }
};
}
// Exclude one given track
TrackIterRange Excluding ( const TrackType *pExcluded ) const
{
return this->operator - (
[=](const Track *pTrack){ return pExcluded == pTrack; } );
}
// See Track::TypeSwitch
template< typename ...Functions >
void Visit(const Functions &...functions)
{
for (auto track : *this)
track->TypeSwitch(functions...);
}
// See Track::TypeSwitch
// Visit until flag is false, or no more tracks
template< typename Flag, typename ...Functions >
void VisitWhile(Flag &flag, const Functions &...functions)
{
if ( flag ) for (auto track : *this) {
track->TypeSwitch(functions...);
if (!flag)
break;
}
}
};
struct TrackListEvent : public wxCommandEvent
{
explicit
TrackListEvent(
wxEventType commandType,
const std::weak_ptr<Track> &pTrack = {}, int code = -1)
: wxCommandEvent{ commandType }
, mpTrack{ pTrack }
, mCode{ code }
{}
TrackListEvent( const TrackListEvent& ) = default;
wxEvent *Clone() const override { return new TrackListEvent(*this); }
std::weak_ptr<Track> mpTrack;
int mCode;
};
// Posted when the set of selected tracks changes.
wxDECLARE_EXPORTED_EVENT(AUDACITY_DLL_API,
EVT_TRACKLIST_SELECTION_CHANGE, TrackListEvent);
// Posted when certain fields of a track change.
wxDECLARE_EXPORTED_EVENT(AUDACITY_DLL_API,
EVT_TRACKLIST_TRACK_DATA_CHANGE, TrackListEvent);
// Posted when tracks are reordered but otherwise unchanged.
wxDECLARE_EXPORTED_EVENT(AUDACITY_DLL_API,
EVT_TRACKLIST_PERMUTED, TrackListEvent);
// Posted when some track changed its height.
wxDECLARE_EXPORTED_EVENT(AUDACITY_DLL_API,
EVT_TRACKLIST_RESIZING, TrackListEvent);
// Posted when a track has been added to a tracklist.
// Also posted when one track replaces another
wxDECLARE_EXPORTED_EVENT(AUDACITY_DLL_API,
EVT_TRACKLIST_ADDITION, TrackListEvent);
// Posted when a track has been deleted from a tracklist.
// Also posted when one track replaces another
wxDECLARE_EXPORTED_EVENT(AUDACITY_DLL_API,
EVT_TRACKLIST_DELETION, TrackListEvent);
/** \brief TrackList is a flat linked list of tracks supporting Add, Remove,
* Clear, and Contains, plus serialization of the list of tracks.
*/
class TrackList final
: public wxEvtHandler
, public ListOfTracks
, public std::enable_shared_from_this<TrackList>
, public ClientData::Base
{
// privatize this, make you use Add instead:
using ListOfTracks::push_back;
// privatize this, make you use Swap instead:
using ListOfTracks::swap;
// Disallow copy
TrackList(const TrackList &that) = delete;
TrackList &operator= (const TrackList&) = delete;
// Allow move
TrackList(TrackList &&that) : TrackList() { Swap(that); }
TrackList& operator= (TrackList&&);
void clear() = delete;
public:
static TrackList &Get( AudacityProject &project );
static const TrackList &Get( const AudacityProject &project );
// Create an empty TrackList
// Don't call directly -- use Create() instead
TrackList();
// Create an empty TrackList
static std::shared_ptr<TrackList> Create();
// Move is defined in terms of Swap
void Swap(TrackList &that);
// Destructor
virtual ~TrackList();
// Iteration
// Hide the inherited begin() and end()
using iterator = TrackIter<Track>;
using const_iterator = TrackIter<const Track>;
using value_type = Track *;
iterator begin() { return Any().begin(); }
iterator end() { return Any().end(); }
const_iterator begin() const { return Any().begin(); }
const_iterator end() const { return Any().end(); }
const_iterator cbegin() const { return begin(); }
const_iterator cend() const { return end(); }
// Turn a pointer into an iterator (constant time).
template < typename TrackType = Track >
auto Find(Track *pTrack)
-> TrackIter< TrackType >
{
if (!pTrack || pTrack->GetOwner().get() != this)
return EndIterator<TrackType>();
else
return MakeTrackIterator<TrackType>( pTrack->GetNode() );
}
// Turn a pointer into an iterator (constant time).
template < typename TrackType = const Track >
auto Find(const Track *pTrack) const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIter< TrackType >
>::type
{
if (!pTrack || pTrack->GetOwner().get() != this)
return EndIterator<TrackType>();
else
return MakeTrackIterator<TrackType>( pTrack->GetNode() );
}
// If the track is not an audio track, or not one of a group of channels,
// return the track itself; else return the first channel of its group --
// in either case as an iterator that will only visit other leader tracks.
// (Generalizing away from the assumption of at most stereo)
TrackIter< Track > FindLeader( Track *pTrack );
TrackIter< const Track >
FindLeader( const Track *pTrack ) const
{
return const_cast<TrackList*>(this)->
FindLeader( const_cast<Track*>(pTrack) ).Filter< const Track >();
}
template < typename TrackType = Track >
auto Any()
-> TrackIterRange< TrackType >
{
return Tracks< TrackType >();
}
template < typename TrackType = const Track >
auto Any() const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
return Tracks< TrackType >();
}
// Abbreviating some frequently used cases
template < typename TrackType = Track >
auto Selected()
-> TrackIterRange< TrackType >
{
return Tracks< TrackType >( &Track::IsSelected );
}
template < typename TrackType = const Track >
auto Selected() const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
return Tracks< TrackType >( &Track::IsSelected );
}
template < typename TrackType = Track >
auto Leaders()
-> TrackIterRange< TrackType >
{
return Tracks< TrackType >( &Track::IsLeader );
}
template < typename TrackType = const Track >
auto Leaders() const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
return Tracks< TrackType >( &Track::IsLeader );
}
template < typename TrackType = Track >
auto SelectedLeaders()
-> TrackIterRange< TrackType >
{
return Tracks< TrackType >( &Track::IsSelectedLeader );
}
template < typename TrackType = const Track >
auto SelectedLeaders() const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
return Tracks< TrackType >( &Track::IsSelectedLeader );
}
template<typename TrackType>
static auto SingletonRange( TrackType *pTrack )
-> TrackIterRange< TrackType >
{
return pTrack->GetOwner()->template Any<TrackType>()
.StartingWith( pTrack ).EndingAfter( pTrack );
}
static TrackIterRange< Track >
SyncLockGroup( Track *pTrack );
static TrackIterRange< const Track >
SyncLockGroup( const Track *pTrack )
{
return SyncLockGroup(const_cast<Track*>(pTrack)).Filter<const Track>();
}
private:
Track *DoAddToHead(const std::shared_ptr<Track> &t);
Track *DoAdd(const std::shared_ptr<Track> &t);
template< typename TrackType, typename InTrackType >
static TrackIterRange< TrackType >
Channels_( TrackIter< InTrackType > iter1 )
{
// Assume iterator filters leader tracks
if (*iter1) {
return {
iter1.Filter( &Track::Any )
.template Filter<TrackType>(),
(++iter1).Filter( &Track::Any )
.template Filter<TrackType>()
};
}
else
// empty range
return {
iter1.template Filter<TrackType>(),
iter1.template Filter<TrackType>()
};
}
public:
// Find an iterator range of channels including the given track.
template< typename TrackType >
static auto Channels( TrackType *pTrack )
-> TrackIterRange< TrackType >
{
return Channels_<TrackType>( pTrack->GetOwner()->FindLeader(pTrack) );
}
friend class Track;
/// For use in sorting: assume each iterator points into this list, no duplications
void Permute(const std::vector<TrackNodePointer> &permutation);
Track *FindById( TrackId id );
/// Add a Track, giving it a fresh id
template<typename TrackKind>
TrackKind *AddToHead( const std::shared_ptr< TrackKind > &t )
{ return static_cast< TrackKind* >( DoAddToHead( t ) ); }
template<typename TrackKind>
TrackKind *Add( const std::shared_ptr< TrackKind > &t )
{ return static_cast< TrackKind* >( DoAdd( t ) ); }
/** \brief Define a group of channels starting at the given track
*
* @param track and (groupSize - 1) following tracks must be in this
* list. They will be disassociated from any groups they already belong to.
* @param groupSize must be at least 1.
* @param resetChannels if true, disassociated channels will be marked Mono.
*/
void GroupChannels(
Track &track, size_t groupSize, bool resetChannels = true );
/// Replace first track with second track, give back a holder
/// Give the replacement the same id as the replaced
ListOfTracks::value_type Replace(
Track * t, const ListOfTracks::value_type &with);
/// Remove this Track or all children of this TrackList.
/// Return an iterator to what followed the removed track.
TrackNodePointer Remove(Track *t);
/// Make the list empty
void Clear(bool sendEvent = true);
int GetGroupHeight(const Track * t) const;
bool CanMoveUp(Track * t) const;
bool CanMoveDown(Track * t) const;
bool MoveUp(Track * t);
bool MoveDown(Track * t);
bool Move(Track * t, bool up) { return up ? MoveUp(t) : MoveDown(t); }
TimeTrack *GetTimeTrack();
const TimeTrack *GetTimeTrack() const;
/** \brief Find out how many channels this track list mixes to
*
* This is used in exports of the tracks to work out whether to export in
* Mono, Stereo etc. @param selectionOnly Whether to consider the entire track
* list or only the selected members of it
*/
unsigned GetNumExportChannels(bool selectionOnly) const;
WaveTrackArray GetWaveTrackArray(bool selectionOnly, bool includeMuted = true);
WaveTrackConstArray GetWaveTrackConstArray(bool selectionOnly, bool includeMuted = true) const;
#if defined(USE_MIDI)
NoteTrackConstArray GetNoteTrackConstArray(bool selectionOnly) const;
#endif
/// Mainly a test function. Uses a linear search, so could be slow.
bool Contains(const Track * t) const;
// Return non-null only if the weak pointer is not, and the track is
// owned by this list; constant time.
template <typename Subclass>
std::shared_ptr<Subclass> Lock(const std::weak_ptr<Subclass> &wTrack)
{
auto pTrack = wTrack.lock();
if (pTrack) {
auto pList = pTrack->mList.lock();
if (pTrack && this == pList.get())
return pTrack;
}
return {};
}
bool empty() const;
size_t size() const;
double GetStartTime() const;
double GetEndTime() const;
double GetMinOffset() const;
int GetHeight() const;
#if LEGACY_PROJECT_FILE_SUPPORT
// File I/O
bool Load(wxTextFile * in, DirManager * dirManager) override;
bool Save(wxTextFile * out, bool overwrite) override;
#endif
private:
// Visit all tracks satisfying a predicate, mutative access
template <
typename TrackType = Track,
typename Pred =
typename TrackIterRange< TrackType >::iterator::FunctionType
>
auto Tracks( const Pred &pred = {} )
-> TrackIterRange< TrackType >
{
auto b = getBegin(), e = getEnd();
return { { b, b, e, pred }, { b, e, e, pred } };
}
// Visit all tracks satisfying a predicate, const access
template <
typename TrackType = const Track,
typename Pred =
typename TrackIterRange< TrackType >::iterator::FunctionType
>
auto Tracks( const Pred &pred = {} ) const
-> typename std::enable_if< std::is_const<TrackType>::value,
TrackIterRange< TrackType >
>::type
{
auto b = const_cast<TrackList*>(this)->getBegin();
auto e = const_cast<TrackList*>(this)->getEnd();
return { { b, b, e, pred }, { b, e, e, pred } };
}
Track *GetPrev(Track * t, bool linked = false) const;
Track *GetNext(Track * t, bool linked = false) const;
std::pair<Track *, Track *> FindSyncLockGroup(Track *pMember) const;
template < typename TrackType >
TrackIter< TrackType >
MakeTrackIterator( TrackNodePointer iter ) const
{
auto b = const_cast<TrackList*>(this)->getBegin();
auto e = const_cast<TrackList*>(this)->getEnd();
return { b, iter, e };
}
template < typename TrackType >
TrackIter< TrackType >
EndIterator() const
{
auto e = const_cast<TrackList*>(this)->getEnd();
return { e, e, e };
}
TrackIterRange< Track > EmptyRange() const;
bool isNull(TrackNodePointer p) const
{ return (p.second == this && p.first == ListOfTracks::end())
|| (p.second == &mPendingUpdates && p.first == mPendingUpdates.end()); }
TrackNodePointer getEnd() const
{ return { const_cast<TrackList*>(this)->ListOfTracks::end(),
const_cast<TrackList*>(this)}; }
TrackNodePointer getBegin() const
{ return { const_cast<TrackList*>(this)->ListOfTracks::begin(),
const_cast<TrackList*>(this)}; }
// Move an iterator to the next node, if any; else stay at end
TrackNodePointer getNext(TrackNodePointer p) const
{
if ( isNull(p) )
return p;
auto q = p;
++q.first;
return q;
}
// Move an iterator to the previous node, if any; else wrap to end
TrackNodePointer getPrev(TrackNodePointer p) const
{
if (p == getBegin())
return getEnd();
else {
auto q = p;
--q.first;
return q;
}
}
void RecalcPositions(TrackNodePointer node);
void SelectionEvent( const std::shared_ptr<Track> &pTrack );
void PermutationEvent();
void DataEvent( const std::shared_ptr<Track> &pTrack, int code );
void DeletionEvent();
void AdditionEvent(TrackNodePointer node);
void ResizingEvent(TrackNodePointer node);
void SwapNodes(TrackNodePointer s1, TrackNodePointer s2);
// Nondecreasing during the session.
// Nonpersistent.
// Used to assign ids to added tracks.
static long sCounter;
public:
using Updater = std::function< void(Track &dest, const Track &src) >;
// Start a deferred update of the project.
// The return value is a duplicate of the given track.
// While ApplyPendingTracks or ClearPendingTracks is not yet called,
// there may be other direct changes to the project that push undo history.
// Meanwhile the returned object can accumulate other changes for a deferred
// push, and temporarily shadow the actual project track for display purposes.
// The Updater function, if not null, merges state (from the actual project
// into the pending track) which is not meant to be overridden by the
// accumulated pending changes.
// To keep the display consistent, the Y and Height values, minimized state,
// and Linked state must be copied, and this will be done even if the
// Updater does not do it.
// Pending track will have the same TrackId as the actual.
// Pending changed tracks will not occur in iterations.
std::shared_ptr<Track> RegisterPendingChangedTrack(
Updater updater,
Track *src
);
// Like the previous, but for a NEW track, not a replacement track. Caller
// supplies the track, and there are no updates.
// Pending track will have an unassigned TrackId.
// Pending changed tracks WILL occur in iterations, always after actual
// tracks, and in the sequence that they were added. They can be
// distinguished from actual tracks by TrackId.
void RegisterPendingNewTrack( const std::shared_ptr<Track> &pTrack );
// Invoke the updaters of pending tracks. Pass any exceptions from the
// updater functions.
void UpdatePendingTracks();
// Forget pending track additions and changes;
// if requested, give back the pending added tracks.
void ClearPendingTracks( ListOfTracks *pAdded = nullptr );
// Change the state of the project.
// Strong guarantee for project state in case of exceptions.
// Will always clear the pending updates.
// Return true if the state of the track list really did change.
bool ApplyPendingTracks();
bool HasPendingTracks() const;
private:
// Need to put pending tracks into a list so that GetLink() works
ListOfTracks mPendingUpdates;
// This is in correspondence with mPendingUpdates
std::vector< Updater > mUpdaters;
};
class AUDACITY_DLL_API TrackFactory
{
private:
TrackFactory(const std::shared_ptr<DirManager> &dirManager, const ZoomInfo *zoomInfo):
mDirManager(dirManager)
, mZoomInfo(zoomInfo)
{
}
const std::shared_ptr<DirManager> mDirManager;
const ZoomInfo *const mZoomInfo;
friend class AudacityProject;
friend class BenchmarkDialog;
public:
// These methods are defined in WaveTrack.cpp, NoteTrack.cpp,
// LabelTrack.cpp, and TimeTrack.cpp respectively
std::shared_ptr<WaveTrack> DuplicateWaveTrack(const WaveTrack &orig);
std::shared_ptr<WaveTrack> NewWaveTrack(sampleFormat format = (sampleFormat)0,
double rate = 0);
std::shared_ptr<LabelTrack> NewLabelTrack();
std::shared_ptr<TimeTrack> NewTimeTrack();
#if defined(USE_MIDI)
std::shared_ptr<NoteTrack> NewNoteTrack();
#endif
};
// global functions
struct TransportTracks;
TransportTracks GetAllPlaybackTracks(TrackList &trackList, bool selectedOnly, bool useMidi = false);
#endif