
UNIVERSITATEA POLITEHNICA DIN BUCURES, TI
FACULTATEA DE AUTOMATICĂ S, I CALCULATOARE

DEPARTAMENTUL DE CALCULATOARE HBFX

Computer Science - Logo

Computer Science

Computer Science

& Engineering

& Engineering

Depar tment

Depar tment

PROIECT DE DIPLOMĂ

Studiu de Caz al Evaluării Costurilor de Portare: Portarea IxOS pe
Plăci ARM

Lucian-Ioan Popescu

Coordonatori s, tiint, ifici:

Dr. ing. Lucian Mogos,anu
Conf. Dr. ing. Adrian-Răzvan Deaconescu

BUCURES, TI
2022

UNIVERSITY POLITEHNICA OF BUCHAREST
FACULTY OF AUTOMATIC CONTROL AND COMPUTERS
COMPUTER SCIENCE AND ENGINEERING DEPARTMENT HBFX

Computer Science - Logo

Computer Science

Computer Science

& Engineering

& Engineering

Depar tment

Depar tment

DIPLOMA PROJECT

Case Study of Evaluating Porting Costs: Porting IxOS on ARM
Boards

Lucian-Ioan Popescu

Thesis advisors:

Dr. ing. Lucian Mogos,anu
Conf. Dr. ing. Adrian-Răzvan Deaconescu

BUCHAREST
2022

Contents

1 Introduction 1

2 The anatomy of the porting process 3

2.1 Porting and porting tasks . 3

2.2 Porting costs and factors . 5

3 A revised porting model 7

4 Porting IxOS on ARM Boards 9

4.1 Porting Architecture . 9

4.2 New IxOS Architecture . 10

4.3 Previous work in this area . 11

4.4 The Porting Process . 11

5 Evaluation of Porting Costs 14

5.1 Costs of Porting IxOS on ARM Boards . 14

5.2 Methodology of extracting costs of porting 16

5.3 Factors of porting costs . 18

5.3.1 Portability Impediment Index . 18

5.3.2 Human Factors Index . 19

5.3.3 Environmental Factors Index . 20

6 Discussions on Porting Costs 22

6.1 Conclusions of our porting . 22

6.1.1 Limitations of the porting model 22

1

6.1.2 Dependencies between porting tasks 23

6.2 Comparison between our results and the results of Tanaka et al. 24

6.3 General difficulties . 25

7 Conclusions 27

8 Further Work 28

SINOPSIS

Portarea software e costisitoare s, i consumatoare de timp. Refolosirea software-ului a devenit o

practică standard ı̂n ingineria software datorită beneficilor sale de salvare a costurilor, astfel e

important să ı̂nt,elegem cadrul de cuantificare al costurilor de refolosire astfel ı̂ncât procesul să

poată fi optimizat. Ca să explorăm această problematică, luăm ca exemplu experient,a noastră

de portare a infrastructurii de testare Ixia pe un sistem off-the-shelf, popular, cu suport pentru

Linux, cum ar fi Raspberry Pi s, i extragem costurile de portare asociate cu acest proces. Acest

lucru ne ajută să creăm un model revizuit al portării pe baza căruia extragem costurile de

portare pentru proiectul nostru. Mai mult de atât, prezentăm factorii care au afectat portarea

s, i corespondent,a lor directă cu modelul de portare s, i costurile asociate. Descoperim că procesul

de portare nu e liniar dependent de gradul de portabilitate al sistemului, acesta depinde foarte

mult de familiaritatea dezvoltatorului cu sistemul. În sfârs, it, discutăm limitările modelului

nostru de portare s, i facem o comparat, ie cu modelul vechi de portare.

ABSTRACT

The software porting process is costly and time consuming. Software reuse has become

a standard practice in software engineering due to its cost saving benefits, therefore it is

important to understand the framework for quantifying the costs of reuse so that the process

can be optimized. In order to explore this issue, we take our experience of porting the Ixia

network testing infrastructure on a popular, off-the-shelf system that supports Linux, such as

Raspberry Pi and extract the porting costs associated with this process. This leads us to a

revised model of porting based on which we extract the costs for our project. Furthermore we

present the factors that affect the porting and their direct correspondence with the porting

model and costs. We discover that the porting process is not linearly dependent on the degree

of portability of the system, it very much depends on the familiarity of the developer with the

system. Finally, we discuss the limitations of our porting model and make a comparison with

the old porting model.

THANKS
I would like to thank to my coordinators, Lucian Mogos,anu and Răzvan Deaconescu, for their

guidance and implication. Also, I would like to show my gratitude to Adrian Dobrică, Elena

Mihăilescu and Darius Mihai for their advices and suggestions. In addition, I would like to

give thanks to Iustin B̂ılis, for his editorial review.

Chapter 1

Introduction

Porting a software system and evaluating the porting costs is a hard problem in systems

programming. [1, 2, 7–11, 13, 15–17] The reasons for porting software systems are various:

the developers want to enhance the performance, the hardware environment starts to get

deprecated or the system wants to take advantage of features unavailable in the current

environment.

Software development costs and invested resources for understanding, maintaining and de-

veloping new features for a system are big [3, 14, 19]. People would like to preserve these

investments when the need for a new environment arises. To achieve this goal, people de-

signed programming languages and compilers that increased portability, operating systems

that could run on multiple hardware platforms [9] and various standards that allowed devel-

opers to talk to the computer using well defined interfaces [18]. However, the porting process

is a non-trivial endeavor up to this day, it is error prone and time consuming.

As with other software development processes, porting has its own costs associated. It is

important to evaluate them and understand their implications in the project so that the

developer can optimize the process of porting in the future and call attention to the weaknesses

and strengths of the process. In this work we describe the experience of porting the IxOS

testing infrastructure, used by Ixia for high performance network testing, on ARM off-the-

shelf boards. We do this for two reasons. Firstly, we are interested in exploring Ixia testing

infrastructure on newer environments with the hope that we will improve the performance and

reduce the costs of delivering the system. Secondly, we are interested in evaluating porting

costs related to the project using the Ixia software, which is known to be industry-grade and

versatile, and thus being sufficiently complex as a practical case study.

On one hand, we make the following contributions in this work: we review the porting models

described in [8, 11, 16] and propose a more general model that can be applied to modern

software porting, we review the porting costs factors described in [8] and analyze their relevance

in our porting work, and we provide guidelines and discussions on the topic of improving

software porting based on the experience of porting IxOS infrastructure. On the other hand,

1

we port the testing infrastructure on ARM arhitecture. During this process we isolate the

relevant parts of our porting in a separate repository. As a result, the isolated components

can now be used independently from IxOS by internal teams interested in further developing

of testing tools and systems on ARM boards.

This thesis is structured as follows. In Chapter 2 we present various terms associated with

porting: what porting is, porting models, porting costs and factors. Chapter 3 introduces

the revised porting model that we use for our cost extraction. In Chapter 4 we present the

architecture of the system and divide the porting work in multiple steps. For each step we

present a description, the targets and milestones, and the final results. After the porting

process is discussed, we highlight in Chapter 5 the porting costs associated with our work,

including an analysis of the factors that influenced the presented costs. In Chapter 6 we

conduct a discussion about the porting process and the porting costs where we investigate

porting difficulties, observations about the porting tasks and ways to improve the porting

process. Finally, in Chapter 7 we present the conclusions of the porting processs and its cost

evaluation, and set the enhancements and objectives for further work.

2

Chapter 2

The anatomy of the porting process

The process of reusing code in a new environment has clear advantages over rewriting [7].

However this process does not come cheap, as the task of reusing code through porting is

time consuming. In this chapter we present the theoretical background and the related work

in the field of porting including the porting process with its tasks, porting costs and porting

factors.

2.1 Porting and porting tasks

Porting is the act of producing an executable version of a software unit or system in a new

environment based on an existing version [12]. This is seldom an easy task because, in general,

it involves a good amount of code refactoring and rewriting. It can be avoided, however, if,

in particular, the original design has portability incorporated by using, for example, constructs

as multi-platform libraries, modular code or standard compiler behaviors [17].

The environment is defined as the set of software and hardware elements that interact with the

system. This includes, but it is not restricted to: operating system, communication methods,

configuration files and system variables, hardware architecture or human interaction. Two

software environments involved in the porting process will never be the same because of the

software and hardware inconsistencies. On one hand, programs between operating systems will

not work, even if the hardware is the same. For example MacOS uses MACH for executable

files while Linux uses ELF, moreover even if they follow the POSIX standard, they may have

implementation details that do not align with each other. On the other hand, processor

architectures vary from one another in the way they understand machine language and even

if they do not vary, custom hardware attached to these processors may make porting difficult

as the software must be rewritten in order to accomodate the new peripherals.

Mooney [12] presents two components of the porting process: transporation and adaptation.

The first is described as the act of moving the system (code or binary executable) to a

3

new environment and the latter is described as the act of modifying the system in order to

be compatible with the new environment. Transportation is facilitated by communication

channels to the target environment, either online (file sharing systems, remote connections)

or physical (using data storage devices). Adaptation consumes more development resources

than transportation because it implies translating the source code to the new environment,

solving possible inconsistencies and making sure that the software system behaves in a well

defined manner when ran in the new environment.

Mooney’s model is very simplistic regarding the tasks that can occur during a porting process.

Hakuta and Ohminami [8], and Tanaka et al. [16] created a more accurate model that reflects

better components involved in porting an application. The tasks involved in their model are

the following:

• Advance preparations

– Surveying development environment

– Surveying OS

– Surveying program for porting

– Surveying workstation development environment

– Adjusting target environment

– Initial source code modifications

• Workstation testing

– Standalone testing on workstation

– Linked testing on workstation

• Target testing

– File-making

– File system creation

– Installation on target

– Test program creation

– Linked test on target

• General duties

– Documentation

– Progress tracking

– Discussions

They emphasize on spending additional time on getting familiar with the system and only then

starting to port the application per se. Testing is conducted in a workstation environment

(that is, testing the builds on the local machine or in a local simulator/emulator) and in the

target environment. Finally they also include non-technical duties as documentation, tracking

and discussions.

4

2.2 Porting costs and factors

Porting costs, and more generally, software development costs, are measured in man-hours [8,

16]. While the costs are determined by program size and contents [8], other factors as

portability impediments, human factors or environmental factors [8] play a considerable role.

To understand the factors that influence the porting costs, these factors are quantified in

indices that describe how much of an influence they have.

In our work we will use three indices of this type as follows: portability impediments index,

human factors index and environmental factors index.

The first index, portability impediments, answers the following question: how portable was

the program to be ported and how many difficulties did the developer meet in the porting

process? The factors that influence this index are described in (S1∼S11 [8]) and the index is

computed using Equation 1.

αp = η ∗
12∑
n=1

ωiSi (1)

Here η is a portability design index, ωi is the weight assigned to each factor and Si is 1 when

the impediment factor i exists, otherwise is 0. The factors are placed in three categories:

differences in processor architecture, OS disparity and differences in language processor.

The second index, human factors, answers the following question: what role did the experience

and knowledge of the developer play in the porting process? The factors that influence this

index are described in (H1∼H5 [8]) and the index is computed using Equation 3.

5∑
n=1

Hi (2)

Here Hi are the human factors presented in [8]. Their values range from -2 which reflects the

maximum productivity while 2 reflects the minimum productivity.

The third index, environmental factors, answers the following question: how did the devel-

opment and testing environments, and the tools used during the porting process affect the

porting costs? The factors that influence this index are described in (E1∼E3 [8]) and the

index is computed using Equation 3.

3∑
n=1

Ei (3)

Here Ei are the following environmental factors as presented in [8]:

5

• Development environment (E1)

• Unit test environment (E2)

• System test environment (E3)

As for H1∼H5, the values for E1∼E3 range between -2 and 2, -2 being the best score for Ei,

while 2 being the worst.

After we described the anatomy of the porting process and presented the porting costs as-

sociated with this process, we present a practical example of porting a software system and

evaluating the costs.

6

Chapter 3

A revised porting model

Given that the model of porting presented in Chapter 2 was crafted for the particular use case

of one project [16] and we wanted to use a more general porting model, we revised the old

porting model and modified it so that it could match more porting projects.

In the revised model, we keep the General duties and Advance preparations tasks and mod-

ify the Workstation testing and Target testing. We do these changes because we want to

emhpasize the allocated time between testing and development with the Building for target

environment and Testing tasks.

Following is the revised model:

• Advance preparations

– Surveying development environment

– Surveying target OS

– Surveying program for porting

– Surveying documentation

– Adjusting development environment

– Adjusting target environment

– Initial source code modifications

• Building for target environment

– Build system triggering and modification

– Installation on remote environment

– Reviewing inconsistencies between source and remote environments

– Solving problems with external dependencies

• Testing

– Testing in simulated environment

– Testing in target environment

• General duties

7

– Documentation

– Progress tracking

– Discussions

In Advance preparations the developer familiarizes with the tools, environments and the pro-

gram to be ported, and also adjusts the development and target environments for creating

and testing the program to be ported. Finally, if needed, the developer also makes Initial

source code modifications that reflect the modification of the source environment to the new

target environment (e.g., modification in system call numbers and error numbers [4]).

In the second task of Building for target environment the developer focuses on three issues:

compiling the code to generate binaries for the target environment, installing the code in the

target environment and solving the inconsistencies between the source and target environment.

The previous task and Testing are the core of the porting process, they deliver the ported

application that operates in the target environment. Testing is of two types in this model. The

application can either be tested in a simulated environment for convenience (e.g., hardware

is not available at the moment of testing) or it can be tested directly in the target environ-

ment. Furthermore this tasks includes implicitly the time allocated for setting up the testing

environment.

The last task, that is General duties, encompasses subtasks related to human interaction

activities. In this part of the project the developer focuses on delivering documents that

describe the process of porting or other information relevant to the project and focuses on

planning and discussing aspects with regards to difficulties encountered during the process.

8

Chapter 4

Porting IxOS on ARM Boards

To continue our study of evaluating the porting costs, we chose to port a large scale system

used for network testing. In this section we present the process of porting this system.

4.1 Porting Architecture

The components of the porting architecture, presented in Figure 1, are:

• A client for printing network testing data (IxExplorer)

• A middleware for connecting the client to the machines that run the network testing

suite (Chassis)

• The actual machines that run the testing (Cards)

• The device that benefits from network testing (Device Under Test - DUT)

IeExplorer is a Windows application that allows the user to connect to the machines that run

the testing, configure and run tests on them, and retrieve information about the status of the

tests.

To allow IxExplorer to easily connect to multiple machines that run the testing, a Chassis

is used. The most important application that runs on the Chassis is IxServer. It creates a

communication channel between IxExplorer and the testing machines.

Next, the cards are the most interesting part for our porting. They run on a custom Ixia

solution, IxVM to achieve the best performance for network testing. On top of IxVM is placed

IxOS Linux, a modified version of Linux with custom device drivers, kernel parameters and

userspace applications. In terms of userspace applications, InterfaceManager and IxStack offer

the control plane traffic generation mechanisms for network testing. They are the two most

interesting applications for our porting are InterfaceManager and IxStack. Their role in the

system is to manage the network interfaces, represented by Port01 and Port02 in Figure 1,

and to load the network protocols for the testing suites.

9

IxExplorer

Chassis Chain01
- Chassis 01
- Card01
- Port 01
Packet Streams
Statistic View

- Port 02
- Card02

Chassis

IxServer

DUT

Raspberry Pi - ARM

Port 01 Port 02

Generic Linux:
IM

IxStack

IxVM - x86

Port 01 Port 02

IxOS Linux:
IM

IxStack

Figure 1: IxOS porting architecture. The right part of the figure presents the modification of
the card environment. IM=InterfaceManager

The device device under test is the consumer of the network traffic produced by the cards.

Usually it is connected between two Ports that will monitor the behavior of the DUT while

receiving traffic.

4.2 New IxOS Architecture

In Figure 1 we highlight the changes we made to the initial architecture. First, we changed

the hardware a card runs on. From IxVM we moved to a Raspberry Pi 4. On top of the

Raspberry Pi, we install a Raspberry Pi OS Linux instead of IxOS Linux.

These changes required us to port InterfaceManager and IxStack to the new Raspberry Pi

environment so that we could benefit from the same functionality as in the old Ixia custom

hardware + IxOS Linux environment. To recreate the required environment for InterfaceMan-

ager and IxServer, we had to install custom tools, various types of pipes, shared libraries and

configuration scripts in the target environment.The process of porting the two applications is

10

described in the next section.

4.3 Previous work in this area

Before we started the project, there was an attempt to make InterfaceManager and other

applications independent of IxOS. The previous project focused on compiling the whole IxOS

infrastructure for x86 and then extract the binaries for InterfaceManager and other relevant

applications.

This helped us during our porting because the result of the previous work was a portable

system that could easily be moved in another Linux environment. Making InterfaceManager

independent of IxOS meant that all the assumptions made by the application regarding the

operating system interface were removed (e.g., custom device drivers and proc entries) and

the work of porting it to another environment was simply a task of finding the right tools for

building the binaries and solving unknown inconsistencies.

InterfaceManager had already a high degree of portability as it was written in C++ using an

object oriented paradigm. The architecture dependent code was separated using constructs

as ifdefs and the coding style was compiler agnostic, meaning that we were able at any time

to plug another compiler and generate the correct binaries.

4.4 The Porting Process

The porting process consisted in moving the IxOS testing infrastructure from its source en-

vironment to a new target environment consisting of an off-the-shelf ARM board, Raspberry

Pi, running a stock Linux operating system. We chose an ARM board because we wanted to

run the legacy infrastructure on in a new environment compatible with the old one.

When we started the porting we set the following porting milestones:

• Decouple InterfaceManager build from legacy IxOS

• Run InterfaceManager in QEMU

• Run InterfaceManager on Raspberry Pi hardware

We achieved all our proposed milestones during the twelve weeks of the project. At the end

of the project we divided the work into three logical stages that cover the process of achieving

the above milestones.

The target of the porting process was to decouple InterfaceManager build from IxOS and run

it on an ARM off-the-shelf board. By doing this we also wanted that the Raspberry Pi to be

visible from IxExplorer as a card. Because of this we needed to maintain compatibility between

11

the chassis and our Raspberry Pi card. We achieved this by porting another component from

IxOS (i.e., HostProxy) which is responsible for communicating directly with the chassis.

The logical stages of our porting process are the following:

• Build binaries for ARM64

– Separate InterfaceManager + HostProxy from IxOS infrastructure

– Integrate IxStack with InterfaceManager

– Build plugins for InterfaceManager

– Test initial builds in QEMU

• Create Card environment on RPi

– Run setup on RPi hardware

– Modify InterfaceManager to run in the new environment

– Debug InterfaceManager initialization issues

• Bring up ports on Chassis

– Find the cause of the InterfaceManager initialization issues

– Solve the problems regarding the link state of the card

These stages with their respective substages were not completed in chronological order. The

process of completion was rather incremental, meaning that for example we had to test

the initial builds in QEMU each time we made a modification in the Integrate IxStack in

InterfaceManager stage, going back and forth between the two substages.

In the first stage, we started the work of porting by trying to separate the relevant components

from IxOS and build them for ARM64. We started with InterfaceManager and HostProxy

(proxy for communication with IxServer), which were the building blocks of our porting, and

continued with IxStack and its components. The hardware was not available at this time so

we tested our builds using an emulator for the target architecture (i.e., QEMU).

Next, when the hardware arrived, we used the Raspberry Pi to test our builds. This proved

to be a great advantage for us because the testing environment worked better on hardware

than in the emulator. After we built all our components, we started to focus on the incon-

sistencies between the source environment and the target environment. For that we had to

modify some parts of the program that were source environment dependent. In this process

we had problems with the initialization of InterfaceManager on the Card. This required an

interative process of testing, searching, rebuilding and redeployment to understand and solve

the initialization problems. The major inconveniences with the initialization featured missing

utilities as ethtool(8), missing configuration files and missing code for ARM architecture. An-

other problem was the inability to use the same tools on the target environment as on the

source environment. On Raspberry Pi OS we were not able to use dmidecode(8) because the

operating system did not allow us to access /dev/kmem even if we switched to user root.

12

In stage three we investigated the initialization problems from another perspective. This time

we investigated what was the initialization sequence on IxServer. Here we discovered that

IxServer did not set the link state correctly when connecting to our Card. To solve that we

tracked the variables and code zones that modify the link state in order to find out which

code lines cause trouble. In the end we discovered that a problem regarding the initialization

of the protocol loader was causing our start-up issues. After we solved these issues we were

able to fully port InterfaceManager on Raspberry Pi and integrate it with the bigger system

consisting of IxServer and IxExplorer.

13

Chapter 5

Evaluation of Porting Costs

In this section we present the costs associated with the porting process described in Section 4.

We divide our work in tasks that can be individually evaluated based on the revised model

discussed in Chapter 3 and describe the methodology of extracting the porting costs based

on the progress tracking we have done during the project.

Later we discuss the factors that affected our cost evaluation. We focus on three aspects

of these factors: portability impediments, human experience and environmental factors. For

each of them we analyze a score to understand their impact in the project and we analyze

them with regards to our porting.

5.1 Costs of Porting IxOS on ARM Boards

To evaluate the costs for porting IxOS infrastructure we divided our work based on the model

described in Section 2. Using the progress tracking done during the project, we extracted the

time spent on each task. We use man-hours to evaluate the cost for each task. The results

of this process is shown in Table 1.

The most time consuming task is Build system triggering and modification. The reason

behind this is spending a lot of time on extracting and integrating IxOS components as

InterfaceManager, HostProxy and IxServer. There was also much repetitive time spent on

triggering the compilation pipeline that was added in the total of 67 hours.

We spent an approximately 2.5x more time on testing than on solving errors and inconsisten-

cies. This means that the errors were not difficult to solve, instead they were difficult to find.

This situation is no surprise for us because we had no reference or documentation that would

help us in investigating the errors and inconsistencies.

14

Porting task Subtasks
Man

-hours
Subtotals

/subtask (%)
Subtotals
/task (%)

Advance
preparations

Surveying development
environment

15 4.16

14.35

Surveying target OS 5 1.38
Surveying program for porting 3 0.83
Surveying documentation 5 1.38
Adjusting development

environment
10 2.77

Adjusting target environment 13.8 3.83
Initial source code modifications 0 0

Building for
target
environment

Build system triggering and
modification

67.56 18.76

32.71
Installation on remote

environment
15.26 4.23

Reviewing inconsistencies between
source and remote environments

23.03 6.39

Solving problems with external
dependencies

12 3.33

Testing
Testing in simulated environment 33.35 9.26

24.53
Testing in target environment 55 15.27

General
duties

Documentation 30 8.33
28.26Progress tracking 12 3.33

Discussions 60 16.66
Total 360 100 100

Table 1: Man-hours evaluation for porting tasks

15

There was no time allocated on making initial source code modifications because the system

was unfamiliar and hard to understand from the start. Finally, we spent more time on General

Duties than on Testing. This shows that there was a substantial effort put in trying to make

use of discussions to clarify the system. In the end we suceeded in porting the system, meaning

that the discussions we had helped us to clarify the various parts of the system that were not

understood in the beginning.

5.2 Methodology of extracting costs of porting

To extract the costs of porting we used the progress tracking created during the 12 weeks of

porting. Each week we allocated one hour to discuss the current status of the project and the

items we plan to do in the following week. A sample of our tracking looks as following:

02.08 - 06.08

Status

* IM is booting, having config issues

* created RPi setup

* deployed RPi + vChassis + IxExplorer setup

* port is visible from IxE but we have issues with link state

* maybe there is a problem with published stats

* attempted connections from vChassis to vCard

* ran into configuration issues

* need to trick the vChassis into beliving that we’re on x64

Planning

* fix port down/hwfault report from IM

* trick the chassis into beliving we’re legit IxVM

* make HostProxy - chassis connection

During a week we allocated 30 hours for porting. 5 hours were allocated to daily meetings

were we discussed the plan for the respective day and 1 hour a week was allocated to progress

tracking, resulting in 24 hours of work for solving technical problems related to porting. To

convert the weekly tasks recorded in the tracking in the effective man-hours presented in

Table 1, we matched each porting task on the progress tracking task. At first, the total

amount of 24 hours is divided equally between the porting tasks, following adjustments based

on factors as difficulty and frequency.

Let us take the above example to extract the porting tasks from the progress tracking tasks.

• IM is booting, having config issues :

16

– Build system trigging and modifications

– Installation on remote environment

– Reviewing inconsistencies between source and remote environments

– Testing in simulated environment

• created RPi setup

– Adjusting target environment

• deployed RPi + vChassis + IxExplorer setup, port is visible from IxE but we have issues

with link state, maybe there is a problem with published stats

– Adjusting target environment

– Reviewing inconsistencies between source and remote environments

• attempted connections from vChassis to vCard

– Testing in target environment

• ran into configuration issues

– Testing in target environment

– Reviewing inconsistencies between source and remote environments

• need to trick the vChassis into beliving that we’re on x64

– Reviewing inconsistencies between source and remote environments

We have six different porting tasks that we must allocate time to. Each task has 4.16 hours

initially. However, Build system triggering and modification did not take this long, neither did

Installatino on remote environment. These are task that will have less time allocated than

the initial 4.16 hours. We will have 2 hours for Build system triggering and modifications and

1 hour for Installation on remote environment. The remaining 4.32 hours will be allocated

evenly to the remaining four tasks. Finally we have the following results for the week:

• Advance preparations

– Adjusting target environment: 5.24 hours

• Building for target environment

– Build system triggering and modification: 2 hours

– Installation on remote environment: 1 hour

– Reviewing inconsistencies between source and remote environments: 5.24 hours

• Testing

– Testing in simulated environment: 5.24 hours

– Testing in target environment: 5.24 hours

• General duties

– Progress tracking: 1 hour

– Discussions: 5 hours

17

After this algorithm is applied on each week we get the results in Table 1.

5.3 Factors of porting costs

While the costs of porting, in our case man-hours, are determined directly by program size

and content, other factors and impediments as human experience and environment disparities

must be taken into consideration.

To determine the impact some of these factors had on our porting process, we use the indices

described in Hakuta and Ohminami [8] that give a quantitative influence of porting factors

and impediments.

5.3.1 Portability Impediment Index

The first index that we compute is the portability impediment index. In our case eta has

a value of 2, meaning that ”the non-portable parts of the program are not localized, but

the correspondence of program codes to their functions is clarified”. For simplicity we will

assume that ωi is 0 if the impediment was insignificant, 0.5 if the impediment had a normal

difficulty and 1 if the impediment was hard to solve. In our porting we discovered the following

portability impediments:

• Difference in compiler specification (S8)

• Scope of library support (S9)

• Implementation-dependent libraries (S10)

• Difference in operating system interface (S12)

It can be noted that we added an additional impediment nonexistent in Hakuta and Ohmi-

nami’s list [8], namely S12, which can be placed in the ”OS disparity” category. This impedi-

ment is reflected in the usage of dmidecode(8) on Raspberry Pi Linux versus on x86 Linux. On

Raspberry Pi we were not allowed to access /dev/kmem which was needed by dmidecode(8),

which in turn was needed by InterfaceManager.

Given these impediments, the portability impediment index has the value calculated in Equa-

tion 4.

αp = 2 ∗ (0.5 ∗ S8 + 1 ∗ S9 + 1 ∗ S10 + 0.5 ∗ S12) = 6 (4)

There were no differences between processor architecture (S1∼S5), little difference between

source and target OSes (S6, S7, S12) and a major difference in language processor (S8∼S11).

The portability difficulty is thus reflected in Figure 2.

18

EASIEST=0 HARDEST=36

α p
=

6

Figure 2: Portability Impediment Index

5.3.2 Human Factors Index

Software programs are byproducts of human activities that incorporate our problem-solving

capabilities, cognitive aspects and social interaction [5], therefore it is vital to understand

what role did the human factors play in our porting so that we can assess the quality of the

porting process.

The value of the human factor index in our case is computed in Eqution 5.

αh = H1 +H2 +H3 +H4 +H5 = 2 + (−1) + 2 + 1 + 2 = 6 (5)

This score is very close to the worst possible score as seen in Figure 3.

BEST=-10 WORST=10

α h
=

6

Figure 3: Human Factors Index

Indeed, the human factor played a major role in our porting process, let us analyze each factor

and see what went wrong.

Knowledge about the program to be ported functions and structures (H1) As this

was the first interaction with the program to be ported it was hard to familiarize with its

functions and structures, therefore we had no experience whatsoever with the use cases of the

program. This resulted in the inability to easily solve the porting problems that appeared in

our way.

Knowledge about the hardware and OS of the target system (H2) Hardware dis-

parities were not a big concern in our porting as we used a portable operating system and

programming language that abstracted out hardware problems. Therefore the focus was on

the target operating system. Our porting moved the program from an older version of Linux to

19

a newer one. This helped us as we did not have to learn the peculiarities of another operating

system so that we could finish our porting. However there were some problems that we faced

regarding the target operating system that we solved relatively straight forward.

Knowledge and experience in the area of software porting (H3) As the experience of

software porting was lacking there were many situations and problems that could have been

solved better, for example: doing better tracking of the porting process, putting more effort

in technical discussions in order to better understand the problems, etc.

Knowledge of and experience with the language and program to be ported in

use(H4) The experience with the programming language (C++) helped us to grow the

productivity of the porting process as we did not have to care about low-level impediments as

endianness or data alignment. However we did have problems with the language specification

between different compilation toolchains that costed us a whole week to solve. Furthermore,

the experience with use cases of the program to be ported was lacking.

Knowledge about the functions and usage of tools used in the development and

testing environment (H5) While working in the development and testing environments

we used a considerable number of technologies, some of them being either new or not trivial to

work with. Here is a short list of these technologies: QEMU networking, SCons build system,

Perforce versioning system and internal tools as packaging system. This meant that we had

to allocate additional time to ramp-up with each of this tools after continuing with our goal.

5.3.3 Environmental Factors Index

The tools used in the development environment and the testing mechanisms used in the

testing environment also add their bit in the porting costs.

In the development environment we had no documentation describing the compiling and linking

procedures and no documentation regarding the environment dependent components that we

need to modify in order to move the code to a new environment. We modified the code and the

build system by trial and error. This reduces the score for E1 as this strategy might not always

work or it could take an unsatisfactory amount of time for large and complicated systems.

However we managed to understand the peculiarities of the development environment and

get the first builds available for testing in two or three weeks, which is less than 25% of our

porting time.

In the testing environment we had test programs and tools available such as emulators and

debuggers, furthermore the file transfer and conversion tools were available from the start of

the project. This facilitated the testing of our program to be ported by allowing us to focus

on the porting inconsistencies rather than on testing infrastructure. Things were not perfect

20

however, we did have problems with the testing infrastructure that we solved in a short period

of time.

The environmental factors index is computed in Equation 6.

αe = E1 + E2 + E3 = 0 +N/A+−1 = −1 (6)

e are in the satisfactory half of the index, meaning that even if we had some difficulties setting

and understanding the development and testing environment, we managed to work with them

in order to achieve our goals. The score is also described in Figure 4.

BEST=-6 WORST=6

α e
=

-1

Figure 4: Environmental Factors Index

Now that we evaluated the costs and discovered their correlation with the porting factors we

will conduct a discussion on the results of our evaluation.

21

Chapter 6

Discussions on Porting Costs

In this chapter we discuss conclusions of our porting work, including the limitations of the

porting model we used and factors for these limitations, namely the dependency between

porting tasks. We also compare our results with the results of the first paper that published

a porting model to understand what were the differences between our and their results and

conclusions. Finally, we also present general difficulties that we extracted from our porting.

6.1 Conclusions of our porting

In this section we present observations about the porting process and the porting costs,

focusing on the limitations of the porting model we used and on a comparison between our

results and the results of Tanaka et al.

6.1.1 Limitations of the porting model

The model assumes that the tasks are executed in sequential order, which is not true. The

tasks are rather executed in a non-linear fashion. For example while building for the target

environment, installing the binaries in this environment and testing the ported application,

we also had discussions about the difficulties and errors we encountered so that we could

later come back and solve the inconsistencies. However there was no easy way to describe

this dynamic so we chose to represent the task as they would come one after another. The

non-linearity of this porting model causes problems while computing the porting costs. If one

wants to compute the costs with minimum error it means that more time must be allocated to

the Progress tracking subtask. This strategy might not bring the best results if the fixed total

time of porting is computed in advance because allocating more time for progress tracking

means that other porting tasks must have lesser time allocated. A good strategy here would

compute first the accepted error of man-hours present in the final porting costs so that an

acceptable ammount of time is allocated for tracking the progress of the project. For our

22

porting process it was not vital to have a small error in the porting costs, we were interested

to see an approximative distribution of time per tasks so that we could answer questions as:

where did we spend most time and why? or what was the relation between development and

testing? For this we allocated an hour each week for tracking the status of the project, the

planned objectives for the future and the major difficulties we met in the respective week.

It is unclear, however, if more time spent on progress tracking would improve the quality of

other tasks. Although we can only guess, more time spent on tracking the working hours

would mean that the developer has a better sense of the time spent on each task, thus better

managing multiple tasks at a time in the future.

As discussed above, we had errors while extracting the porting costs for each subtask in

Table 1. There are two reasons for this issue: the progress tracking format was not descriptive

enough and the model we used for extracting the porting costs had shortcomings. Firstly, the

progress tracking format should have an intrinsic expresiveness that would make it easy for the

user to express the non-linearity of the porting tasks. To create this kind of format we need

to first find a way to describe the non-linearity of the porting process, which is not a trivial

task whatsoever. Secondly, we expect a conversion error from the classical progress tracking

format (i.e., list of bullets for current status and planning) to the porting model presented

in section 2. This happens because there is no straightforward way of converting a bullet as

”IM is booting, having config issues” (this example is taken from our progress tracking) into

clear and independent porting tasks. This is subject to interpretation one might say that this

bullet might be broken down into the following porting tasks:

• Reviewing inconsistencies between source and remote environments

• Testing in target environment

• Discussions

• Surveying target OS

while another would break the bullet down into the following porting tasks:

• Reviewing inconsistencies between source and remote environments

• Testing in target environment

It very much depends on the human factors and how the developers decide to work with the

provided tools and systems. Furthermore, to have a more accurate conversion there must be

time considerents: how much time did we spent on this bullet? and how do we divide this

time between porting tasks?

6.1.2 Dependencies between porting tasks

The next discussion point focuses on the porting tasks dependency graph. It would be very

difficult to sketch a complete graph between all tasks. Instead, we can focus on specific

23

areas of the graph that are somehow easier to understand and sketch. The first area is the

dependency between Testing and all subtasks in Building for target environment. There is

a continous feedback between the testing phase and the development phase. While porting,

we built binaries, installed them on target environment, tested them and expected to see

errors of linking, problems with the installation or actual inconsistencies and problems with

dependencies that would be solved in a future iteration of this process. This iterative process

with continous feedback between testing and development is a building block of the Agile

methodology. If we used other software methodology as Waterfall maybe the dependency

would be completely different. The second area we focus on is the dependency between

General duties and all other subtasks. Documentation is linked to all subtasks because we

need to include all relevant information in the documents we produce, progress tracking must

reflect work executed in each subtask and discussions are by design focused on trying to

understand each part of the porting process. That being said, it is hard to imagine how

General duties would not be a substantial part of the porting process. It would be interesting

to see if a modification in the allocated time for a subtask such as Discussions would reduce

or increase the needed time for other subtasks, otherwise if other tasks are not affected by

this modification, there should be no interest in allocating more time for discussing.

6.2 Comparison between our results and the results of

Tanaka et al.

At this moment we discussed the limitations and open problems that appear in the model

of porting we used. Next, we make a comparison between our results for porting costs and

the results that appeared in the first paper that presented a basis for our porting model [16].

The results can be found in Table 6 of the paper we referenced. We will compare the

subtotals per tasks and discuss the reasons of the differences between the two. In terms

of Advance preparations we spend a total of 14.35% of our total time while Tanaka et al.

spend 33.4%. There are two major reasons for reduced time in our case. First, we were

interested in delivering builds for the target environment as fast as possible, sacrificing the

time spent on understanding each part of the system we were trying to port. We found no

easy way to understand the components of the system by surveying the documentation and

the program for porting so we decided to offload this work on the build system (i.e., when

the compiler threw errors for a component, we went to that component, understood it and

solved the problems). Second, we worked with the Agile methodology in mind, combining

subtasks from different tasks in the same iteration. For this reason we lost the focus on the

Advance preparations because we were also interested in subtasks from Building for target

environment, for example. Tanaka et al. seem to work with a Waterfall methodology. This

might explain the increased time in this initial stage.

Next, we compare the Building for target environment in our model with Target testing from

Tanaka et al. Although there are significant differences in the subtasks from the two models,

24

we are interested in a comparison of development time (i.e., actual work focused on solving

errors and inconsistencies, building binaries, etc.). It seems that Tanaka et al. put the time

spent on solving errors and the time spent on testing in the same category. This makes the

comparison difficult as we do not know how to divide this time. However, our time spent

in this stage is 32.71% while Tanaka et al. spend 27.8%. The most time consuming task

for us was to work with the build system, which is not the case for them. This shows the

major difference between our project and theirs. While our porting was focused on extracting

components from a larger ecosystem into a target environment, their project was focused on

porting a whole application from one environment to another.

For Testing we assume that they spent Linked test on target/2+Workstation testing = 10.5+

11.4 = 21.9%. We divided the linked test on target because we assumed that half of this

time was allocated to development and half of it was allocated to testing. Their time for

General duties is of 27.4%. These two times are very similar with our project (i.e, 24.53%

and 28.26%). This might mean that testing and general duties represent a major part in each

software porting project, thus when evaluating the costs in advance, special attention must

be payed to these tasks.

6.3 General difficulties

This section presents the general impediments we faced during our porting. The difficulties

were extracted from the particular technical difficulties we faced during the porting process.

Lacking documentation. Lacking written documentation about how the system works

means that the developer must either figure out the system alone or must communicate with

other developers in order to gather information about the system. This adds overhead to

the porting process as documentation through communication is slower than documentation

through written text.

Inconsistencies between environments. This difficulty corresponds to the degree of which

the application is portable [13] between two given environments. If the degree of portability

is too low (this depends entirely on the application), then the developer will be faced with

many inconsistencies between the source and target environments that will be reflected in the

cost of porting (i.e., man-hours).

Use of tools. Using inadequate development and testing tools introduces additional overhead

in the porting process. This happens when there is a mismatch between the version of a tool

available in the development environment and the version expected by the project. This

introduces additional overhead in installing the proper tools. Moreover if the correct version

of the tool cannot be found anymore, more overhead is added by finding workarounds.

Understanding the system. Software complexity is a multi-dimensional problem, it includes:

structural, computational, logical, conceptual and textual complexity [6]. There is no easy

25

way to understand the system, so the developer will be faced with the task of understanding

the architecture diagrams, huge code base, written documents and tutorials either when the

porting starts or during the porting process.

26

Chapter 7

Conclusions

We succeeded in porting the IxOS infrastructure on ARM boards. We separated the relevant

components for our porting (i.e., InterfaceManager and IxStack) from IxOS so that they can

be run on any ARM-based Linux distribution. At the moment of writing the project is in the

proof-of-concept stage. If there is interest for continuing the project or integrating it in other

projects inside the company, we provided the necessary environment for deploying it.

We have extracted the porting costs for porting IxOS infrastructure on ARM boards. Thus

we understood what the weaknesses and the strengths of our project were. The lack of

understanding of the project structure and project use cases proved itself to be an important

factor during the process of porting. Because of this reason we had to spend additional time

on testing the system and understanding its components. This time might have been better

allocated on solving problems and inconsistencies. A strength of our project was the fact that

the the ported program had a high degree of portability. This helped us to shrink the volume

of inconsistencies between the source environment and the target environment.

We succeeded in creating a more accurate and comprehensive software porting model with

regards to today’s standards of software engineering starting from the model presented in [8,16]

and from our project specific needs. We contributed to this model by making it more generic

and allowing other software porting projects to easily map their needs on this model.

Finally, we have provided a discussion on the limitations of the model we created and provided

a comparison between our porting results and the results presented in the first work [8] that

came up with the model we used as a basis for our generic porting model.

27

Chapter 8

Further Work

We aim to make the testing infrastructure portable to as many environments (OS, compiler,

architecture) as possible. This would be a big win for the software project because people

interested in using the portable software parts as drop-in components on any Linux-based

system could do it with little effort, supposing that a C++ compiler would exists for the

specific architecturure the software will be installed on.

We plan to explore other aspects of our port to ARM, as system performance of while running

network testing suites. To achieve this goal we should compare our solution in the target

environment with the same solution in the source environment. We expect to see better

results in the new environment for some network testing suites than in the old environment.

Furthermore, we plan to compare our solution with other open-source network testing tools.

To complete the analysis of the factors that affected the porting costs we plan to analyze

the characteristics of the program to be ported. We want to analyze the program size and

contents and the content of the changes needed for porting. By doing this we aim to find a

direct correspondence between the program to be ported and specific porting subtasks (e.g.,

Solving inconsistencies between source and target environment).

Finally, we want to analyze the porting improvements guidelines presented in [8] and map

them on our porting process. However, we do not plan to restart the porting process while

mapping these guidelines, instead we want to have a discussion and draw conclusions based

on them.

28

Bibliography

[1] Cross-porting software. https://wiki.osdev.org/Cross-Porting_Software, Sept

2019.

[2] DE Bodenstab, Thomas F Houghton, Keith A Kelleman, George Ronkin, and Edward P

Schan. The UNIX system: UNIX operating system porting experiences. AT&T Bell

Laboratories Technical Journal, 63(8):1769–1790, 1984.

[3] Barry Boehm, Chris Abts, and Sunita Chulani. Software development cost estimation

approaches—a survey. Annals of software engineering, 10(1):177–205, 2000.

[4] B. R. Callahan. I ported the new hare compiler to OpenBSD.

=https://briancallahan.net/blog/20220427.html, April 2022.

[5] Luiz Fernando Capretz. Bringing the human factor to software engineering. IEEE soft-

ware, 31(2):104–104, 2014.

[6] Lem O Ejiogu. A simple measure of software complexity. ACM SIGPLAN Notices,

20(3):16–31, 1985.

[7] William B Frakes and Christopher J Fox. Sixteen questions about software reuse. Com-

munications of the ACM, 38(6):75–ff, 1995.

[8] Mitsuari Hakuta and Masato Ohminami. A study of software portability evaluation.

Journal of Systems and Software, 38(2):145–154, 1997.

[9] Steven C Johnson and Dennis M Ritchie. UNIX time-sharing system: Portability of c

programs and the UNIX system. The Bell System Technical Journal, 57(6):2021–2048,

1978.

[10] William Frederick Jolitz and Lynne Greer Jolitz. Porting UNIX to the 386: A practical

approach. Dr. Dobb’s Journal, 16(1):16–46, 1990.

[11] A Kanai, T Furuyama, and M Takahashi. A cost model for software conversion based

on program characteristics and a converter effect. In 1992 Proceedings. The Sixteenth

Annual International Computer Software and Applications Conference, pages 63–64. IEEE

Computer Society, 1992.

29

https://wiki.osdev.org/Cross-Porting_Software
=

[12] James D. Mooney. Strategies for supporting application portability. Computer,

23(11):59–70, 1990.

[13] James D Mooney. Developing portable software. In Information Technology, pages

55–84. Springer, 2004.

[14] Malcolm J Morgan. Controlling software development costs. Industrial Management &

Data Systems, 1994.

[15] Joël Porquet. Porting Linux to a new processor architecture, part 1: The basics. https:

//lwn.net/Articles/654783/, Aug 2015.

[16] Toshikiyo Tanaka, M Hakuta, N Iwata, and M Ohminami. Approaches to making soft-

ware porting more productive. In Proceedings of the 12th TRON Project international

Symposium, pages 73–85. IEEE, 1995.

[17] Andrew S Tanenbaum, Paul Klint, and Wim Bohm. Guidelines for software portability.

Software: Practice and Experience, 8(6):681–698, 1978.

[18] Stephen R Walli. The posix family of standards. StandardView, 3(1):11–17, 1995.

[19] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shanping Li.

Measuring program comprehension: A large-scale field study with professionals. IEEE

Transactions on Software Engineering, 44(10):951–976, 2017.

30

https://lwn.net/Articles/654783/
https://lwn.net/Articles/654783/

	Introduction
	The anatomy of the porting process
	Porting and porting tasks
	Porting costs and factors

	A revised porting model
	Porting IxOS on ARM Boards
	Porting Architecture
	New IxOS Architecture
	Previous work in this area
	The Porting Process

	Evaluation of Porting Costs
	Costs of Porting IxOS on ARM Boards
	Methodology of extracting costs of porting
	Factors of porting costs
	Portability Impediment Index
	Human Factors Index
	Environmental Factors Index

	Discussions on Porting Costs
	Conclusions of our porting
	Limitations of the porting model
	Dependencies between porting tasks

	Comparison between our results and the results of Tanaka et al.
	General difficulties

	Conclusions
	Further Work

