
PaperTrader Protocol Specification

altffour

June 4, 2020

Contents

1 Introduction 4

2 Overview 4
2.1 Terminology . 4

2.1.1 Inner World . 4
2.1.2 Outer World . 4
2.1.3 Critical Data . 4
2.1.4 User/Client . 4
2.1.5 User/Client Data . 4
2.1.6 Module . 4
2.1.7 Master Server . 5
2.1.8 Worker Servers . 5
2.1.9 User Accounts . 5

2.2 Infrastructure Model . 5
2.2.1 Master Server Infrastructure Model 5
2.2.2 Worker Servers Infrastructure Model 6

2.3 Global Deployment Variables . 6
2.3.1 List of assets to retrieve 6
2.3.2 Number of Workers . 6
2.3.3 Memory Size of Log system 6
2.3.4 Stock Data Update Interval 6

2.4 Data/State Structures . 7
2.4.1 Account Structure . 7
2.4.2 Session Structure . 7
2.4.3 Asset Structure . 7
2.4.4 LogEntry Structure . 8
2.4.5 WorkerServer Structure 8
2.4.6 MasterState Structure . 8
2.4.7 WorkerState Structure . 8

3 A more Technical Overview 8
3.1 Master Server . 9

3.1.1 Main Module . 9
3.1.2 Database Management . 9
3.1.3 Account Management & Authorization 10
3.1.4 Log System . 10
3.1.5 Worker Management . 10

1

3.1.6 Assets Data Retrieval . 11
3.1.7 Assets Buy & Sell . 11

3.2 Worker Server . 11
3.2.1 Main Module . 12
3.2.2 Master Server Communication 12
3.2.3 Client Management . 12
3.2.4 Account Authorization Tunnel 12
3.2.5 Logging System . 13
3.2.6 Cache Management . 13

4 The Protocol 13
4.1 Design Goals . 13
4.2 States . 14

4.2.1 Command State . 14
4.2.2 Data Transfer State . 15

4.3 The Connection . 15
4.3.1 Master-Worker Server Connection 15
4.3.2 Client-Worker Server Connection 15

4.4 Message Structure . 15
4.5 Instructions . 16

4.5.1 Command State Instructions 16
4.5.2 Data Transfer State Instructions 16
4.5.3 Server Return Instructions 17

4.6 Overivew of The Instructions . 17
4.6.1 login(name, hashedPass, isExpirable) 17
4.6.2 login(sessionID) . 17
4.6.3 register(username, email, hashedPass) 18
4.6.4 purchaseAsset(sessionID, name, quantity) 18
4.6.5 sellAsset(sessionID, name, quantity) 18
4.6.6 switchState(sessionID, state) 18
4.6.7 getAssetInfo(asset) . 18
4.6.8 getAssetValueCurrent(asset) 18
4.6.9 getAssetValueDay(asset, date) 19
4.6.10 getAssetValueWeek(asset, date) 19
4.6.11 getAssetValueMonth(asset, date) 19
4.6.12 getAssetValueYear(asset, date) 19
4.6.13 getAssetValueAllTime(asset) 19
4.6.14 getUserInfo(sessionID, username) 19
4.6.15 getUserPortfolio(sessionID, username) 20
4.6.16 getUserTransactionHistroy(sessionID, username) 20
4.6.17 loginFail . 20
4.6.18 sessionID . 20
4.6.19 registerSuccess . 20
4.6.20 registerFail . 20
4.6.21 purchaseSuccess . 20
4.6.22 purchaseFail . 20
4.6.23 sellSucecss . 20
4.6.24 sellFail . 21
4.6.25 stateSwitchSuccess . 21
4.6.26 stateSwitchFail . 21

2

4.6.27 data . 21
4.6.28 dataFail . 21

4.7 Communication . 21
4.7.1 Data Transfer Mechanism 21
4.7.2 Login - First Method . 22
4.7.3 Login - Second Method 22
4.7.4 Register . 22
4.7.5 Purchase . 23
4.7.6 Sell . 23
4.7.7 get(Data) . 24

3

1 Introduction

This is the document for the specification of PaperTrader. PaperTrader is an ap-
plication for ’fake’ trading assets, to practice investing. The document contains
explainations on how to implement the Papertrader application. The document
will go over the roles of the master server, and the worker servers, how they
interact with eachother and the communication protocol.

2 Overview

This section contains the required terminology and modelling of the PaperTrader
infrastructure.

2.1 Terminology

2.1.1 Inner World

This is the Master server, and all worker servers. This should be kept under
high lockdown. Meaning, critical data should be kept secure.

2.1.2 Outer World

This is the frontend, including the desktop cleint, mobile client, or the website
client. The data here is controlled by the authorization of the account.

2.1.3 Critical Data

Cirtical Data are all data types that shouldn’t be tampered with without au-
thorization. For example, accounts, personal information, messages, and in this
context user’s portfolios.

2.1.4 User/Client

In this context it is the frontend, which is either the desktop client, mobile
client, or the website client.

2.1.5 User/Client Data

This is the data of the user. The meaning depends on the specific conext. It
could mean the personal information, credentials, etc. Most of the time it means
data that is attached to a data transfer to identify client (IP?).

2.1.6 Module

A module is a set of functions. Usually there would be a main header file
containing the declarations of the functions, a folder with the name of the header
file containing the individual function definitions of the header file.

4

2.1.7 Master Server

This is the main server that MUST be run when deploying the application.
Contains critical data, it would only interact to the outside world by the worker
servers. The only exception to this rule is that when clients request list of worker
servers.

2.1.8 Worker Servers

These are servers that contact the outer world. Worker Servers will interact with
the Master Server acting like ‘cache’ servers. Data should be routed through
worker servers to the master server. The main job for worker server is to add
timestamps onto commands sent from the user. The data sent to the main
server must contain the data of the client/user. There MUST be ATLEAST
one instance running to have a functional infrastructure.

2.1.9 User Accounts

This is the account that abstractly is a the data structure that contains infor-
mation about the user and their account.

2.2 Infrastructure Model

A fully deployed infrastructure cotains ONE master server, ATLEAST one
worker server, theoretically across the world to maintain speed and reliabilty.
An overview diagram of the infrastructure:

Master Server

Worker 1 Worker 2

Client 1 Client 2 Client 3 Client 4

2.2.1 Master Server Infrastructure Model

The master can be defined into modules as demonstrated in the following dia-
gram:

5

Master Server

DatabaseAccount & Authorization Event Logging system

Worker Server Management Assets data retrievalAssets Buy & Sell

Outside WorkersClients

2.2.2 Worker Servers Infrastructure Model

The worker servers can be defined into modules as demonstrated in the following
diagram:

Worker Server Master ServerClients

Master Server CommunicationCache ManagementClient Management

Account & Authorization Event Logging

2.3 Global Deployment Variables

This section contains an overview of the global deployment variables.

2.3.1 List of assets to retrieve

This is the list of assets to retrieve using the assets/stocks API. The list can be
available in a file or hard-coded into the implementation.

2.3.2 Number of Workers

This is the number of workers deployed with the master server. It must be
atleast one. The worker server preferably should be deployed regionally.

2.3.3 Memory Size of Log system

This is a technical variable, this is the size of the log in memory before it being
flushed to harddisk. Generally the smaller this is the more disk speed is required.
And the larger it is the more RAM the instance needs and the faster it is.

2.3.4 Stock Data Update Interval

This is the interaval of the stock data retrieval. The more this is the faster the
transactions that can occur in a minute. This should be planned perfectly so
that it can maintain the userbase with the API calls.

6

2.4 Data/State Structures

This section will contain an overview of the data structure. The general data
structures discussed here are:

• Account Structure

• Session Structure

• Assets Structure

• Transaction Structure

• LogEntry Structure

• WorkerServer Structure

• MasterState Structure

• WorkerState Structure

2.4.1 Account Structure

The account structure is:

• UserName - string - 24 MAX CHARS

• Email - string - 321 MAX CHARS

• isPassword - bool - true

• passHash - string

• portfolio - Portfolio Structure

• transactions - Transaction Structure List

2.4.2 Session Structure

The session structure is:

• sessionID - string

• expiryDate - Date

• clientIP - IP

• isActive - bool

2.4.3 Asset Structure

The assets strucure is:

• assetSymbol - string

• openVal - num

• highVal - num

• lowVal - num

• closeVal - num

• volumeVal - num

7

2.4.4 LogEntry Structure

The LogEntry structure is:

• message - string

• date - Date

• time - Time

• filename - string

• funcname - string

• linenum - num

2.4.5 WorkerServer Structure

The worker server structure is:

• name - string

• gpgkey - string

• ipaddr - IP

2.4.6 MasterState Structure

The master state structure is:

• workerServers - WorkerServer Structure List

• activeSessions - Session Structure List

• assetsData - Assets Structure HashMap

• logentries - Log Entry Structure List

2.4.7 WorkerState Structure

The worker state structure is:

• masterServersock - Socket

• sessions - Session Structure List

• logentries - Log Entry Structure List

3 A more Technical Overview

This is the section that describes the functioning parts of the project in detail.
We will start with modules, including master server modules, and worker server
modules.

8

3.1 Master Server

The master server has multiple modules:

• Main Module, i.e the driver.

• Database Management.

• Account Management.

• Event Logging System.

• Worker Management.

• Assets Data Retrieval.

• Assets Transaction Management.

3.1.1 Main Module

The main module should be able to do the following things:

• Start the authorization thread.

• Start the Worker Management thread.

• Start the assets data retrieval thread.

• Start the assets transaction thread.

• Be able to parse commands from the worker threads.

• Be able to route the commands to the correct thread.

The main module’s functionality in relation of the deployment and running
stage is as follows, The binary containing the master server is run -¿ initializes
states required to operate the server -¿ start the threads -¿ start listening to
workers -¿ parse it -¿ pass it to the appropriate thread. This is usually the set of
functions that the main function would call. Putting the workings of the main
module on a seperate is advised, since it gives the ability to crash the server
and dump the logs from the memory of the event log system. Refer to 2.3.3 for
insight on why this is recommended.

3.1.2 Database Management

The database management module sould be able to do the following things:

• Be able to manipulate files (create, delete, write, read).

• Be able to convert data representations (structs) into SQL Databases.

The manipulations of files should be quite straightforward, a couple of func-
tions. The ability to access an SQL database is also necassery.

9

3.1.3 Account Management & Authorization

The account management & authorization module should be able to do the
following things:

• Be able to register new users.

• Be able to login AND authorize users.

• Be able to return a session token for the user.

• Be able to manage those session tokens.

The module should be able to take the set of information given and put them
into the database (using the database management 3.1.2). All passwords should
be hashed and salted, this is up to the implementation on the exact details. The
accounts registered may contain third-party logins ex. Google Logins. In that
case the account MUST be recognized as an account without a password, and
the user should be asked to sign in with the third-party credentials. It should
also be possible to add a password to the account marked to be ’logginable’
with third-party logins, making it possible to login with the password and using
third-party logins.

3.1.4 Log System

The log system should be able to do the following things:

• To capture the date and time.

• To capture the caller’s file, function, and line number.

• To capture a message and be able to format it.

• To be able to store it in a file.

One thing should be noted, the log system should not store in memory more
entries than specified in the global variable: memory size of log system (2.3.3).

3.1.5 Worker Management

The worker management module should be able to do the following things:

• Keep track of worker servers.

• Print information about worker servers.

• Retrieve information aobut worker servers.

• ONLY allow worker servers that are registered.

• Verify worker servers with gpg keys.

• Able Boot off worker servers while running.

• Able to give client list of servers.

10

Most of the functionalities’ details can be implementation depended. Keep-
ing track of worker servers can be done in multiple ways. Printing information
can print stored information about the connected worker server, or retrive in-
formation about the worker server from the worker server. Should only allow
registered/allowed worker servers to connect to master server AND show in the
list of available worker servers. Registration should be done using GPG keys.
A list of IPs should be given to the client when a session is connected. The list
of IPs are the workers’ IPs.

3.1.6 Assets Data Retrieval

The assets data retrieval model should be able to do the following things:

• Retrieve data in intervals of the global variable: data update retrieval
interval (2.3.4).

• Store them in memory and be able to read them (Parsed, into a struct).

• Be able to communicate with the assets API.

• Retrieve list of assets using API (2.3.1)

The assets API is upto the implementation. Assets Data should be stored in
the memory and retrieved in a thread-safe manner. This module is preferably
to be run on a thread.

3.1.7 Assets Buy & Sell

Thie assets buy & sell module should be able to do the following things:

• Buy assets and store them into users’ portfolios.

• Sell assets and store them into users’ portfolios.

• Validate transactions of buying and selling.

• Log transactions to users profiles.

• Process queued transactions per update interval (2.3.4).

The module should provide functions to apply the above functionality. The
logging is NOT to be done with the Log sytem, but rather with storing them
on the account transaction history of the issuer of the transaction. The history
should be able to show the time of the transaction going through. All transaction
go through a queue. The queue is cleared every update interval.

3.2 Worker Server

The worker server has multiple modules:

• Main module. i.e The driver.

• Master Server Communication.

• Cache Management.

11

• Account Authorization Tunnel.

• Event Logging System.

• Client Management.

3.2.1 Main Module

The main module should be able to do the following things:

• Start the master server communication thread.

• Start the client management thread.

The main module’s functionality in relation of deployment and running stage
is as follows, the binary containing the worker server is run -¿ initializes states
required to operate the worker server -¿ start the threads -¿ connect to master
server and authorize with the mater server -¿ start listening to clients -¿ parse
it -¿ pass it to the appropriate thread.

3.2.2 Master Server Communication

The master server communication module should be able to do the following:

• Parse commands.

• Send them to the master server.

The parsing is quite important and it is explained further in the document.

3.2.3 Client Management

The client management module should be able to do the following:

• Keep track of connected clients.

• Keep track of sessions.

• Be able to give out session tokens to clients.

• Be able to verify those session tokens.

• Be able to expire those session tokens.

Keeping track of the clients data structure is explained in the data structure
section of the document TODO.

3.2.4 Account Authorization Tunnel

The account authorization tunnel module should be able to do the following
things:

• Recieve the credentials from the client.

• Parse the credentails into commands.

12

• Send them to the master server using the master server communication
module.

• Return the login status.

• Notify the client management with the new client. Make new token and
send to client.

The account authorization tunnel is simple. Get hte credentials, parse them,
send them to the master server. Wait for reply, if successfully logged in, make
a new session token and send it to the client.

3.2.5 Logging System

The log system should be able to do the following things:

• To capture the date and time.

• To capture the caller’s file, function, and line number.

• To capture a message and be able to format it.

• To be able to store it in a file.

One thing should be noted, the log system should not store in memory more
entries than specified in the global variable: memory size of log system (2.3.3).

3.2.6 Cache Management

The cache management module shoudl be able to do the following things:

• Keep track of memory pointers, and destroy them correctly.

• Efficiently keep track of memory (ex. hash maps).

• Store past assets values.

This is very closely related to the implementation. It is not a must to have
a cache system, it is recommended though due to the limited number of API
calls to assets/stock values.

4 The Protocol

The cache management module shoudl be able to do the following things: This
section will describe the protcol used in PaperTrader.

4.1 Design Goals

• Based on the TCP protocol.

• Connectionless model.

• Authorization based communication.

• Authentication of commands based on expirable session ID

13

• Optmization to prevent high usage of the stock API (e.x. storing asset
values, caching data between update intervals).

• Parties involved: MasterServer (1), WorkerServers (multiple), clients (mul-
tiple).

• Parties connections: MasterServer ¡-¿ WorkerServers ¡-¿ Clients

• Basic Error Handling (ex: failed login attempt)

• Binary communications, big-endian format.

• Message Categories are: Commands, Data Transfer, Control.

• Connection States are: commanding, data transfering.

Real world examples are given later in the document. This is a brief explaina-
tion of the design goals. The protocol is based on connectionless model meaning
that each message should be given with a session ID, except for few. Messages
with functionalites like, give stock values, do transactions, etc are required to
have a session ID attached to the message header. Messages with functionalities
like, login new user, register user, do NOT require session IDs. Communication
from the worker servers and the master server are conectionless models. All
commands between master server and worker servers strictly require UUID to
be attached to the message. A list of UUIDs are kept on the master server. To
verify a worker server, the message transmitted should be encrypted using GPG
keys, the IP is whitelisted, and UUID is verified in the previously mentioned
UUIDs list. Verification of the clients are simpler since it only requires keeping
track of the active session IDs. The MasterServer-Client communications are
very limited, sending the list of worker servers is the only functionality available
to the client from the master server. States of the communication are han-
dled localy on the reciever and transmitter, i.e states switching are indicated by
commands and NOT values in the message itself. Basic error handling is also
facilitated, examples are forgotten passwords. The communication is an active
session ID between the clients and the worker servers, and is permanent for the
worker and master servers communication connection.

4.2 States

There will be two states in any given communication phase:

• Command State

• Data Transfer State

4.2.1 Command State

The command state will be the begining of all communication phases. In the
command state commands that don’t require transfer of Assets/Profile data are
available to command to the worker/master server. These commands include
but not limited to: login, register, purchase asset, sell asset.

14

4.2.2 Data Transfer State

The data transfer state is switchable from the command state. Switching back
to command state is done at the end of the data transfer. The data transfer
commands include but are not limited to: get asset value, get past asset value,
get predicted future asset value.

4.3 The Connection

There are multiple types of connections that are running in the program. The
rules for communication are discussed later in this document.

• Master-Worker Server Connection

• Client-Worker Server Connection

4.3.1 Master-Worker Server Connection

The connection is a TCP socket listening on port 2048 on the Master server.
The worker server can connect to this port, and after the authentication process
the master-worker server connection is said to be established.

4.3.2 Client-Worker Server Connection

The connection is a TCP socket listening on port 2049 on the Worker server.
The clients can connect to this port using any port from their end, and af-
ter the authentication process the client-worker server connection is said to be
established.

4.4 Message Structure

As mentioned before, all messages are in binary, big-endian format. All messages
follow a certain data structure:

• messageType - is it a command, data transfer, server return command?

• instruction - the integer representation of the instruction/command.

• dataSize - the size of the data with the packet.

• argumentCount - the amount of arguments passed to the instruction.

• dataMessageNumber - the number of this packet in the set of packets.

• dataMessageMax - the max number of data packets to expect.

• data - the data sent with the packet.

15

4.5 Instructions

The instructions listed in this section are organized into the two states explained
in ??, with the addition of the server return instructions. Instructions and com-
mands are interchangable in this context, not to be confused with the command
state (??). The instruction integer representation is a detail that is left for the
implementation, nevertheless an important one. The data field of a message
structure can be string arguments seperated by a space, these kind of datas are
sent on the command state with command type instructions. Data can also be
binary data. NOTE: The following representation of the instructions are just
for the ease of understanding and not meant to be used as literal strings passed
on the network.

4.5.1 Command State Instructions

This a list of instructions that can be executed in the command state of a
connection:

• login(username, hashedPass, isExpirable)

• login(sessionID)

• register(username, email, hashedPass)

• purchaseAsset(sessionID, name, quantity)

• sellAsset(sessionID, name, quantity)

• switchState(sessionID, state)

4.5.2 Data Transfer State Instructions

This is a list of instructions that can be executed in the command state of a
connection:

• getAssetInfo(asset)

• getAssetValueCurrent(asset)

• getAssetValueDay(asset, date)

• getAssetValueWeek(asset, date)

• getAssetValueMonth(asset, date)

• getAssetValueYear(asset, date)

• getAssetValueAllTime(asset)

• getUserInfo(sessionID, username)

• getUserPortfolio(sessionID, username)

• getUserTransactionHistory(sessionID, username)

• switchState(sessionID, state)

16

4.5.3 Server Return Instructions

These instructions are more of return formats. This is a list of instructions that
can be returned by a server due to a previous instruction:

• loginFail

• sessionID

• registerSuccess

• registerFail

• purchaseSuccess

• purchaseFail

• sellSuccess

• sellFail

• stateSwitchSuccess

• stateSwitchFail

• data

• dataFail

This is ofcourse not a comprehensive list, and will be updated with further
releases of the application.

4.6 Overivew of The Instructions

These instructions are more of return formats. This is a list of instructions This
would be a comprehensive overview of the instructions mentioned at ??

4.6.1 login(name, hashedPass, isExpirable)

The ‘login’ instruction is from the set of command state instructions, and does
not require an active session ID to be provided from the worker server. The
first argument is the username of the account, notice that this is not the email.
This username is what will be used to login. The second argument is a hashed
password. This password hashing is up to the implementation to handle. And
the third and last argument is a boolean indicating whether to remember the
sessionID or dispose it after disconnection of the user. The length of the storing
of the session is upto the impelmentation. On success, the server would return
the ‘sessionID’ instruction with the sessionID attached to it. On failure, the
server would return ‘loginFail’.

4.6.2 login(sessionID)

The ‘login’ instructions is from the set of command state instructions. This
version of the login instruction requires a sessionID. It is used when the client has
already logged and and got a sessionID. The sessionID should be stored locally
on the client’s machine. On success, the server would return the ‘sessionID’
instruction with the same sessionID attached to it. On failure, the server would
return ‘loginFail’.

17

4.6.3 register(username, email, hashedPass)

The ‘register’ instruction is from the set of command state instructions, and
does not requrie an active session ID to be provided from the worker server.
The first argument is the username of the account, that would be used to login
with. The second argument is the email of the account. The third argument is
the hashed password. The hashing mechanism is up to the implementation. On
success, the server would reurn the ‘registerSuccess’ instruction. On failure, the
server would return the ‘registerFail’ instruction.

4.6.4 purchaseAsset(sessionID, name, quantity)

The ‘purchaseAsset’ instruction is from the set of command state instructions,
and requires an active session ID to be provided from and to the worker server.
The sessionID argument will identify the caller of the function. The second
argument is the name of the asset to buy. The third argument is the quantity
to buy. On success, the server would return ‘purchaseSuccess’ instruction. On
failure, the server would return ‘purchaseFail’ instruction with the reason in the
command’s arguments.

4.6.5 sellAsset(sessionID, name, quantity)

The ‘sellAsset’ instruction is from the set of command state instructions, and
requires an active sesion ID to be provided from and to the worker server. The
sessoinID argument will identify the caller of the function. The second argument
is the name of the asset to sell. The third argument is the quantity to buy. On
success,the server would return ‘sellSuccess’ instruction. On failure, the server
would return ‘sellFail’ instruction with the reason in the command’s arguments.

4.6.6 switchState(sessionID, state)

The ‘switchState’ instruction is from the set of command state instructions,
and requires an active session ID to be provided from and to the worker server.
The sessionID argument will identify the caller of the function. The second
argument is the state to switch to. The values of the states do not matter and
should be agreed on per implementation. On success, the server would return
‘switchStateSuccess’. On failure, the server would return ‘switchstateFail’ with
the reason in the command’s arguments.

4.6.7 getAssetInfo(asset)

The ‘getAssetInfo’ instruction is from the set of data state instructions. It gets
the assets information refer to 2.4.3 for the structure of the data sent back.
On success, the server would return using the data transaction mechanism. On
failure, the server would return the ‘dataFail’ instruction.

4.6.8 getAssetValueCurrent(asset)

The ‘getAssetInfo’ instruction is from the set of data state instructions. It The
‘getAssetValueCurrent’ instruction is from the set of data instructions. It gets
the latest asset value available in the master server. On success, the server

18

would return using the data transaction mechanism. On failure, the server
would return the ‘dataFail’ instruction.

4.6.9 getAssetValueDay(asset, date)

The ‘getAssetValueDay’ instruction is from the set of data instructions. It gets
the 24Hours time frame of data of the date and time specified in the second
argument. The frequency of these updates depends on the global variable data
update interval (2.3.4). On success, the server would return using the data
transaction mechanism. On failure, the server would return the ‘dataFail’ in-
struction.

4.6.10 getAssetValueWeek(asset, date)

The ‘getAssetValueWeek’ instruction is from the set of data instructions. It gets
the past week day’s time frame of the data starting from the date passed in with
the arguments. On success, the server would return using the data transaction
mechanism. On failure, the server would return the ‘dataFail’ instruction.

4.6.11 getAssetValueMonth(asset, date)

The ‘getAssetValueMonth’ instruction is from the set of data instructions. It
gets the past months day’s time frame of the data starting from the date passed
in with the arguments. On success, the server would return using the data
transaction mechanism. On failure, the server would return the ‘dataFail’ in-
structionn.

4.6.12 getAssetValueYear(asset, date)

The ‘getAssetValueYear’ instruction is from the set of data instructions. It gets
the past years month’s time frame of the data starting from the date passed in
with the arguments. On succuess, the server would return using the data trans-
action mechanism. On ailure, teh server would return the ‘dataFail’ instruction.

4.6.13 getAssetValueAllTime(asset)

The ‘getAssetValueAllTime’ instruction is from the set of data instructions. It
gets all of the value data stored for the asset per month. On success, the server
would return using the data transfer mechanism. On failure, the server would
retunr the ‘dataFail’ instruction.

4.6.14 getUserInfo(sessionID, username)

The ‘getUserInfo’ instruction is from the set of data instructions. It gets the
data of a user. Public/Private data returning is based on the sessionID, i.e if
the sessionID is for username all data is returned. On success, the server would
return using the data transfer mechanism. On failure, the server would return
the ‘dataFail’ instruction.

19

4.6.15 getUserPortfolio(sessionID, username)

The ‘getUserPortfolio’ instruction is from the set of data instructions. It gets
the portfolio of a user. Public/Private data returning is based on the sessionID,
i.e if the sessionID is for username all data is returned. On success, the server
would return the data transfer mechanism. On failure, the server would return
the ‘dataFail’ instruction.

4.6.16 getUserTransactionHistroy(sessionID, username)

The ‘getUserTransactionHistory’ instruction is from the data instructions. It
gets the transaction history of a user. Public/Private data returning is based
on the sessionID, i.e if the sessionID is for username all data is returned. On
success, the server would return teh data transfer mechanism. On failure, the
server would return the ‘dataFill’ instruction.

4.6.17 loginFail

This is a server return instruction. It means that a login has failed. The
reason/message is in the arguments attached with the instruction.

4.6.18 sessionID

This is a server return instruction. It means that a login has failed. The This
is a server return instuction. It returns an active session ID. The ID is attached
in the message’s arguments.

4.6.19 registerSuccess

This is a server return instruction. It means that a register action has succeeded.

4.6.20 registerFail

This is a server return instruciton. It means that a register action has failed.
The reason/message is in the arguments attached with the instruction.

4.6.21 purchaseSuccess

This is a server return instruction. It means that a purchase action has suc-
ceeded.

4.6.22 purchaseFail

This is a server return instruction. It means that a purchase action has failed.
The reason/message is in the arguments attached with the instruction.

4.6.23 sellSucecss

This is a server return instruction. It means that a sell action has succeeded.

20

4.6.24 sellFail

This is a server return instruction. It means that a sell action has failed. The
reason/message is in the arguments attached with the instruction.

4.6.25 stateSwitchSuccess

This is a server return instruction. It means that a switchState action has
succeeded.

4.6.26 stateSwitchFail

This is a server return instruction. It means that a swtichState action has failed.
The reason/message is in the arguments attached with the instructions.

4.6.27 data

This is a server return instruction. It means that data is being sent from the
server to the client/worker server. Data transfer mechanism is explained in
details later in the document.

4.6.28 dataFail

This is a server return instruction. It means that the data transfer action failed.
The reason/message is in the arguments attached with the instruction.

4.7 Communication

The following section describe the communication rules.

4.7.1 Data Transfer Mechanism

The data transfer mechanism is also refered to as the ‘data’ instruction is used
to transfer bunch of data. The data is transfered in within the a message in it’s
data field. The data instruction is passed a number of times until the whole data
is transfered. Data instructions can be refered to packets. All packets contains
the total amount of packets required to transfer the requested the data. Each
individual packet contains it’s own number relative to the already sent packets.
For example if ‘n’ packets have ALREADY been sent, then the following packet
will be ‘n+1’. This mechanism allows precise progress calculation, and ensuring
of data order. This mechanism is used in all instances where data needs to
be transfered, ex: from master to worker, from worker to client, NEVER from
master to client. The following diagram shows how a data transfer can happen
from master to worker server.

Master Server Packet 1/5... Packet 2/5... Packet 3/5...

Packet 4/5...Packet 5/5...Worker Server

21

4.7.2 Login - First Method

The first method of login is done by the ‘login(name, hashedPass, isExpirable)’.
This message is sent to the worker server from a client. Then it is routed to the
master server. The master server approves/disapproves the login attempt and
returns back the return codes (ref 4.5.3). The return code is routed back to the
client. The following is a diagram of an example login request.

Master ServerWorker ServerClient

login(name, ...)login(name, ...)login(name, ...)

sessionID()/loginFail()

sessionID()/loginFail()

sessionID()/loginFail()

4.7.3 Login - Second Method

The second method of login is done by the ‘login(sessionID)’. This method is
very close the previous one, the only difference is that it uses the sesssionID
for authorization. This message is sent to the worker server from an already
registered and past logged in. Then it is routed to the master server. The
master server approves/disapproves the login attempt and returns back the
return codes (ref 4.5.3). The return code is routed back to the client. The
following is a diagram of an axample login request.

Master ServerWorker ServerClient

login(sessionID)login(sessionID)login(sessionID)

sessionID()/loginFail()

sessionID()/loginFail()

sessionID()/loginFail()

4.7.4 Register

The registeration method is done with the ‘register(username, email, hashed-
Pass)’ instruction. This communication is very close to the previously mentioned
ones. The message is sent from a client to a worker server and then routed to
the master server. The master server approves/disapproves the register request
and returns back the return codes (ref 4.5.3). The return code is routed back

22

to the client through the worker server. The following diagram is an example
of such exchange:

Worker ServerClient

register(username, ...)register(username, ...)register(username, ...)

registerSuccess()/registerFail()

registerSuccess()/registerFail()

registerSuccess()/registerFail()

4.7.5 Purchase

The purchase sequence is done with the ‘purchaseAsset(sessionID, name, quan-
tity)’ instruction. This communication is very close the the previously men-
tioned ones. The message is sent from a client to a worker. The worker stores
the message in it’s cache and sends them to the master server in order of time.
The master server approves/disapproves the purchase and returns a code (ref
4.5.3). The return code is routed back to the client through the worker server.
The following diagram is an example of such exchange:

Master ServerWorker ServerClient

purchaseAsset(username, ...)

purchaseAsset(username, ...)

purchaseAsset(username, ...)
purchaseSuccess()/purchaseFail()

purchaseSuccess()/purchaseFail()

purchaseSuccess()/purchaseFail()

4.7.6 Sell

The sell sequence is done with the ‘sellAsset(sessionID, name, quantity)’ instruc-
tion. This communication is very close the the purchase mentioned ones. The
message is sent from a client to a worker. The worker stores the message in it’s
cache and sends them to the master server in order of time. The master server
approves/disapproves the sell and returns a code (ref 4.5.3). The return code is
routed back to the client through the worker server. The following diagram is
an example of such exchange:

23

Master ServerWorker ServerClient

purchaseAsset(username, ...)

purchaseAsset(username, ...)

purchaseAsset(username, ...)
purchaseSuccess()/purchaseFail()

purchaseSuccess()/purchaseFail()

purchaseSuccess()/purchaseFail()

4.7.7 get(Data)

The retrieval of data is done by a subset of instructions. These instructions
are prefixed with ‘get’. The mechanism of the transfer of data is explained in
(ref 4.7.1).The client or the worker server requests data from the master server,
the instruction is routed to the master server if needed. Meaning, if the data
requested is available in the worker server the data is sent from there. If the
data isn’t available the server master server is requested to update the worker
servers caches. Incase of non-existent data being requested, the master server
requests data from the stocks API. Refering to the graph in (ref 4.7.1) shows
how the data is transfered from a party to another.

24

