audacia/src/RealFFTf.cpp
Paul Licameli 5e7d41ec07 Each .cpp/.mm file includes corresponding header before any other...
... except Audacity.h

This forces us to make each header contain all forward declarations or nested
headers that it requires, rather than depend on context.
2019-03-17 22:54:52 -04:00

376 lines
11 KiB
C++

/*
* Program: REALFFTF.C
* Author: Philip Van Baren
* Date: 2 September 1993
*
* Description: These routines perform an FFT on real data to get a conjugate-symmetric
* output, and an inverse FFT on conjugate-symmetric input to get a real
* output sequence.
*
* This code is for floating point data.
*
* Modified 8/19/1998 by Philip Van Baren
* - made the InitializeFFT and EndFFT routines take a structure
* holding the length and pointers to the BitReversed and SinTable
* tables.
* Modified 5/23/2009 by Philip Van Baren
* - Added GetFFT and ReleaseFFT routines to retain common SinTable
* and BitReversed tables so they don't need to be reallocated
* and recomputed on every call.
* - Added Reorder* functions to undo the bit-reversal
*
* Copyright (C) 2009 Philip VanBaren
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "Audacity.h"
#include "RealFFTf.h"
#include "Experimental.h"
#include <vector>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <wx/thread.h>
#ifdef EXPERIMENTAL_EQ_SSE_THREADED
#include "RealFFTf48x.h"
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#endif
/*
* Initialize the Sine table and Twiddle pointers (bit-reversed pointers)
* for the FFT routine.
*/
HFFT InitializeFFT(size_t fftlen)
{
int temp;
HFFT h{ safenew FFTParam };
/*
* FFT size is only half the number of data points
* The full FFT output can be reconstructed from this FFT's output.
* (This optimization can be made since the data is real.)
*/
h->Points = fftlen / 2;
h->SinTable.reinit(2*h->Points);
h->BitReversed.reinit(h->Points);
for(size_t i = 0; i < h->Points; i++)
{
temp = 0;
for(size_t mask = h->Points / 2; mask > 0; mask >>= 1)
temp = (temp >> 1) + (i & mask ? h->Points : 0);
h->BitReversed[i] = temp;
}
for(size_t i = 0; i < h->Points; i++)
{
h->SinTable[h->BitReversed[i] ]=(fft_type)-sin(2*M_PI*i/(2*h->Points));
h->SinTable[h->BitReversed[i]+1]=(fft_type)-cos(2*M_PI*i/(2*h->Points));
}
#ifdef EXPERIMENTAL_EQ_SSE_THREADED
// NEW SSE FFT routines work on live data
for(size_t i = 0; i < 32; i++)
if((1 << i) & fftlen)
h->pow2Bits = i;
#endif
return h;
}
enum : size_t { MAX_HFFT = 10 };
// Maintain a pool:
static std::vector< std::unique_ptr<FFTParam> > hFFTArray(MAX_HFFT);
wxCriticalSection getFFTMutex;
/* Get a handle to the FFT tables of the desired length */
/* This version keeps common tables rather than allocating a NEW table every time */
HFFT GetFFT(size_t fftlen)
{
// To do: smarter policy about when to retain in the pool and when to
// allocate a unique instance.
wxCriticalSectionLocker locker{ getFFTMutex };
size_t h = 0;
auto n = fftlen/2;
auto size = hFFTArray.size();
for(;
(h < size) && hFFTArray[h] && (n != hFFTArray[h]->Points);
h++)
;
if(h < size) {
if(hFFTArray[h] == NULL) {
hFFTArray[h].reset( InitializeFFT(fftlen).release() );
}
return HFFT{ hFFTArray[h].get() };
} else {
// All buffers used, so fall back to allocating a NEW set of tables
return InitializeFFT(fftlen);
}
}
/* Release a previously requested handle to the FFT tables */
void FFTDeleter::operator() (FFTParam *hFFT) const
{
wxCriticalSectionLocker locker{ getFFTMutex };
auto it = hFFTArray.begin(), end = hFFTArray.end();
while (it != end && it->get() != hFFT)
++it;
if ( it != end )
;
else
delete hFFT;
}
/*
* Forward FFT routine. Must call GetFFT(fftlen) first!
*
* Note: Output is BIT-REVERSED! so you must use the BitReversed to
* get legible output, (i.e. Real_i = buffer[ h->BitReversed[i] ]
* Imag_i = buffer[ h->BitReversed[i]+1 ] )
* Input is in normal order.
*
* Output buffer[0] is the DC bin, and output buffer[1] is the Fs/2 bin
* - this can be done because both values will always be real only
* - this allows us to not have to allocate an extra complex value for the Fs/2 bin
*
* Note: The scaling on this is done according to the standard FFT definition,
* so a unit amplitude DC signal will output an amplitude of (N)
* (Older revisions would progressively scale the input, so the output
* values would be similar in amplitude to the input values, which is
* good when using fixed point arithmetic)
*/
void RealFFTf(fft_type *buffer, const FFTParam *h)
{
fft_type *A,*B;
const fft_type *sptr;
const fft_type *endptr1,*endptr2;
const int *br1,*br2;
fft_type HRplus,HRminus,HIplus,HIminus;
fft_type v1,v2,sin,cos;
auto ButterfliesPerGroup = h->Points/2;
/*
* Butterfly:
* Ain-----Aout
* \ /
* / \
* Bin-----Bout
*/
endptr1 = buffer + h->Points * 2;
while(ButterfliesPerGroup > 0)
{
A = buffer;
B = buffer + ButterfliesPerGroup * 2;
sptr = h->SinTable.get();
while(A < endptr1)
{
sin = *sptr;
cos = *(sptr+1);
endptr2 = B;
while(A < endptr2)
{
v1 = *B * cos + *(B + 1) * sin;
v2 = *B * sin - *(B + 1) * cos;
*B = (*A + v1);
*(A++) = *(B++) - 2 * v1;
*B = (*A - v2);
*(A++) = *(B++) + 2 * v2;
}
A = B;
B += ButterfliesPerGroup * 2;
sptr += 2;
}
ButterfliesPerGroup >>= 1;
}
/* Massage output to get the output for a real input sequence. */
br1 = h->BitReversed.get() + 1;
br2 = h->BitReversed.get() + h->Points - 1;
while(br1<br2)
{
sin=h->SinTable[*br1];
cos=h->SinTable[*br1+1];
A=buffer+*br1;
B=buffer+*br2;
HRplus = (HRminus = *A - *B ) + (*B * 2);
HIplus = (HIminus = *(A+1) - *(B+1)) + (*(B+1) * 2);
v1 = (sin*HRminus - cos*HIplus);
v2 = (cos*HRminus + sin*HIplus);
*A = (HRplus + v1) * (fft_type)0.5;
*B = *A - v1;
*(A+1) = (HIminus + v2) * (fft_type)0.5;
*(B+1) = *(A+1) - HIminus;
br1++;
br2--;
}
/* Handle the center bin (just need a conjugate) */
A=buffer+*br1+1;
*A=-*A;
/* Handle DC bin separately - and ignore the Fs/2 bin
buffer[0]+=buffer[1];
buffer[1]=(fft_type)0;*/
/* Handle DC and Fs/2 bins separately */
/* Put the Fs/2 value into the imaginary part of the DC bin */
v1=buffer[0]-buffer[1];
buffer[0]+=buffer[1];
buffer[1]=v1;
}
/* Description: This routine performs an inverse FFT to real data.
* This code is for floating point data.
*
* Note: Output is BIT-REVERSED! so you must use the BitReversed to
* get legible output, (i.e. wave[2*i] = buffer[ BitReversed[i] ]
* wave[2*i+1] = buffer[ BitReversed[i]+1 ] )
* Input is in normal order, interleaved (real,imaginary) complex data
* You must call GetFFT(fftlen) first to initialize some buffers!
*
* Input buffer[0] is the DC bin, and input buffer[1] is the Fs/2 bin
* - this can be done because both values will always be real only
* - this allows us to not have to allocate an extra complex value for the Fs/2 bin
*
* Note: The scaling on this is done according to the standard FFT definition,
* so a unit amplitude DC signal will output an amplitude of (N)
* (Older revisions would progressively scale the input, so the output
* values would be similar in amplitude to the input values, which is
* good when using fixed point arithmetic)
*/
void InverseRealFFTf(fft_type *buffer, const FFTParam *h)
{
fft_type *A,*B;
const fft_type *sptr;
const fft_type *endptr1,*endptr2;
const int *br1;
fft_type HRplus,HRminus,HIplus,HIminus;
fft_type v1,v2,sin,cos;
auto ButterfliesPerGroup = h->Points / 2;
/* Massage input to get the input for a real output sequence. */
A = buffer + 2;
B = buffer + h->Points * 2 - 2;
br1 = h->BitReversed.get() + 1;
while(A<B)
{
sin=h->SinTable[*br1];
cos=h->SinTable[*br1+1];
HRplus = (HRminus = *A - *B ) + (*B * 2);
HIplus = (HIminus = *(A+1) - *(B+1)) + (*(B+1) * 2);
v1 = (sin*HRminus + cos*HIplus);
v2 = (cos*HRminus - sin*HIplus);
*A = (HRplus + v1) * (fft_type)0.5;
*B = *A - v1;
*(A+1) = (HIminus - v2) * (fft_type)0.5;
*(B+1) = *(A+1) - HIminus;
A+=2;
B-=2;
br1++;
}
/* Handle center bin (just need conjugate) */
*(A+1)=-*(A+1);
/* Handle DC bin separately - this ignores any Fs/2 component
buffer[1]=buffer[0]=buffer[0]/2;*/
/* Handle DC and Fs/2 bins specially */
/* The DC bin is passed in as the real part of the DC complex value */
/* The Fs/2 bin is passed in as the imaginary part of the DC complex value */
/* (v1+v2) = buffer[0] == the DC component */
/* (v1-v2) = buffer[1] == the Fs/2 component */
v1=0.5f*(buffer[0]+buffer[1]);
v2=0.5f*(buffer[0]-buffer[1]);
buffer[0]=v1;
buffer[1]=v2;
/*
* Butterfly:
* Ain-----Aout
* \ /
* / \
* Bin-----Bout
*/
endptr1 = buffer + h->Points * 2;
while(ButterfliesPerGroup > 0)
{
A = buffer;
B = buffer + ButterfliesPerGroup * 2;
sptr = h->SinTable.get();
while(A < endptr1)
{
sin = *(sptr++);
cos = *(sptr++);
endptr2 = B;
while(A < endptr2)
{
v1 = *B * cos - *(B + 1) * sin;
v2 = *B * sin + *(B + 1) * cos;
*B = (*A + v1) * (fft_type)0.5;
*(A++) = *(B++) - v1;
*B = (*A + v2) * (fft_type)0.5;
*(A++) = *(B++) - v2;
}
A = B;
B += ButterfliesPerGroup * 2;
}
ButterfliesPerGroup >>= 1;
}
}
void ReorderToFreq(const FFTParam *hFFT, const fft_type *buffer,
fft_type *RealOut, fft_type *ImagOut)
{
// Copy the data into the real and imaginary outputs
for(size_t i = 1; i < hFFT->Points; i++) {
RealOut[i] = buffer[hFFT->BitReversed[i] ];
ImagOut[i] = buffer[hFFT->BitReversed[i]+1];
}
RealOut[0] = buffer[0]; // DC component
ImagOut[0] = 0;
RealOut[hFFT->Points] = buffer[1]; // Fs/2 component
ImagOut[hFFT->Points] = 0;
}
void ReorderToTime(const FFTParam *hFFT, const fft_type *buffer, fft_type *TimeOut)
{
// Copy the data into the real outputs
for(size_t i = 0; i < hFFT->Points; i++) {
TimeOut[i*2 ]=buffer[hFFT->BitReversed[i] ];
TimeOut[i*2+1]=buffer[hFFT->BitReversed[i]+1];
}
}