audacia/lib-src/portsmf/allegro.h

1161 lines
48 KiB
C++

// Portsmf (also known as Allegro):
// music representation system, with
// extensible in-memory sequence structure
// upward compatible with MIDI
// implementations in C++ and Serpent
// external, text-based representation
// compatible with Aura
//
// SERIALBUFFER CLASS
//
// The Serial_buffer class is defined to support serialization and
// unserialization. A Serial_buffer is just a block of memory with
// a length and a read/write pointer. When writing, it can expand.
//
// SERIALIZATION
//
// The Alg_track class has static members:
// ser_buf -- a Serial_buffer
// When objects are serialized, they are first written to
// ser_buf, which is expanded whenever necessary. Then, when
// the length is known, new memory is allocated and the data
// is copied to a correctly-sized buffer and returned to caller.
// The "external" (callable from outside the library)
// serialization functions are:
// Alg_track::serialize()
// Alg_seq::serialize()
// The "internal" serialization functions to be called from within
// the library are:
// Alg_track::serialize_track(bool text)
// Alg_seq::serialize_seq(bool text)
// Alg_track::serialize_parameter(
// Alg_parameter *parm, bool text)
// These internal serialize functions append data to ser_buf The text
// flag says to write an ascii representation as opposed to binary.
//
// UNSERIALIZATION:
//
// The Alg_track class has a static member:
// unserialize(char *buffer, long len)
// that will unserialize anything -- an Alg_track or an Alg_seq.
// No other function should be called from outside the library.
// Internal unserialize functions are:
// Alg_seq::unserialize_seq()
// Alg_track::unserialize_track()
// Alg_track::unserialize_parameter(Alg_parameter_ptr parm_ptr)
// Just as serialization uses ser_buf for output, unserialization uses
// unser_buf for reading. unser_buf is another static member of Alg_track.
#ifndef ALLEGRO_H
#define ALLEGRO_H
#include <assert.h>
#include <istream>
#include <ostream>
#define ALG_EPS 0.000001 // epsilon
#define ALG_DEFAULT_BPM 100.0 // default tempo
// are d1 and d2 within epsilon of each other?
bool within(double d1, double d2, double epsilon);
char *heapify(const char *s); // put a string on the heap
// Alg_attribute is an atom in the symbol table
// with the special addition that the last
// character is prefixed to the string; thus,
// the attribute 'tempor' (a real) is stored
// as 'rtempor'. To get the string name, just
// use attribute+1.
typedef const char *Alg_attribute;
#define alg_attr_name(a) ((a) + 1)
#define alg_attr_type(a) (*(a))
// Alg_atoms is a symbol table of Alg_attributes and other
// unique strings
class Alg_atoms {
public:
Alg_atoms() {
maxlen = len = 0;
atoms = NULL;
}
// Note: the code is possibly more correct and faster without the
// following destructor, which will only run after the program takes
// a normal exit. Cleaning up after the program exit slows down the exit,
// and will cause problems if any other destructor tries to reference an
// Alg_atom (which will now be freed). The advantage of this code is
// that Alg_atoms will not be reported as memory leaks by automation
// that doesn't know better. -RBD
virtual ~Alg_atoms() {
for (int i = 0; i < len; i++) {
delete atoms[i];
}
if (atoms) delete [] atoms;
}
// insert/lookup an atttribute
Alg_attribute insert_attribute(Alg_attribute attr);
// insert/lookup attribute by name (without prefixed type)
Alg_attribute insert_string(const char *name);
private:
long maxlen;
long len;
Alg_attribute *atoms;
// insert an Attriubute not in table after moving attr to heap
Alg_attribute insert_new(const char *name, char attr_type);
void expand(); // make more space
};
extern Alg_atoms symbol_table;
// an attribute/value pair. Since Alg_attribute names imply type,
// we try to keep attributes and values packaged together as
// Alg_parameter class
typedef class Alg_parameter {
public:
// This constructor guarantees that an Alg_parameter can be
// deleted safely without further initialization. It does not
// do anything useful, so it is expected that the creator will
// set attr and store a value in the appropriate union field.
Alg_attribute attr;
union {
double r;// real
const char *s; // string
int64_t i; // integer -- 64 bit for 32/64-bit compatibility
bool l; // logical
const char *a; // symbol (atom)
}; // anonymous union
Alg_parameter() { attr = "i"; }
~Alg_parameter();
void copy(Alg_parameter *); // copy from another parameter
const char attr_type() { return alg_attr_type(attr); }
const char *attr_name() { return alg_attr_name(attr); }
void set_attr(Alg_attribute a) { attr = a; }
void show();
} *Alg_parameter_ptr;
// a list of attribute/value pairs
typedef class Alg_parameters {
public:
class Alg_parameters *next;
Alg_parameter parm;
Alg_parameters(Alg_parameters *list) {
next = list;
}
//~Alg_parameters() { }
// each of these routines takes address of pointer to the list
// insertion is performed without checking whether or not a
// parameter already exists with this attribute. See find() and
// remove_key() to assist in checking for and removing existing
// parameters.
// Note also that these insert_* methods convert name to an
// attribute. If you have already done the symbol table lookup/insert
// you can do these operations faster (in which case we should add
// another set of functions that take attributes as arguments.)
static void insert_real(Alg_parameters **list, const char *name, double r);
// insert string will copy string to heap
static void insert_string(Alg_parameters **list, const char *name,
const char *s);
static void insert_integer(Alg_parameters **list, const char *name,
int64_t i);
static void insert_logical(Alg_parameters **list, const char *name, bool l);
static void insert_atom(Alg_parameters **list, const char *name,
const char *s);
static Alg_parameters *remove_key(Alg_parameters **list, const char *name);
// find an attribute/value pair
Alg_parameter_ptr find(Alg_attribute attr);
} *Alg_parameters_ptr;
// these are type codes associated with certain attributes
// see Alg_track::find() where these are bit positions in event_type_mask
#define ALG_NOTE 0 // This is a note, not an update
#define ALG_GATE 1 // "gate"
#define ALG_BEND 2 // "bend"
#define ALG_CONTROL 3 // "control"
#define ALG_PROGRAM 4 // "program"
#define ALG_PRESSURE 5 // "pressure"
#define ALG_KEYSIG 6 // "keysig"
#define ALG_TIMESIG_NUM 7 // "timesig_num"
#define ALG_TIMESIG_DEN 8 // "timesig_den"
#define ALG_OTHER 9 // any other value
// abstract superclass of Alg_note and Alg_update:
typedef class Alg_event {
protected:
bool selected;
char type; // 'e' event, 'n' note, 'u' update
int32_t key; // note identifier -- fixed at 32 bits
static const char* description; // static buffer for debugging
public:
double time;
int32_t chan; // generalization of MIDI channels -- fixed at 32 bits
virtual void show() = 0;
// Note: there is no Alg_event() because Alg_event is an abstract class.
bool is_note() { return (type == 'n'); } // tell whether an Alg_event is a note
bool is_update() { return (type == 'u'); } // tell whether an Alg_event is a parameter update
char get_type() { return type; } // return 'n' for note, 'u' for update
int get_type_code(); // 1 = volume change, 2 = pitch bend,
// 3 = control change, 4 = program change,
// 5 = pressure change, 6 = key signature,
// 7 = time sig numerator, 8 = time sig denominator
bool get_selected() { return selected; }
void set_selected(bool b) { selected = b; }
// Note: notes are identified by a (channel, identifier) pair.
// For midi, the identifier is the key number (pitch). The identifier
// does not have to represent pitch; it's main purpose is to identify
// notes so that they can be named by subsequent update events.
// get MIDI key or note identifier of note or update:
int32_t get_identifier() { return key; }
void set_identifier(int32_t i) { key = i; } // set the identifier
// In all of these set_ methods, strings are owned by the caller and
// copied as necessary by the callee. For notes, an attribute/value
// pair is added to the parameters list. For updates, the single
// attribute/value parameter pair is overwritten. In all cases, the
// attribute (first argument) must agree in type with the second arg.
// The last letter of the attribute implies the type (see below).
void set_parameter(Alg_parameter_ptr new_parameter);
void set_string_value(const char *attr, const char *value);
void set_real_value(const char *attr, double value);
void set_logical_value(const char *attr, bool value);
void set_integer_value(const char *attr, int64_t value);
void set_atom_value(const char *attr, const char *atom);
// Some note methods. These fail (via assert()) if this is not a note:
//
float get_pitch();// get pitch in steps -- use this even for MIDI
float get_loud(); // get loudness (MIDI velocity)
// times are in seconds or beats, depending upon the units_are_seconds
// flag in the containing sequence
double get_start_time(); // get start time in seconds or beats
double get_end_time(); // get end time in seconds or beats
double get_duration(); // get duration in seconds or beats
void set_pitch(float);
void set_loud(float);
void set_duration(double);
// Notes have lists of attribute values. Attributes are converted
// to/from strings in this API to avoid explicit use of Alg_attribute
// types. Attribute names end with a type designation: 's', 'r', 'l',
// 'i', or 'a'.
//
bool has_attribute(const char *attr); // test if note has attribute/value pair
char get_attribute_type(const char *attr); // get the associated type:
// 's' = string,
// 'r' = real (double), 'l' = logical (bool), 'i' = integer (int64_t),
// 'a' = atom (char *), a unique string stored in Alg_seq
// get the string value
const char *get_string_value(const char *attr, const char *value = NULL);
// get the real value
double get_real_value(const char *attr, double value = 0.0);
// get the logical value
bool get_logical_value(const char *attr, bool value = false);
// get the integer value
int64_t get_integer_value(const char *attr, int64_t value = 0);
// get the atom value
const char *get_atom_value(const char *attr, const char *value = NULL);
void delete_attribute(const char *attr); // delete an attribute/value pair
// (ignore if no matching attribute/value pair exists)
// Some attribute/value methods. These fail if this is not an update.
// Attributes are converted to/from strings to avoid explicit use
// of Alg_attribute types.
//
const char *get_attribute(); // get the update's attribute (string)
char get_update_type(); // get the update's type: 's' = string,
// 'r' = real (double), 'l' = logical (bool), 'i' = integer (int64_t),
// 'a' = atom (char *), a unique string stored in Alg_seq
const char *get_string_value(); // get the update's string value
// Notes: Caller does not own the return value. Do not modify.
// Do not use after underlying Alg_seq is modified.
double get_real_value(); // get the update's real value
bool get_logical_value(); // get the update's logical value
int64_t get_integer_value(); // get the update's integer value
const char *get_atom_value(); // get the update's atom value
// Notes: Caller does not own the return value. Do not modify.
// The return value's lifetime is forever.
// Auxiliary function to aid in editing tracks
// Returns true if the event overlaps the given region
bool overlap(double t, double len, bool all);
const char *GetDescription(); // computes a text description of this event
// the result is in a static buffer, not thread-safe, just for debugging.
Alg_event() { selected = false; }
virtual ~Alg_event() {}
} *Alg_event_ptr;
typedef class Alg_note : public Alg_event {
public:
virtual ~Alg_note();
Alg_note(Alg_note *); // copy constructor
float pitch; // pitch in semitones (69 = A440)
float loud; // dynamic corresponding to MIDI velocity
double dur; // duration in seconds (normally to release point)
Alg_parameters_ptr parameters; // attribute/value pair list
Alg_note() { type = 'n'; parameters = NULL; }
void show();
} *Alg_note_ptr;
typedef class Alg_update : public Alg_event {
public:
virtual ~Alg_update() {};
Alg_update(Alg_update *); // copy constructor
Alg_parameter parameter; // an update contains one attr/value pair
Alg_update() { type = 'u'; }
void show();
} *Alg_update_ptr;
// a sequence of Alg_event objects
typedef class Alg_events {
private:
long maxlen;
void expand();
protected:
long len;
Alg_event_ptr *events; // events is array of pointers
public:
// sometimes, it is nice to have the time of the last note-off.
// In the current implementation,
// this field is set by append to indicate the time of the
// last note-off in the current unit, so it should be correct after
// creating a new track and adding notes to it. It is *not*
// updated after uninsert(), so use it with care.
double last_note_off;
// initially false, in_use can be used to mark "do not delete". If an
// Alg_events instance is deleted while "in_use", an assertion will fail.
bool in_use;
virtual int length() { return len; }
Alg_event_ptr &operator[](int i) {
assert(i >= 0 && i < len);
return events[i];
}
Alg_events() {
maxlen = len = 0;
events = NULL;
last_note_off = 0;
in_use = false;
}
// destructor deletes the events array, but not the
// events themselves
virtual ~Alg_events();
void set_events(Alg_event_ptr *e, long l, long m) {
if (events) delete [] events;
events = e; len = l; maxlen = m; }
// for use by Alg_track and Alg_seq
void insert(Alg_event_ptr event);
void append(Alg_event_ptr event);
Alg_event_ptr uninsert(long index);
} *Alg_events_ptr;
class Alg_track;
typedef class Alg_event_list : public Alg_events {
protected:
char type; // 'e' Alg_event_list, 't' Alg_track, 's' Alg_seq
static const char *last_error_message;
Alg_track *events_owner; // if this is an Alg_event_list,
// the events are owned by an Alg_track or an Alg_seq
static int sequences; // to keep track of sequence numbers
int sequence_number; // this sequence number is incremented
// whenever an edit is performed on an Alg_track or Alg_seq.
// When an Alg_event_list is created to contain pointers to
// a subset of an Alg_track or Alg_seq (the events_owner),
// the Alg_event_list gets a copy of the events_owner's
// sequence_number. If the events_owner is edited, the pointers
// in this Alg_event_list will become invalid. This is detected
// (for debugging) as differing sequence_numbers.
// every event list, track, and seq has a duration.
// Usually the duration is set when the list is constructed, e.g.
// when you extract from 10 to 15 seconds, the duration is 5 secs.
// The duration does not tell you when is the last note-off.
// duration is recorded in both beats and seconds:
double beat_dur;
double real_dur;
public:
// the client should not create one of these, but these are
// returned from various track and seq operations. An
// Alg_event_list "knows" the Alg_track or Alg_seq that "owns"
// the events. All events in an Alg_event_list must belong
// to the same Alg_track or Alg_seq structure.
// When applied to an Alg_seq, events are enumerated track
// by track with increasing indices. This operation is not
// particularly fast on an Alg_seq.
virtual Alg_event_ptr &operator[](int i);
Alg_event_list() { sequence_number = 0;
beat_dur = 0.0; real_dur = 0.0; events_owner = NULL; type = 'e'; }
Alg_event_list(Alg_track *owner);
char get_type() { return type; }
Alg_track *get_owner() { return events_owner; }
// The destructor does not free events because they are owned
// by a track or seq structure.
virtual ~Alg_event_list();
// Returns the duration of the sequence in beats or seconds
double get_beat_dur() { return beat_dur; }
void set_beat_dur(double d) { beat_dur = d; }
double get_real_dur() { return real_dur; }
void set_real_dur(double d) { real_dur = d; }
// Events are stored in time order, so when you change the time of
// an event, you must adjust the position. When you call set_start_time
// on an Alg_event_list, the Alg_event_list is not modified, but the
// Alg_track that "owns" the event is modified. If the owner is an
// Alg_seq, this may require searching the seq for the track containing
// the event. This will mean a logN search of every track in the seq
// (but if this turns out to be a problem, we can store each event's
// track owner in the Alg_event_list.)
virtual void set_start_time(Alg_event *event, double);
// get text description of run-time errors detected, clear error
const char *get_last_error_message() { return last_error_message; }
// Implementation hint: keep a sequence number on each Alg_track that is
// incremented anytime there is a structural change. (This behavior is
// inherited by Alg_seq as well.) Copy the sequence number to any
// Alg_event_list object when it is created. Whenever you access an
// Alg_event_list, using operator[], assert that the Alg_event_list sequence
// number matches the Alg_seq sequence number. This will guarantee that you
// do not try to retain pointers to events beyond the point where the events
// may no longer exist.
} *Alg_event_list_ptr, &Alg_event_list_ref;
// Alg_beat is used to contruct a tempo map
typedef class Alg_beat {
public:
Alg_beat(double t, double b) {
time = t; beat = b; }
Alg_beat() {};
double time;
double beat;
} *Alg_beat_ptr;
// Alg_beats is a list of Alg_beat objects used in Alg_seq
typedef class Alg_beats {
private:
long maxlen;
void expand();
public:
long len;
Alg_beat_ptr beats;
Alg_beat &operator[](int i) {
assert(i >= 0 && i < len);
return beats[i];
}
Alg_beats() {
maxlen = len = 0;
beats = NULL;
expand();
beats[0].time = 0;
beats[0].beat = 0;
len = 1;
}
~Alg_beats() {
if (beats) delete[] beats;
}
void insert(long i, Alg_beat_ptr beat);
} *Alg_beats_ptr;
typedef class Alg_time_map {
private:
int refcount;
public:
Alg_beats beats; // array of Alg_beat
double last_tempo;
bool last_tempo_flag;
Alg_time_map() {
last_tempo = ALG_DEFAULT_BPM / 60.0; // note: this value ignored until
// last_tempo_flag is set; nevertheless, the default
// tempo is 100.
last_tempo_flag = true;
refcount = 0;
}
Alg_time_map(Alg_time_map *map); // copy constructor
long length() { return beats.len; }
void show();
long locate_time(double time);
long locate_beat(double beat);
double beat_to_time(double beat);
double time_to_beat(double time);
// Time map manipulations: it is prefered to call the corresponding
// methods in Alg_seq. If you manipulate an Alg_time_map directly,
// you should take care to convert all tracks that use the time map
// to beats or seconds as appropriate: Normally if you insert a beat
// you want tracks to be in time units and if you insert a tempo change
// you want tracks to be in beat units.
void insert_beat(double time, double beat); // add a point to the map
bool insert_tempo(double tempo, double beat); // insert a tempo change
// get the tempo starting at beat
double get_tempo(double beat);
// set the tempo over a region
bool set_tempo(double tempo, double start_beat, double end_beat);
bool stretch_region(double b0, double b1, double dur);
void cut(double start, double len, bool units_are_seconds);
void trim(double start, double end, bool units_are_seconds);
void paste(double start, Alg_track *tr);
// insert a span of time. If start is at a tempo change, then
// the span of time runs at the changed tempo
void insert_time(double start, double len);
// insert a span of beats. If start is at a tempo change, the
// tempo change takes effect before the inserted beats
void insert_beats(double start, double len);
void dereference() {
if (--refcount <= 0) delete this;
}
void reference() {
refcount++;
}
} *Alg_time_map_ptr;
// Aligner is a simple class to allow 64-bit data to be stored and
// retrieved from Serial_buffer, where data is 32-bit aligned,
// in an architecture-independent fashion. On some architectures,
// read/writes of int64_t or doubles must be aligned to 8 bytes.
class Aligner {
public:
union {
int64_t i64;
double d64;
struct {
int32_t int32a;
int32_t int32b;
};
};
Aligner(double d) { d64 = d; }
Aligner(int64_t i) { i64 = i; }
Aligner(int32_t a, int32_t b) { int32a = a; int32b = b; }
};
// Serial_buffer is an abstract class with common elements of
// Serial_read_buffer and Serial_write_buffer
class Serial_buffer {
protected:
char *buffer;
char *ptr;
long len;
public:
Serial_buffer() {
buffer = NULL;
ptr = NULL;
len = 0;
}
virtual ~Serial_buffer() { }
long get_posn() { return (long) (ptr - buffer); }
long get_len() { return len; }
};
typedef class Serial_read_buffer : public Serial_buffer {
public:
// note that a Serial_read_buffer is initialized for reading by
// setting buffer, but it is not the Serial_read_buffer's responsibility
// to delete the buffer (owner might want to reuse it), so the destructor
// does nothing.
virtual ~Serial_read_buffer() { }
#if defined(_WIN32)
// TODO: revisit warning disables now that ptr is more properly cast
// to/from size_t (not long):
#pragma warning(disable: 546) // cast to int is OK, we only want low 7 bits
#pragma warning(disable: 4311) // type cast pointer to long warning
#endif
void get_pad() { while (((size_t) ptr) & 3) ptr++; }
#if defined(_WIN32)
#pragma warning(default: 4311 546)
#endif
// Prepare to read n bytes from buf. The caller must manage buf: it is
// valid until reading is finished, and it is caller's responsibility
// to free buf when it is no longer needed.
void init_for_read(void *buf, long n) {
buffer = (char *) buf;
ptr = (char *) buf;
len = n;
}
char get_char() { return *ptr++; }
void unget_chars(int n) { ptr -= n; } // undo n get_char() calls
double get_double() {
int32_t a = get_int32();
int32_t b = get_int32();
Aligner aligner(a, b);
return aligner.d64; }
int32_t get_int32() { int32_t i = *((int32_t *) ptr); ptr += 4; return i; }
int64_t get_int64();
float get_float() { float f = *((float *) ptr); ptr += 4; return f; }
const char *get_string() { char *s = ptr; char *fence = buffer + len;
ptr += strlen(s);
assert(ptr < fence);
while (*ptr++) assert(ptr < fence);
get_pad();
return s; }
void check_input_buffer(long needed) {
assert(get_posn() + needed <= len); }
} *Serial_read_buffer_ptr;
typedef class Serial_write_buffer: public Serial_buffer {
public:
// Note: allegro.cpp declares one static instance of Serial_buffer to
// reduce large memory (re)allocations when serializing tracks for UNDO.
// This destructor will only run when the program exits, which will only
// add overhead to the exit process, but it will eliminate an incorrect
// report of memory leakage from automation that doesn't know better. -RBD
virtual ~Serial_write_buffer() {
if (buffer) delete [] buffer;
}
void init_for_write() { ptr = buffer; }
// store_long writes a long at a given offset
void store_int32(long offset, int32_t value) {
assert(offset <= get_posn() - sizeof(value));
int32_t *loc = (int32_t *) (buffer + offset);
*loc = value;
}
void check_buffer(long needed);
void set_string(const char *s) {
char *fence = buffer + len;
assert(ptr < fence);
// two brackets surpress a g++ warning, because this is an
// assignment operator inside a test.
while ((*ptr++ = *s++)) assert(ptr < fence);
// TODO: revisit warning disables because now we are more
// properly casting pointer to size_t (not long) and back -RBD
// 4311 is type cast pointer to long warning
// 4312 is type cast long to pointer warning
#if defined(_WIN32)
#pragma warning(disable: 4311 4312)
#endif
assert((char *)(((size_t) (ptr + 3)) & ~3) <= fence);
#if defined(_WIN32)
#pragma warning(default: 4311 4312)
#endif
pad(); }
void set_int32(int32_t v) { *((int32_t *) ptr) = v; ptr += 4; }
void set_double(double v) {
Aligner aligner(v);
set_int32(aligner.int32a);
set_int32(aligner.int32b); }
void set_float(float v) { *((float *) ptr) = v; ptr += 4; }
void set_char(char v) { *ptr++ = v; }
#if defined(_WIN32)
// TODO: reassess warning disables now that pointer is more properly
// cast to/from size_t (not long):
#pragma warning(disable: 546) // cast to int is OK, we only want low few bits
#pragma warning(disable: 4311) // type cast pointer to long warning
#endif
void pad() { while (((size_t) ptr) & 3) set_char(0); }
#if defined(_WIN32)
#pragma warning(default: 4311 546)
#endif
void *to_heap(long *len) {
*len = get_posn();
char *newbuf = new char[*len];
memcpy(newbuf, buffer, *len);
return newbuf;
}
} *Serial_write_buffer_ptr;
typedef class Alg_seq *Alg_seq_ptr;
typedef class Alg_track : public Alg_event_list {
protected:
Alg_time_map *time_map;
bool units_are_seconds;
// char *get_string(char **p, long *b); -- these seem to be orphaned
// int32_t get_int32(char **p, long *b); -- declarations. Maybe they
// double get_double(char **p, long *b); -- were intended for
// float get_float(char **p, long *b); -- serialization. Delete them?
static Serial_read_buffer ser_read_buf;
static Serial_write_buffer ser_write_buf;
void serialize_parameter(Alg_parameter *parm);
// *buffer_ptr points to binary data, bytes_ptr points to how many
// bytes have been used so far, len is length of binary data
void unserialize_parameter(Alg_parameter_ptr parm_ptr);
public:
void serialize_track();
void unserialize_track();
virtual Alg_event_ptr &operator[](int i) {
assert(i >= 0 && i < len);
return events[i];
}
Alg_track() { units_are_seconds = false; time_map = NULL;
set_time_map(NULL); type = 't'; }
// initialize empty track with a time map
Alg_track(Alg_time_map *map, bool seconds);
Alg_event_ptr copy_event(Alg_event_ptr event); // make a complete copy
Alg_track(Alg_track &track); // copy constructor, does not copy time_map
// copy constructor: event_list is copied, map is installed and referenced
Alg_track(Alg_event_list_ref event_list, Alg_time_map_ptr map,
bool units_are_seconds);
virtual ~Alg_track() { // note: do not call set_time_map(NULL)!
if (time_map) time_map->dereference(); time_map = NULL; }
// Returns a buffer containing a serialization of the
// file. It will be an ASCII representation unless text is true.
// *buffer gets a newly allocated buffer pointer. The caller must free it.
// *len gets the length of the serialized track
virtual void serialize(void **buffer, long *bytes);
// Try to read from a memory buffer. Automatically guess
// whether it's MIDI or text.
static Alg_track *unserialize(void *buffer, long len);
// If the track is really an Alg_seq and you need to access an
// Alg_seq method, coerce to an Alg_seq with this function:
Alg_seq_ptr to_alg_seq() {
return (get_type() == 's' ? (Alg_seq_ptr) this : NULL); }
// Are we using beats or seconds?
bool get_units_are_seconds() { return units_are_seconds; }
// Change units
virtual void convert_to_beats();
virtual void convert_to_seconds();
void set_dur(double dur);
double get_dur() { return (units_are_seconds ? real_dur : beat_dur); }
// Every Alg_track may have an associated time_map. If no map is
// specified, or if you set_time_map(NULL), then the behavior
// should be as if there is a constant tempo of 100 beats/minute
// (this constant is determined by ALG_DEFAULT_BPM).
// Recommendation: create a static global tempo map object. When
// any operation that needs a tempo map gets NULL, use the global
// tempo map. (Exception: any operation that would modify the
// tempo map should raise an error -- you don't want to change the
// default tempo map.)
virtual void set_time_map(Alg_time_map *map);
Alg_time_map *get_time_map() { return time_map; }
// Methods to create events. The returned event is owned by the caller.
// Use delete to get rid of it unless you call add() -- see below.
//
Alg_note *create_note(double time, int channel, int identifier,
float pitch, float loudness, double duration);
// Note: after create_update(), caller should use set_*_value() to
// initialize the attribute/value pair:
Alg_update *create_update(double time, int channel, int identifier);
// Adds a new event - it is automatically inserted into the
// correct order in the sequence based on its timestamp.
// The ownership passes from the caller to this Alg_seq. The
// event is not copied.
virtual void add(Alg_event *event) { insert(event); }
//
// Editing regions
//
// Deletes the notes that start within the given region
// and returns them in a new sequence. The start times
// of the notes in the returned sequence are shifted
// by -t. The notes after the region get shifted over
// to fill the gap. In an Alg_seq, the tempo track is edited
// in a similar way
// and the cut tempo information is retained in the new seq.
// ONLY NOTES THAT START WITHIN THE REGION ARE CUT unless
// "all" is true in which case all notes that intersect
// the region are copied. CUT NOTES
// MAY EXTEND BEYOND THE DURATION OF THE RESULTING SEQ.
// The return type is the same as this (may be Alg_seq).
// All times including len are interpreted according to
// units_are_seconds in the track.
virtual Alg_track *cut(double t, double len, bool all);
// Like cut() but doesn't remove the notes from the original
// sequence. The Alg_events are copied, not shared. ONLY EVENTS
// THAT START WITHIN THE REGION ARE COPIED unless "all" is true
// in which case all notes that intersect the region are
// copied. COPIED NOTES MAY
// EXTEND BEYOND THE DURATION OF THE RESULTING SEQ.
// The return type is the same as this (may be Alg_seq).
virtual Alg_track *copy(double t, double len, bool all);
// Inserts a sequence in the middle, shifting some notes
// over by the duration of the seq, which is first converted
// to the same units (seconds or beats) as this. (This makes
// a differece because the pasted data may change the tempo,
// and notes that overlap the borders will then experience
// a tempo change.)
// THE SEQ PARAMETER IS NOT MODIFIED, AND Alg_event's ARE
// COPIED, NOT SHARED.
// The type of seq must be Alg_seq if seq is an Alg_seq, or
// Alg_track if seq is an Alg_track or an Alg_event_list.
virtual void paste(double t, Alg_event_list *seq); // Shifts notes
// Merges two sequences with a certain offset. The offset is
// interpreted as either beats or seconds according to the
// current units of this, and seq is converted to the same
// units as this. Except for a possible conversion to beats
// or seconds, the tempo track of seq (if any) is ignored.
// (There is no way to merge tempo tracks.)
// THE SEQ PARAMETER IS NOT MODIFIED, AND Alg_event's ARE
// COPIED, NOT SHARED.
// The type of seq must be Alg_seq if seq is an Alg_seq, or
// Alg_track if seq is an Alg_track or an Alg_event_list.
virtual void merge(double t, Alg_event_list_ptr seq);
// Deletes and shifts notes to fill the gap. The tempo track
// is also modified accordingly. ONLY EVENTS THAT START WITHIN
// THE REGION ARE DELETED unless "all" is true, in which case
// all notes that intersect the region are cleared.
// NOTES THAT EXTEND FROM BEFORE THE
// REGION INTO THE REGION RETAIN THEIR DURATION IN EITHER
// BEATS OR SECONDS ACCORDING TO THE CURRENT UNITS OF this.
virtual void clear(double t, double len, bool all);
// Deletes notes but doesn't shift. If the "all" argument
// is true, deletes all notes that intersect the range at all,
// not just those that start within it. The tempo track is
// not affected.
virtual void silence(double t, double len, bool all);
// Simply shifts notes past time t over by len, which is given
// in either beats or seconds according to the units of this.
// The resulting interveal (t, t+len) may in fact contain notes
// that begin before t. The durations of notes are not changed.
// If this is an Alg_seq, the tempo track is expanded at t also.
virtual void insert_silence(double t, double len);
//
// Accessing for screen display
//
// A useful generic function to retrieve only certain
// types of events. The masks should be bit-masks defined
// somewhere else. Part of the mask allows us to search for
// selected events. If this is an Alg_seq, search all tracks
// (otherwise, call track[i].find())
// If channel_mask == 0, accept ALL channels, otherwise
// accept only channels < 32 where corresponding bit is set in
// channel_mask.
virtual Alg_event_list *find(double t, double len, bool all,
int32_t channel_mask, int32_t event_type_mask);
virtual void set_in_use(bool flag) { in_use = flag; }
//
// MIDI playback
//
// See Alg_iterator
} *Alg_track_ptr, &Alg_track_ref;
// Alg_time_sig represents a single time signature;
// although not recommended, time_signatures may have arbitrary
// floating point values, e.g. 4.5 beats per measure
typedef class Alg_time_sig {
public:
double beat; // when does this take effect?
double num; // what is the "numerator" (top number?)
double den; // what is the "denominator" (bottom number?)
Alg_time_sig(double b, double n, double d) {
beat = b; num = n; den = d;
}
Alg_time_sig() {
beat = 0; num = 0; den = 0;
}
void beat_to_measure(double beat, double *measure, double *m_beat,
double *num, double *den);
} *Alg_time_sig_ptr;
// Alg_time_sigs is a dynamic array of time signatures
//
// The default (empty) time_sigs has 4/4 time at beat 0.
// Each time_sig object in time_sigs represents the beginning
// of a measure. If there is a beat missing, e.g. in the first
// measure, you can represent this by inserting another
// time_sig at the next measure beginning. Each time_sig implies
// an infinite sequence of full measures until the next time_sig.
// If you insert a time_sig and one already exist near the same
// beat, the old one is replaced, thus re-barring every measure
// until the next time_sig.
class Alg_time_sigs {
private:
long maxlen;
void expand(); // make more space
long len;
Alg_time_sig_ptr time_sigs;
public:
Alg_time_sigs() {
maxlen = len = 0;
time_sigs = NULL;
}
Alg_time_sig &operator[](int i) { // fetch a time signature
assert(i >= 0 && i < len);
return time_sigs[i];
}
~Alg_time_sigs() {
if (time_sigs) delete[] time_sigs;
}
void show();
long length() { return len; }
int find_beat(double beat);
// get the number of beats per measure starting at beat
double get_bar_len(double beat);
void insert(double beat, double num, double den, bool force = false);
void cut(double start, double end, double dur); // remove from start to end
void trim(double start, double end); // retain just start to end
void paste(double start, Alg_seq *seq);
void insert_beats(double beat, double len); // insert len beats at beat
// find the nearest beat (see Alg_seq::nearest_beat) to beat
double nearest_beat(double beat);
};
// a sequence of Alg_events objects
typedef class Alg_tracks {
private:
long maxlen;
void expand();
void expand_to(int new_max);
long len;
public:
Alg_track_ptr *tracks; // tracks is array of pointers
Alg_track &operator[](int i) {
assert(i >= 0 && i < len);
return *tracks[i];
}
long length() { return len; }
Alg_tracks() {
maxlen = len = 0;
tracks = NULL;
}
~Alg_tracks();
// Append a track to tracks. This Alg_tracks becomes the owner of track.
void append(Alg_track_ptr track);
void add_track(int track_num, Alg_time_map_ptr time_map, bool seconds);
void reset();
void set_in_use(bool flag); // handy to set in_use flag on all tracks
} *Alg_tracks_ptr;
typedef enum {
alg_no_error = 0, // no error reading Allegro or MIDI file
alg_error_open = -800, // could not open Allegro or MIDI file
alg_error_syntax // something found in the file that could not be parsed;
// generally you should ignore syntax errors or look at the printed error
// messages because there are some things in standard midi files that we do
// not handle; (maybe we should only set alg_error_syntax when there is a
// real problem with the file as opposed to when there is some warning
// message for the user)
} Alg_error;
typedef struct Alg_pending_event {
void *cookie; // client-provided sequence identifier
Alg_events *events; // the array of events
long index; // offset of this event
bool note_on; // is this a note-on or a note-off (if applicable)?
double offset; // time offset for events
double time; // time for this event
} *Alg_pending_event_ptr;
typedef class Alg_iterator {
private:
long maxlen;
void expand();
void expand_to(int new_max);
long len;
Alg_seq_ptr seq;
Alg_pending_event *pending_events;
// the next four fields are mainly for request_note_off()
Alg_events_ptr events_ptr; // remembers events containing current event
long index; // remembers index of current event
void *cookie; // remembers the cookie associated with next event
double offset;
void show();
bool earlier(int i, int j);
void insert(Alg_events_ptr events, long index, bool note_on,
void *cookie, double offset);
// returns the info on the next pending event in the priority queue
bool remove_next(Alg_events_ptr &events, long &index, bool &note_on,
void *&cookie, double &offset, double &time);
public:
bool note_off_flag; // remembers if we are iterating over note-off
// events as well as note-on and update events
long length() { return len; }
Alg_iterator(Alg_seq_ptr s, bool note_off) {
seq = s;
note_off_flag = note_off;
maxlen = len = 0;
pending_events = NULL;
}
// Normally, iteration is over the events in the one sequence used
// to instatiate the iterator (see above), but with this method, you
// can add more sequences to the iteration. Events are returned in
// time order, so effectively sequence events are merged.
// The optional offset is added to each event time of sequence s
// before merging/sorting. You should call begin_seq() for each
// sequence to be included in the iteration unless you call begin()
// (see below).
void begin_seq(Alg_seq_ptr s, void *cookie = NULL, double offset = 0.0);
~Alg_iterator();
// Prepare to enumerate events in order. If note_off_flag is true, then
// iteration_next will merge note-off events into the sequence. If you
// call begin(), you should not normally call begin_seq(). See above.
void begin(void *cookie = NULL) { begin_seq(seq, cookie); }
// return next event (or NULL). If iteration_begin was called with
// note_off_flag = true, and if note_on is not NULL, then *note_on
// is set to true when the result value represents a note-on or update.
// (With note_off_flag, each Alg_note event is returned twice, once
// at the note-on time, with *note_on == true, and once at the note-off
// time, with *note_on == false. If a cookie_ptr is passed, then the
// cookie corresponding to the event is stored at that address
// If end_time is 0, iterate through the entire sequence, but if
// end_time is non_zero, stop iterating at the last event before end_time
Alg_event_ptr next(bool *note_on = NULL, void **cookie_ptr = NULL,
double *offset_ptr = NULL, double end_time = 0);
// Sometimes, the caller wants to receive note-off events for a subset
// of the notes, typically the notes that are played and need to be
// turned off. In this case, when a note is turned on, the client
// should call request_note_off(). This will insert a note-off into
// the queue for the most recent note returned by next().
void request_note_off();
void end(); // clean up after enumerating events
} *Alg_iterator_ptr;
// An Alg_seq is an array of Alg_events, each a sequence of Alg_event,
// with a tempo map and a sequence of time signatures
//
typedef class Alg_seq : public Alg_track {
protected:
Alg_iterator_ptr pending; // iterator used internally by Alg_seq methods
void serialize_seq();
Alg_error error; // error code set by file readers
// an internal function used for writing Allegro track names
Alg_event_ptr write_track_name(std::ostream &file, int n,
Alg_events &events);
public:
int channel_offset_per_track; // used to encode track_num into channel
Alg_tracks track_list; // array of Alg_events
Alg_time_sigs time_sig;
int beat_x;
void basic_initialization() {
error = alg_no_error;
units_are_seconds = true; type = 's';
channel_offset_per_track = 0;
add_track(0); // default is one empty track
}
Alg_seq() {
basic_initialization();
}
// copy constructor -- if track is an Alg_seq, make a copy; if
// track is just an Alg_track, the track becomes track 0
Alg_seq(Alg_track_ref track) { seq_from_track(track); }
Alg_seq(Alg_track_ptr track) { seq_from_track(*track); }
void seq_from_track(Alg_track_ref tr);
// create from file:
Alg_seq(std::istream &file, bool smf, double *offset_ptr = NULL);
// create from filename
Alg_seq(const char *filename, bool smf, double *offset_ptr = NULL);
virtual ~Alg_seq();
int get_read_error() { return error; }
void serialize(void **buffer, long *bytes);
void copy_time_sigs_to(Alg_seq *dest); // a utility function
void set_time_map(Alg_time_map *map);
// encode sequence structure into contiguous, moveable memory block
// address of newly allocated memory is assigned to *buffer, which must
// be freed by caller; the length of data is assigned to *len
void unserialize_seq();
// write an ascii representation to file
void write(std::ostream &file, bool in_secs, double offset = 0.0);
// returns true on success
bool write(const char *filename, double offset = 0.0);
void smf_write(std::ostream &file);
bool smf_write(const char *filename);
// Returns the number of tracks
int tracks();
// create a track
void add_track(int track_num) {
track_list.add_track(track_num, get_time_map(), units_are_seconds);
}
// Return a particular track. This Alg_seq owns the track, so the
// caller must not delete the result.
Alg_track_ptr track(int);
virtual Alg_event_ptr &operator[](int i);
virtual void convert_to_seconds();
virtual void convert_to_beats();
Alg_track_ptr cut_from_track(int track_num, double start, double dur,
bool all);
Alg_seq *cut(double t, double len, bool all);
void insert_silence_in_track(int track_num, double t, double len);
void insert_silence(double t, double len);
Alg_track_ptr copy_track(int track_num, double t, double len, bool all);
Alg_seq *copy(double start, double len, bool all);
void paste(double start, Alg_seq *seq);
virtual void clear(double t, double len, bool all);
virtual void merge(double t, Alg_event_list_ptr seq);
virtual void silence(double t, double len, bool all);
void clear_track(int track_num, double start, double len, bool all);
void silence_track(int track_num, double start, double len, bool all);
Alg_event_list_ptr find_in_track(int track_num, double t, double len,
bool all, int32_t channel_mask,
int32_t event_type_mask);
// find index of first score event after time
long seek_time(double time, int track_num);
bool insert_beat(double time, double beat);
// return the time of the beat nearest to time, also returns beat
// number through beat. This will correspond to an integer number
// of beats from the nearest previous time signature or 0.0, but
// since time signatures need not be on integer beat boundaries
// the beat location may not be on an integer beat (beat locations
// are measured from the beginning which is beat 0.
double nearest_beat_time(double time, double *beat);
// warning: insert_tempo may change representation from seconds to beats
bool insert_tempo(double bpm, double beat);
// change the duration from b0 to b1 (beats) to dur (seconds) by
// scaling the intervening tempos
bool stretch_region(double b0, double b1, double dur);
// add_event takes a pointer to an event on the heap. The event is not
// copied, and this Alg_seq becomes the owner and freer of the event.
void add_event(Alg_event_ptr event, int track_num);
void add(Alg_event_ptr event) { assert(false); } // call add_event instead
// get the tempo starting at beat
double get_tempo(double beat);
bool set_tempo(double bpm, double start_beat, double end_beat);
// get the bar length in beats starting at beat
double get_bar_len(double beat);
void set_time_sig(double beat, double num, double den);
void beat_to_measure(double beat, long *measure, double *m_beat,
double *num, double *den);
// void set_events(Alg_event_ptr *events, long len, long max);
void merge_tracks(); // move all track data into one track
void set_in_use(bool flag); // set in_use flag on all tracks
} *Alg_seq_ptr, &Alg_seq_ref;
// see Alg_seq::Alg_seq() constructors that read from files
// the following are for internal library implementation and are
// moved to *_internal.h header files.
//Alg_seq_ptr alg_read(std::istream &file, Alg_seq_ptr new_seq);
//Alg_seq_ptr alg_smf_read(std::istream &file, Alg_seq_ptr new_seq);
#endif