audacia/src/Matrix.cpp

407 lines
8.2 KiB
C++

/**********************************************************************
Audacity: A Digital Audio Editor
Matrix.cpp
Dominic Mazzoni
**********************************************************************/
#include <stdlib.h>
#include <math.h>
#include <wx/defs.h>
#include "Matrix.h"
Vector::Vector()
{
mCopy = false;
mN = 0;
mData = NULL;
}
Vector::Vector(int len, double *data, bool copy)
{
mN = len;
mCopy = copy;
if (mCopy || !data) {
mCopy = true;
mData = new double[mN];
int i;
for(i=0; i<mN; i++)
if (data)
mData[i] = data[i];
else
mData[i] = 0.0;
}
else {
mCopy = false;
mData = data;
}
}
Vector& Vector::operator=(const Vector &other)
{
wxASSERT(Len() == other.Len());
int i;
for(i=0; i<Len(); i++)
mData[i] = other.mData[i];
return *this;
}
Vector::Vector(const Vector &other)
{
CopyFrom(other);
}
void Vector::CopyFrom(const Vector &other)
{
mN = other.Len();
mCopy = true;
mData = new double[mN];
int i;
for(i=0; i<mN; i++)
mData[i] = other.mData[i];
}
Vector::~Vector()
{
if (mCopy)
delete[] mData;
}
Vector::Vector(int len, float *data)
{
mCopy = true;
mN = len;
mData = new double[mN];
int i;
for(i=0; i<mN; i++)
mData[i] = (double)data[i];
}
double Vector::Sum() const
{
int i;
double sum = 0.0;
for(i=0; i<Len(); i++)
sum += mData[i];
return sum;
}
Matrix::Matrix(int rows, int cols, double **data)
{
mRows = rows;
mCols = cols;
mRowVec = new Vector *[mRows];
int i, j;
for(i=0; i<mRows; i++) {
mRowVec[i] = new Vector(mCols);
for(j=0; j<mCols; j++) {
if (data)
(*this)[i][j] = data[i][j];
else
(*this)[i][j] = 0.0;
}
}
}
Matrix& Matrix::operator=(const Matrix &other)
{
CopyFrom(other);
return *this;
}
Matrix::Matrix(const Matrix &other)
{
CopyFrom(other);
}
void Matrix::CopyFrom(const Matrix &other)
{
mRows = other.mRows;
mCols = other.mCols;
mRowVec = new Vector *[mRows];
int i;
for(i=0; i<mRows; i++) {
mRowVec[i] = new Vector(mCols);
*mRowVec[i] = *other.mRowVec[i];
}
}
Matrix::~Matrix()
{
int i;
for(i=0; i<mRows; i++)
delete mRowVec[i];
delete[] mRowVec;
}
void Matrix::SwapRows(int i, int j)
{
Vector *tmp = mRowVec[i];
mRowVec[i] = mRowVec[j];
mRowVec[j] = tmp;
}
double Matrix::Sum() const
{
int i, j;
double sum = 0.0;
for(i=0; i<Rows(); i++)
for(j=0; j<Cols(); j++)
sum += (*mRowVec[i])[j];
return sum;
}
Matrix IdentityMatrix(int N)
{
Matrix M(N, N);
int i;
for(i=0; i<N; i++)
M[i][i] = 1.0;
return M;
}
Vector operator+(const Vector &left, const Vector &right)
{
wxASSERT(left.Len() == right.Len());
Vector v(left.Len());
int i;
for(i=0; i<left.Len(); i++)
v[i] = left[i] + right[i];
return v;
}
Vector operator-(const Vector &left, const Vector &right)
{
wxASSERT(left.Len() == right.Len());
Vector v(left.Len());
int i;
for(i=0; i<left.Len(); i++)
v[i] = left[i] - right[i];
return v;
}
Vector operator*(const Vector &left, const Vector &right)
{
wxASSERT(left.Len() == right.Len());
Vector v(left.Len());
int i;
for(i=0; i<left.Len(); i++)
v[i] = left[i] * right[i];
return v;
}
Vector operator*(const Vector &left, double right)
{
Vector v(left.Len());
int i;
for(i=0; i<left.Len(); i++)
v[i] = left[i] * right;
return v;
}
Vector VectorSubset(const Vector &other, int start, int len)
{
Vector v(len);
int i;
for(i=0; i<len; i++)
v[i] = other[start+i];
return v;
}
Vector VectorConcatenate(const Vector& left, const Vector& right)
{
Vector v(left.Len() + right.Len());
int i;
for(i=0; i<left.Len(); i++)
v[i] = left[i];
for(i=0; i<right.Len(); i++)
v[i + left.Len()] = right[i];
return v;
}
Vector operator*(const Vector &left, const Matrix &right)
{
wxASSERT(left.Len() == right.Rows());
Vector v(right.Cols());
int i, j;
for(i=0; i<right.Cols(); i++) {
v[i] = 0.0;
for(j=0; j<right.Rows(); j++)
v[i] += left[j] * right[j][i];
}
return v;
}
Vector operator*(const Matrix &left, const Vector &right)
{
wxASSERT(left.Cols() == right.Len());
Vector v(left.Rows());
int i, j;
for(i=0; i<left.Rows(); i++) {
v[i] = 0.0;
for(j=0; j<left.Cols(); j++)
v[i] += left[i][j] * right[j];
}
return v;
}
Matrix operator+(const Matrix &left, const Matrix &right)
{
wxASSERT(left.Rows() == right.Rows());
wxASSERT(left.Cols() == right.Cols());
Matrix M(left.Rows(), left.Cols());
int i, j;
for(i=0; i<left.Rows(); i++)
for(j=0; j<left.Cols(); j++)
M[i][j] = left[i][j] + right[i][j];
return M;
}
Matrix operator*(const Matrix &left, const double right)
{
Matrix M(left.Rows(), left.Cols());
int i, j;
for(i=0; i<left.Rows(); i++)
for(j=0; j<left.Cols(); j++)
M[i][j] = left[i][j] * right;
return M;
}
Matrix ScalarMultiply(const Matrix &left, const Matrix &right)
{
wxASSERT(left.Rows() == right.Rows());
wxASSERT(left.Cols() == right.Cols());
Matrix M(left.Rows(), left.Cols());
int i, j;
for(i=0; i<left.Rows(); i++)
for(j=0; j<left.Cols(); j++)
M[i][j] = left[i][j] * right[i][j];
return M;
}
Matrix MatrixMultiply(const Matrix &left, const Matrix &right)
{
wxASSERT(left.Cols() == right.Rows());
Matrix M(left.Rows(), right.Cols());
int i, j, k;
for(i=0; i<left.Rows(); i++)
for(j=0; j<right.Cols(); j++) {
M[i][j] = 0.0;
for(k=0; k<left.Cols(); k++)
M[i][j] += left[i][k] * right[k][j];
}
return M;
}
Matrix MatrixSubset(const Matrix &input,
int startRow, int numRows, int startCol, int numCols)
{
Matrix M(numRows, numCols);
int i, j;
for(i=0; i<numRows; i++)
for(j=0; j<numCols; j++)
M[i][j] = input[startRow+i][startCol+j];
return M;
}
Matrix MatrixConcatenateCols(const Matrix& left, const Matrix& right)
{
wxASSERT(left.Rows() == right.Rows());
Matrix M(left.Rows(), left.Cols() + right.Cols());
int i, j;
for(i=0; i<left.Rows(); i++) {
for(j=0; j<left.Cols(); j++)
M[i][j] = left[i][j];
for(j=0; j<right.Cols(); j++)
M[i][j+left.Cols()] = right[i][j];
}
return M;
}
Matrix TransposeMatrix(const Matrix& other)
{
Matrix M(other.Cols(), other.Rows());
int i, j;
for(i=0; i<other.Rows(); i++)
for(j=0; j<other.Cols(); j++)
M[j][i] = other[i][j];
return M;
}
bool InvertMatrix(const Matrix& input, Matrix& Minv)
{
// Very straightforward implementation of
// Gauss-Jordan elimination to invert a matrix.
// Returns true if successful
wxASSERT(input.Rows() == input.Cols());
int N = input.Rows();
int i, j, k;
Matrix M = input;
Minv = IdentityMatrix(N);
// Do the elimination one column at a time
for(i=0; i<N; i++) {
// Pivot the row with the largest absolute value in
// column i, into row i
double absmax = 0.0;
int argmax=0;
for(j=i; j<N; j++)
if (fabs(M[j][i]) > absmax) {
absmax = fabs(M[j][i]);
argmax = j;
}
// If no row has a nonzero value in that column,
// the matrix is singular and we have to give up.
if (absmax == 0)
return false;
if (i != argmax) {
M.SwapRows(i, argmax);
Minv.SwapRows(i, argmax);
}
// Divide this row by the value of M[i][i]
double factor = 1.0 / M[i][i];
M[i] = M[i] * factor;
Minv[i] = Minv[i] * factor;
// Eliminate the rest of the column
for(j=0; j<N; j++) {
if (j==i)
continue;
if (fabs(M[j][i]) > 0) {
// Subtract a multiple of row i from row j
double factor = M[j][i];
for(k=0; k<N; k++) {
M[j][k] -= (M[i][k] * factor);
Minv[j][k] -= (Minv[i][k] * factor);
}
}
}
}
return true;
}
// Indentation settings for Vim and Emacs.
// Please do not modify past this point.
//
// Local Variables:
// c-basic-offset: 3
// indent-tabs-mode: nil
// End:
//
// vim: et sts=3 sw=3
//