audacia/src/effects/Reverb_libSoX.h

271 lines
7.7 KiB
C++

/**********************************************************************
Audacity: A Digital Audio Editor
Reverb_libSoX.h
Stereo reverberation effect from libSoX,
adapted for Audacity
Copyright (c) 2007-2013 robs@users.sourceforge.net
Licence: LGPL v2.1
Filter configuration based on freeverb by Jezar Wakefield.
**********************************************************************/
#include <cstring>
#include <cstdlib>
#ifdef __WXMSW__
#define M_LN10 2.30258509299404568402 /* log_e 10 */
#else
#include <cmath>
#endif
#include <algorithm>
using std::min;
using std::max;
#define array_length(a) (sizeof(a)/sizeof(a[0]))
#define dB_to_linear(x) exp((x) * M_LN10 * 0.05)
#define midi_to_freq(n) (440 * pow(2,((n)-69)/12.))
#define FIFO_SIZE_T size_t
#define FIFO_MIN 0x4000
#define fifo_read_ptr(f) fifo_read(f, (FIFO_SIZE_T)0, NULL)
#define lsx_zalloc(var, n) var = (float *)calloc(n, sizeof(*var))
#define filter_advance(p) if (--(p)->ptr < (p)->buffer) (p)->ptr += (p)->size
#define filter_delete(p) free((p)->buffer)
typedef struct {
char * data;
size_t allocation; /* Number of bytes allocated for data. */
size_t item_size; /* Size of each item in data */
size_t begin; /* Offset of the first byte to read. */
size_t end; /* 1 + Offset of the last byte to read. */
} fifo_t;
static void fifo_clear(fifo_t * f)
{
f->end = f->begin = 0;
}
static void * fifo_reserve(fifo_t * f, FIFO_SIZE_T n)
{
n *= f->item_size;
if (f->begin == f->end)
fifo_clear(f);
while (1) {
if (f->end + n <= f->allocation) {
void *p = f->data + f->end;
f->end += n;
return p;
}
if (f->begin > FIFO_MIN) {
memmove(f->data, f->data + f->begin, f->end - f->begin);
f->end -= f->begin;
f->begin = 0;
continue;
}
f->allocation += n;
f->data = (char *)realloc(f->data, f->allocation);
}
}
static void * fifo_write(fifo_t * f, FIFO_SIZE_T n, void const * data)
{
void * s = fifo_reserve(f, n);
if (data)
memcpy(s, data, n * f->item_size);
return s;
}
static void * fifo_read(fifo_t * f, FIFO_SIZE_T n, void * data)
{
char * ret = f->data + f->begin;
n *= f->item_size;
if (n > (FIFO_SIZE_T)(f->end - f->begin))
return NULL;
if (data)
memcpy(data, ret, (size_t)n);
f->begin += n;
return ret;
}
static void fifo_delete(fifo_t * f)
{
free(f->data);
}
static void fifo_create(fifo_t * f, FIFO_SIZE_T item_size)
{
f->item_size = item_size;
f->allocation = FIFO_MIN;
f->data = (char *)malloc(f->allocation);
fifo_clear(f);
}
typedef struct {
size_t size;
float * buffer, * ptr;
float store;
} filter_t;
static float comb_process(filter_t * p, /* gcc -O2 will inline this */
float const * input, float const * feedback, float const * hf_damping)
{
float output = *p->ptr;
p->store = output + (p->store - output) * *hf_damping;
*p->ptr = *input + p->store * *feedback;
filter_advance(p);
return output;
}
static float allpass_process(filter_t * p, /* gcc -O2 will inline this */
float const * input)
{
float output = *p->ptr;
*p->ptr = *input + output * .5;
filter_advance(p);
return output - *input;
}
typedef struct {double b0, b1, a1, i1, o1;} one_pole_t;
static float one_pole_process(one_pole_t * p, float i0)
{
float o0 = i0*p->b0 + p->i1*p->b1 - p->o1*p->a1;
p->i1 = i0;
return p->o1 = o0;
}
static const size_t /* Filter delay lengths in samples (44100Hz sample-rate) */
comb_lengths[] = {1116, 1188, 1277, 1356, 1422, 1491, 1557, 1617},
allpass_lengths[] = {225, 341, 441, 556}, stereo_adjust = 12;
typedef struct {
filter_t comb [array_length(comb_lengths)];
filter_t allpass[array_length(allpass_lengths)];
one_pole_t one_pole[2];
} filter_array_t;
static void filter_array_create(filter_array_t * p, double rate,
double scale, double offset, double fc_highpass, double fc_lowpass)
{
size_t i;
double r = rate * (1 / 44100.); /* Compensate for actual sample-rate */
for (i = 0; i < array_length(comb_lengths); ++i, offset = -offset)
{
filter_t * pcomb = &p->comb[i];
pcomb->size = (size_t)(scale * r * (comb_lengths[i] + stereo_adjust * offset) + .5);
pcomb->ptr = lsx_zalloc(pcomb->buffer, pcomb->size);
}
for (i = 0; i < array_length(allpass_lengths); ++i, offset = -offset)
{
filter_t * pallpass = &p->allpass[i];
pallpass->size = (size_t)(r * (allpass_lengths[i] + stereo_adjust * offset) + .5);
pallpass->ptr = lsx_zalloc(pallpass->buffer, pallpass->size);
}
{ /* EQ: highpass */
one_pole_t * q = &p->one_pole[0];
q->a1 = -exp(-2 * M_PI * fc_highpass / rate);
q->b0 = (1 - q->a1)/2, q->b1 = -q->b0;
}
{ /* EQ: lowpass */
one_pole_t * q = &p->one_pole[1];
q->a1 = -exp(-2 * M_PI * fc_lowpass / rate);
q->b0 = 1 + q->a1, q->b1 = 0;
}
}
static void filter_array_process(filter_array_t * p,
size_t length, float const * input, float * output,
float const * feedback, float const * hf_damping, float const * gain)
{
while (length--) {
float out = 0, in = *input++;
size_t i = array_length(comb_lengths) - 1;
do out += comb_process(p->comb + i, &in, feedback, hf_damping);
while (i--);
i = array_length(allpass_lengths) - 1;
do out = allpass_process(p->allpass + i, &out);
while (i--);
out = one_pole_process(&p->one_pole[0], out);
out = one_pole_process(&p->one_pole[1], out);
*output++ = out * *gain;
}
}
static void filter_array_delete(filter_array_t * p)
{
size_t i;
for (i = 0; i < array_length(allpass_lengths); ++i)
filter_delete(&p->allpass[i]);
for (i = 0; i < array_length(comb_lengths); ++i)
filter_delete(&p->comb[i]);
}
typedef struct {
float feedback;
float hf_damping;
float gain;
fifo_t input_fifo;
filter_array_t chan[2];
float * out[2];
} reverb_t;
static void reverb_create(reverb_t * p, double sample_rate_Hz,
double wet_gain_dB,
double room_scale, /* % */
double reverberance, /* % */
double hf_damping, /* % */
double pre_delay_ms,
double stereo_depth,
double tone_low, /* % */
double tone_high, /* % */
size_t buffer_size,
float * * out)
{
size_t i, delay = pre_delay_ms / 1000 * sample_rate_Hz + .5;
double scale = room_scale / 100 * .9 + .1;
double depth = stereo_depth / 100;
double a = -1 / log(1 - /**/.3 /**/); /* Set minimum feedback */
double b = 100 / (log(1 - /**/.98/**/) * a + 1); /* Set maximum feedback */
double fc_highpass = midi_to_freq(72 - tone_low / 100 * 48);
double fc_lowpass = midi_to_freq(72 + tone_high/ 100 * 48);
memset(p, 0, sizeof(*p));
p->feedback = 1 - exp((reverberance - b) / (a * b));
p->hf_damping = hf_damping / 100 * .3 + .2;
p->gain = dB_to_linear(wet_gain_dB) * .015;
fifo_create(&p->input_fifo, sizeof(float));
memset(fifo_write(&p->input_fifo, delay, 0), 0, delay * sizeof(float));
for (i = 0; i <= ceil(depth); ++i) {
filter_array_create(p->chan + i, sample_rate_Hz, scale, i * depth, fc_highpass, fc_lowpass);
out[i] = lsx_zalloc(p->out[i], buffer_size);
}
}
static void reverb_process(reverb_t * p, size_t length)
{
size_t i;
for (i = 0; i < 2 && p->out[i]; ++i)
filter_array_process(p->chan + i, length, (float *) fifo_read_ptr(&p->input_fifo), p->out[i], &p->feedback, &p->hf_damping, &p->gain);
fifo_read(&p->input_fifo, length, NULL);
}
static void reverb_delete(reverb_t * p)
{
size_t i;
for (i = 0; i < 2 && p->out[i]; ++i) {
free(p->out[i]);
filter_array_delete(p->chan + i);
}
fifo_delete(&p->input_fifo);
}