audacia/src/FFT.cpp
Paul Licameli 5e7d41ec07 Each .cpp/.mm file includes corresponding header before any other...
... except Audacity.h

This forces us to make each header contain all forward declarations or nested
headers that it requires, rather than depend on context.
2019-03-17 22:54:52 -04:00

693 lines
19 KiB
C++

/**********************************************************************
FFT.cpp
Dominic Mazzoni
September 2000
*******************************************************************//*!
\file FFT.cpp
\brief Fast Fourier Transform routines.
This file contains a few FFT routines, including a real-FFT
routine that is almost twice as fast as a normal complex FFT,
and a power spectrum routine when you know you don't care
about phase information.
Some of this code was based on a free implementation of an FFT
by Don Cross, available on the web at:
http://www.intersrv.com/~dcross/fft.html
The basic algorithm for his code was based on Numerican Recipes
in Fortran. I optimized his code further by reducing array
accesses, caching the bit reversal table, and eliminating
float-to-double conversions, and I added the routines to
calculate a real FFT and a real power spectrum.
*//*******************************************************************/
/*
Salvo Ventura - November 2006
Added more window functions:
* 4: Blackman
* 5: Blackman-Harris
* 6: Welch
* 7: Gaussian(a=2.5)
* 8: Gaussian(a=3.5)
* 9: Gaussian(a=4.5)
*/
#include "Audacity.h"
#include "FFT.h"
#include "Internat.h"
#include "MemoryX.h"
#include "SampleFormat.h"
#include <wx/intl.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "RealFFTf.h"
static ArraysOf<int> gFFTBitTable;
static const size_t MaxFastBits = 16;
/* Declare Static functions */
static void InitFFT();
static bool IsPowerOfTwo(size_t x)
{
if (x < 2)
return false;
if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */
return false;
return true;
}
static size_t NumberOfBitsNeeded(size_t PowerOfTwo)
{
if (PowerOfTwo < 2) {
wxFprintf(stderr, "Error: FFT called with size %ld\n", PowerOfTwo);
exit(1);
}
size_t i = 0;
while (PowerOfTwo > 1)
PowerOfTwo >>= 1, ++i;
return i;
}
int ReverseBits(size_t index, size_t NumBits)
{
size_t i, rev;
for (i = rev = 0; i < NumBits; i++) {
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
void InitFFT()
{
gFFTBitTable.reinit(MaxFastBits);
size_t len = 2;
for (size_t b = 1; b <= MaxFastBits; b++) {
auto &array = gFFTBitTable[b - 1];
array.reinit(len);
for (size_t i = 0; i < len; i++)
array[i] = ReverseBits(i, b);
len <<= 1;
}
}
void DeinitFFT()
{
gFFTBitTable.reset();
}
static inline size_t FastReverseBits(size_t i, size_t NumBits)
{
if (NumBits <= MaxFastBits)
return gFFTBitTable[NumBits - 1][i];
else
return ReverseBits(i, NumBits);
}
/*
* Complex Fast Fourier Transform
*/
void FFT(size_t NumSamples,
bool InverseTransform,
const float *RealIn, const float *ImagIn,
float *RealOut, float *ImagOut)
{
double angle_numerator = 2.0 * M_PI;
double tr, ti; /* temp real, temp imaginary */
if (!IsPowerOfTwo(NumSamples)) {
wxFprintf(stderr, "%ld is not a power of two\n", NumSamples);
exit(1);
}
if (!gFFTBitTable)
InitFFT();
if (!InverseTransform)
angle_numerator = -angle_numerator;
/* Number of bits needed to store indices */
auto NumBits = NumberOfBitsNeeded(NumSamples);
/*
** Do simultaneous data copy and bit-reversal ordering into outputs...
*/
for (size_t i = 0; i < NumSamples; i++) {
auto j = FastReverseBits(i, NumBits);
RealOut[j] = RealIn[i];
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
}
/*
** Do the FFT itself...
*/
size_t BlockEnd = 1;
for (size_t BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
double delta_angle = angle_numerator / (double) BlockSize;
double sm2 = sin(-2 * delta_angle);
double sm1 = sin(-delta_angle);
double cm2 = cos(-2 * delta_angle);
double cm1 = cos(-delta_angle);
double w = 2 * cm1;
double ar0, ar1, ar2, ai0, ai1, ai2;
for (size_t i = 0; i < NumSamples; i += BlockSize) {
ar2 = cm2;
ar1 = cm1;
ai2 = sm2;
ai1 = sm1;
for (size_t j = i, n = 0; n < BlockEnd; j++, n++) {
ar0 = w * ar1 - ar2;
ar2 = ar1;
ar1 = ar0;
ai0 = w * ai1 - ai2;
ai2 = ai1;
ai1 = ai0;
size_t k = j + BlockEnd;
tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
ti = ar0 * ImagOut[k] + ai0 * RealOut[k];
RealOut[k] = RealOut[j] - tr;
ImagOut[k] = ImagOut[j] - ti;
RealOut[j] += tr;
ImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
/*
** Need to normalize if inverse transform...
*/
if (InverseTransform) {
float denom = (float) NumSamples;
for (size_t i = 0; i < NumSamples; i++) {
RealOut[i] /= denom;
ImagOut[i] /= denom;
}
}
}
/*
* Real Fast Fourier Transform
*
* This is merely a wrapper of RealFFTf() from RealFFTf.h.
*/
void RealFFT(size_t NumSamples, const float *RealIn, float *RealOut, float *ImagOut)
{
auto hFFT = GetFFT(NumSamples);
Floats pFFT{ NumSamples };
// Copy the data into the processing buffer
for(size_t i = 0; i < NumSamples; i++)
pFFT[i] = RealIn[i];
// Perform the FFT
RealFFTf(pFFT.get(), hFFT.get());
// Copy the data into the real and imaginary outputs
for (size_t i = 1; i<(NumSamples / 2); i++) {
RealOut[i]=pFFT[hFFT->BitReversed[i] ];
ImagOut[i]=pFFT[hFFT->BitReversed[i]+1];
}
// Handle the (real-only) DC and Fs/2 bins
RealOut[0] = pFFT[0];
RealOut[NumSamples / 2] = pFFT[1];
ImagOut[0] = ImagOut[NumSamples / 2] = 0;
// Fill in the upper half using symmetry properties
for(size_t i = NumSamples / 2 + 1; i < NumSamples; i++) {
RealOut[i] = RealOut[NumSamples-i];
ImagOut[i] = -ImagOut[NumSamples-i];
}
}
/*
* InverseRealFFT
*
* This function computes the inverse of RealFFT, above.
* The RealIn and ImagIn is assumed to be conjugate-symmetric
* and as a result the output is purely real.
* Only the first half of RealIn and ImagIn are used due to this
* symmetry assumption.
*
* This is merely a wrapper of InverseRealFFTf() from RealFFTf.h.
*/
void InverseRealFFT(size_t NumSamples, const float *RealIn, const float *ImagIn,
float *RealOut)
{
auto hFFT = GetFFT(NumSamples);
Floats pFFT{ NumSamples };
// Copy the data into the processing buffer
for (size_t i = 0; i < (NumSamples / 2); i++)
pFFT[2*i ] = RealIn[i];
if(ImagIn == NULL) {
for (size_t i = 0; i < (NumSamples / 2); i++)
pFFT[2*i+1] = 0;
} else {
for (size_t i = 0; i < (NumSamples / 2); i++)
pFFT[2*i+1] = ImagIn[i];
}
// Put the fs/2 component in the imaginary part of the DC bin
pFFT[1] = RealIn[NumSamples / 2];
// Perform the FFT
InverseRealFFTf(pFFT.get(), hFFT.get());
// Copy the data to the (purely real) output buffer
ReorderToTime(hFFT.get(), pFFT.get(), RealOut);
}
/*
* PowerSpectrum
*
* This function uses RealFFTf() from RealFFTf.h to perform the real
* FFT computation, and then squares the real and imaginary part of
* each coefficient, extracting the power and throwing away the phase.
*
* For speed, it does not call RealFFT, but duplicates some
* of its code.
*/
void PowerSpectrum(size_t NumSamples, const float *In, float *Out)
{
auto hFFT = GetFFT(NumSamples);
Floats pFFT{ NumSamples };
// Copy the data into the processing buffer
for (size_t i = 0; i<NumSamples; i++)
pFFT[i] = In[i];
// Perform the FFT
RealFFTf(pFFT.get(), hFFT.get());
// Copy the data into the real and imaginary outputs
for (size_t i = 1; i<NumSamples / 2; i++) {
Out[i]= (pFFT[hFFT->BitReversed[i] ]*pFFT[hFFT->BitReversed[i] ])
+ (pFFT[hFFT->BitReversed[i]+1]*pFFT[hFFT->BitReversed[i]+1]);
}
// Handle the (real-only) DC and Fs/2 bins
Out[0] = pFFT[0]*pFFT[0];
Out[NumSamples / 2] = pFFT[1]*pFFT[1];
}
/*
* Windowing Functions
*/
int NumWindowFuncs()
{
return eWinFuncCount;
}
const wxChar *WindowFuncName(int whichFunction)
{
switch (whichFunction) {
default:
case eWinFuncRectangular:
return _("Rectangular");
case eWinFuncBartlett:
return wxT("Bartlett");
case eWinFuncHamming:
return wxT("Hamming");
case eWinFuncHanning:
return wxT("Hann");
case eWinFuncBlackman:
return wxT("Blackman");
case eWinFuncBlackmanHarris:
return wxT("Blackman-Harris");
case eWinFuncWelch:
return wxT("Welch");
case eWinFuncGaussian25:
return wxT("Gaussian(a=2.5)");
case eWinFuncGaussian35:
return wxT("Gaussian(a=3.5)");
case eWinFuncGaussian45:
return wxT("Gaussian(a=4.5)");
}
}
void NewWindowFunc(int whichFunction, size_t NumSamplesIn, bool extraSample, float *in)
{
int NumSamples = (int)NumSamplesIn;
if (extraSample) {
wxASSERT(NumSamples > 0);
--NumSamples;
}
wxASSERT(NumSamples > 0);
switch (whichFunction) {
default:
wxFprintf(stderr, "FFT::WindowFunc - Invalid window function: %d\n", whichFunction);
break;
case eWinFuncRectangular:
// Multiply all by 1.0f -- do nothing
break;
case eWinFuncBartlett:
{
// Bartlett (triangular) window
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
const float denom = NumSamples / 2.0f;
in[0] = 0.0f;
for (int ii = 1;
ii <= nPairs; // Yes, <=
++ii) {
const float value = ii / denom;
in[ii] *= value;
in[NumSamples - ii] *= value;
}
// When NumSamples is even, in[half] should be multiplied by 1.0, so unchanged
// When odd, the value of 1.0 is not reached
}
break;
case eWinFuncHamming:
{
// Hamming
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.54, coeff1 = -0.46;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
}
break;
case eWinFuncHanning:
{
// Hann
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.5, coeff1 = -0.5;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
}
break;
case eWinFuncBlackman:
{
// Blackman
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
static const double coeff0 = 0.42, coeff1 = -0.5, coeff2 = 0.08;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2);
}
break;
case eWinFuncBlackmanHarris:
{
// Blackman-Harris
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double multiplier3 = 3 * multiplier;
static const double coeff0 = 0.35875, coeff1 = -0.48829, coeff2 = 0.14128, coeff3 = -0.01168;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2) + coeff3 * cos(ii * multiplier3);
}
break;
case eWinFuncWelch:
{
// Welch
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= 4 * iOverN * (1 - iOverN);
}
}
break;
case eWinFuncGaussian25:
{
// Gaussian (a=2.5)
// Precalculate some values, and simplify the fmla to try and reduce overhead
static const double A = -2 * 2.5*2.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
// full
// in[ii] *= exp(-0.5*(A*((ii-NumSamples/2)/NumSamples/2))*(A*((ii-NumSamples/2)/NumSamples/2)));
// reduced
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
case eWinFuncGaussian35:
{
// Gaussian (a=3.5)
static const double A = -2 * 3.5*3.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
case eWinFuncGaussian45:
{
// Gaussian (a=4.5)
static const double A = -2 * 4.5*4.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
}
if (extraSample && whichFunction != eWinFuncRectangular) {
double value = 0.0;
switch (whichFunction) {
case eWinFuncHamming:
value = 0.08;
break;
case eWinFuncGaussian25:
value = exp(-2 * 2.5 * 2.5 * 0.25);
break;
case eWinFuncGaussian35:
value = exp(-2 * 3.5 * 3.5 * 0.25);
break;
case eWinFuncGaussian45:
value = exp(-2 * 4.5 * 4.5 * 0.25);
break;
default:
break;
}
in[NumSamples] *= value;
}
}
// See cautions in FFT.h !
void WindowFunc(int whichFunction, size_t NumSamples, float *in)
{
bool extraSample = false;
switch (whichFunction)
{
case eWinFuncHamming:
case eWinFuncHanning:
case eWinFuncBlackman:
case eWinFuncBlackmanHarris:
extraSample = true;
break;
default:
break;
case eWinFuncBartlett:
// PRL: Do nothing here either
// But I want to comment that the old function did this case
// wrong in the second half of the array, in case NumSamples was odd
// but I think that never happened, so I am not bothering to preserve that
break;
}
NewWindowFunc(whichFunction, NumSamples, extraSample, in);
}
void DerivativeOfWindowFunc(int whichFunction, size_t NumSamples, bool extraSample, float *in)
{
if (eWinFuncRectangular == whichFunction)
{
// Rectangular
// There are deltas at the ends
wxASSERT(NumSamples > 0);
--NumSamples;
// in[0] *= 1.0f;
for (int ii = 1; ii < (int)NumSamples; ++ii)
in[ii] = 0.0f;
in[NumSamples] *= -1.0f;
return;
}
if (extraSample) {
wxASSERT(NumSamples > 0);
--NumSamples;
}
wxASSERT(NumSamples > 0);
double A;
switch (whichFunction) {
case eWinFuncBartlett:
{
// Bartlett (triangular) window
// There are discontinuities in the derivative at the ends, and maybe at the midpoint
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
const float value = 2.0f / NumSamples;
in[0] *=
// Average the two limiting values of discontinuous derivative
value / 2.0f;
for (int ii = 1;
ii <= nPairs; // Yes, <=
++ii) {
in[ii] *= value;
in[NumSamples - ii] *= -value;
}
if (NumSamples % 2 == 0)
// Average the two limiting values of discontinuous derivative
in[NumSamples / 2] = 0.0f;
if (extraSample)
in[NumSamples] *=
// Average the two limiting values of discontinuous derivative
-value / 2.0f;
else
// Halve the multiplier previously applied
// Average the two limiting values of discontinuous derivative
in[NumSamples - 1] *= 0.5f;
}
break;
case eWinFuncHamming:
{
// Hamming
// There are deltas at the ends
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.54, coeff1 = -0.46 * multiplier;
// TODO This code should be more explicit about the precision it intends.
// For now we get C4305 warnings, truncation from 'const double' to 'float'
in[0] *= coeff0;
if (!extraSample)
--NumSamples;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier);
if (extraSample)
in[NumSamples] *= - coeff0;
else
// slightly different
in[NumSamples] *= - coeff0 - coeff1 * sin(NumSamples * multiplier);
}
break;
case eWinFuncHanning:
{
// Hann
const double multiplier = 2 * M_PI / NumSamples;
const double coeff1 = -0.5 * multiplier;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncBlackman:
{
// Blackman
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double coeff1 = -0.5 * multiplier, coeff2 = 0.08 * multiplier2;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncBlackmanHarris:
{
// Blackman-Harris
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double multiplier3 = 3 * multiplier;
const double coeff1 = -0.48829 * multiplier,
coeff2 = 0.14128 * multiplier2, coeff3 = -0.01168 * multiplier3;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2) - coeff3 * sin(ii * multiplier3);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncWelch:
{
// Welch
const float N = NumSamples;
const float NN = NumSamples * NumSamples;
for (int ii = 0; ii < (int)NumSamples; ++ii) {
in[ii] *= 4 * (N - ii - ii) / NN;
}
if (extraSample)
in[NumSamples] = 0.0f;
// Average the two limiting values of discontinuous derivative
in[0] /= 2.0f;
in[NumSamples - 1] /= 2.0f;
}
break;
case eWinFuncGaussian25:
// Gaussian (a=2.5)
A = -2 * 2.5*2.5;
goto Gaussian;
case eWinFuncGaussian35:
// Gaussian (a=3.5)
A = -2 * 3.5*3.5;
goto Gaussian;
case eWinFuncGaussian45:
// Gaussian (a=4.5)
A = -2 * 4.5*4.5;
goto Gaussian;
Gaussian:
{
// Gaussian (a=2.5)
// There are deltas at the ends
const float invN = 1.0f / NumSamples;
const float invNN = invN * invN;
// Simplify formula from the loop for ii == 0, add term for the delta
in[0] *= exp(A * 0.25) * (1 - invN);
if (!extraSample)
--NumSamples;
for (int ii = 1; ii < (int)NumSamples; ++ii) {
const float iOverN = ii * invN;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * ii * invNN - invN);
}
if (extraSample)
in[NumSamples] *= exp(A * 0.25) * (invN - 1);
else {
// Slightly different
const float iOverN = NumSamples * invN;
in[NumSamples] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * NumSamples * invNN - invN - 1);
}
}
break;
default:
wxFprintf(stderr, "FFT::DerivativeOfWindowFunc - Invalid window function: %d\n", whichFunction);
}
}