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Abstract—The ISO C Standard added the undefined behavior
notion as a mean to portability. State-of-the-art compilers such
as GCC and Clang/LLVM use it to issue aggressive optimizations
that break the the intention of the progammer. We argue that the
performance impact of undefined behavior (UB) optimizations in
operating systems, such as OpenBSD, is low. Furthermore they
introduce unobservable and undocumented effects that have great
impact of program robustness and security. To test our hypothesis
we take the compiler implementation used in OpenBSD, i.e.
Clang/LLVM, and disable all undefined behavior optimizations.
Then we compare the performance of the system on multiple
hardware architectures with the above mentioned optimizations
turned on and off.

Index Terms—compiler, optimization, undefined behavior, op-
erating system

I. CONTEXT AND MOTIVATION

The C90 [22] standard provides a loose definition of
undefined behavior. This permits compiler implementations
to abuse the definition and use it as a mean to aggressive
optimizations that break the intention of the programmer. Code
that works with a lower level of optimization is broken when
the optimization level is elevated. Furthermore code that works
on previous versions of the compiler is suddenly broken in
newer versions because the standard imposes no requirements
on undefined behavior.

This has created serious security problems throughout the
years [3], [5], [28]. A number of initiatives to solve this
problem were started from different parties [7], [18], [26], [29]
however the problem still persists. The primary open source
developer groups have seized the unsteady definition of unde-
fined behavior to justify dangerous silent code transformations
that break the intention of the programmer.

This philosophy is very dangerous in terms of programming
expressivity. The compiler has very little context of what
the developer wants to accomplish with a specific piece of
code. For example the compiler cannot make the distinction
between a read from an uninitialized memory region that
might produce unspecified results and a read from a memory
mapped device that cannot be written in order to initialize it.
Or it cannot distinguish between an erroneous floating pointer
access to an integer variable and a smart method of computing
an arithmetic function [25]. The general principle is that the
developer has the responsibility to decide what the code should
do, the job of the compiler is to translate the code into machine
readable instructions and to apply optimizations only when
there is no risk of losing developer intentionality.

The argument of the people that defend this kind of opti-
mizations is that C code that contains undefined behavior has
no meaning and the compiler is free to do various types of
modifications on it. In Control Theory terms, such a system is
described by a low degree of controllability and observability.
Which is paradoxical in the philosophy described above where
the compiler forcefully takes the responsibility, from the devel-
oper, of generating relevant code. The implications of this are
that no meaningful engineering can be done in this framework
where processes inside a compiler cannot be understood and
analyzed.

This has created an adversarial view of the compiler. Devel-
opers are forced to modify the default behavior of the compiler
with flags such as -fno-delete-null-checks, -ftrapv, -fno-strict-
aliasing, -ftrapv so that they can impose strong requirements
on the code generated by the compiler. This in turn creates a
more complicated development environment. This also creates
de-facto standard ways of working with software, e.g. GCC
first introduced -ftrapv and Clang/LLVM followed the trend
and adopted the same flag.

Another argument that defends the aggressive optimizations
view is that code generated by these compilers runs faster
on artificial benchmarks [10], [11]. This does not necessarily
hold for real-life software projects that differ in complexity
from the artificial benchmarks and that make use of non-trivial
code constructs. Ertl [19] makes an interesting observation
regarding the performance of UB optimizations. He notes
that source level changes buy greater speedup factors than
UB optimizations for certain classes of programs. While his
research in this field is valuable, the limitation of his work is
that he draws conclusions based on SPECint benchmarks.

The contribution of this work is that we analyze the speedup
factors of UB optimizations for real-life software projects,
such as operating systems, in particular OpenBSD. We choose
OpenBSD because it is a self-contained robust and secure
implementation of operating system. The system emphasizes
”portability, standardization, correctness, proactive security
[...]” [1], goals that are shared with our philosophy of gen-
erating code close to the intention of the programmer. Finally,
by running this experiment we provide a trade off analysis
between the performance gained using UB optimizations and
the risks of issuing them.

This paper is structured as follows. Section II presents a
background on UB optimizations with examples, risks and
incomplete solutions for solving the risk they introduce and
also introduces to the notion of programmer intentionality.
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Section III describes previous results in analyzing the perfor-
mance gain of UB optimizations. Section IV introduces our
research plan that focuses on removing UB from OpenBSD
and analyzing the performance of the system. Finally, Sec-
tion V summarizes our research proposal.

II. BACKGROUND

This section presents UB optimizations in real-life software
projects such as Linux and OpenBSD. After we presents
such examples, we provide an analysis of the risks they
introduce and current solutions that try to tackle the risks,
but are however incomplete. Then we introduce the notion of
programmer intentionality and present how it correlates with
UB optimizations.

A. Undefined Behavior Optimizations

Wang et al. [28] compiled a list of UB optimizations that
show the dangerous effects of using the UB definition when
issuing compiler optimizations. They created case studies for
the following classes of undefined behaviors: division by zero,
oversized shift, signed integer overflow, out-of-bounds pointer,
null pointer dereference, type-punned pointer dereference and
uninitialized read. The consequences of these optimizations
range from unexpected code generation [8], [15] to real-life
vulnerabilities [12].

Code snippets with a high risk of triggering UB optimiza-
tions are provided in Listings 1, 2 and 3.

1 i f ( ! msize )
2 msize = 1 / msize ; / * provoke a s i g n a l * /

Listing 1. Compiler assumes that dividing a number by zero makes no sense
and the whole block is deleted (lib/mpi/mpi-pow.c in the Linux kernel)

1 i f a = &i n 6 i f a i f p w i t h a d d r ( i f p ,
2 &s a t o s i n 6 ( r t k e y ( r t ) )−>s i n 6 a d d r )−> i a i f a ;
3 i f ( i f a ) {
4 . . .
5 }

Listing 2. Compiler assumes that in6ifa ifpwithaddr returns NULL then
makes ipa6 NULL and deletes the if check (sys/netinet6/nd6.c in the
OpenBSD kernel)

1 s t a t i c i n l i n e i n t
2 hibe cmp ( s t r u c t h i b a l l o c e n t r y * l , s t r u c t

h i b a l l o c e n t r y * r )
3 {
4 r e t u r n l < r ? −1 : ( l > r ) ;
5 }

Listing 3. Comparing pointers that do not point to the same aggregate or
union is undefined behavior so the compiler is free to return anything from
this function (sys/kern/subr hibernate.c in the OpenBSD kernel)

The code shown in these examples was fixed up to this
day [6], [9], [13] but the risk of existing code triggering
uncatched UB optimizations still persists.

To address these issues the research community created
solutions that tackle the problem from different angles. One
approach was to introduce new compiler improvements that
would catch undefined behaviors either at compile-time or
at run-time. However such endeavours could not provide the
expected results.

On one hand, generating reports for all undefined behaviors
at compile-time is undecidable [21]. Moreover, generating
such reports is unuseful in specific cases. Listing 4, for
example, could generate reports such as:

• pointer a may originate from a non-integral or non-void
pointer

• pointer a may be NULL
• variable b may be uninitialized

1 vo id foo ( i n t *a , i n t b ) {
2 * a = b ;
3 }

Listing 4. Code that may report false undefined behavior

This is the case because the internal representation of the
compiler may not have enough context to report only the
useful information about undefined behaviors and because the
compiler cannot understand the intention of the programmer
when issuing an UB optimization. In this context, to issue
UB optimizations is paradoxical. The compiler does not have
the context to find and report undefined behaviors, but it uses
undefined behaviors in order to generate code transforma-
tions [24].

On the other hand, catching undefined behavior at run-time
proves to be an incomplete approach. The run-time checker
would need to visit all the states of the program in order to
ensure that no undefined behavior is triggered. To catch all
states that may contain undefined behavior we need to run the
checker for as long as it requires, which may not be desirable
in most cases because it may take too much time. Checkers for
this task are IOC [17], UBsan [14] and various compiler flags
such as GCC’s -ftrapv and Clang’s -fcatch-undefined-behavior.

Another approach for run-time checking is to compare the
unoptimized code with the optimized code generated by the
compiler. However program equivalence is undecidable [27].
Also, decompilation might be used to compute the semantic
distance between the original C code and the decompiled
optimized assembly code. Doing so we could spot the in-
troduced UB optimizations and delete them later. However
decompilation is a hard problem in general [16] because of
type erasure.

Besides the introduction of compiler improvements, another
solution would be to issue additions to the standard that
would provide more robustness to the definition of undefined
behavior. At the moment, state-of-the-art compilers, such as
GCC and Clang/LLVM, take a liberal view of the standard
and interpret it in a way that allows them to push various dan-
gerous optimizations. The opposite view is the constructivist
one, where the compiler implementations construct a robust
definition of undefined behavior, even if the standard imposes
no strong requirements. Until the standard makes it clear what
approach it would take in the future, implementations and
developers need to decide their approach based on the loose
definition provided in the standard.

B. Programmer intentionality

To issue UB optimizations the compiler is required to
have knowledge of the programmer’s intention in order to
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generate relevant code, i.e. code that is equivalent to the
expectations of the programmer, not to the unsteady definition
of undefined behavior presented in the standard. This is a
complicated task because intention detection is a hard problem
in psychology [20].

Given this problem, the safest thing the compiler can do in
this case is not to reason about intentions in any way. Doing
this, the risk of losing programmer intentionality is lost.

For code that is free of undefined behavior this problem is
not relevant as the compiler is expected to generate code that
preserves the intention of the programmer. Here, the compiler
is free to do whatever code transformations that increase the
performance of the system and that preserve the semantics of
the code.

However, most real-life projects make use of non-trivial
code constructs that trigger undefined behavior in order to help
the programmer communicate various intentions [23], [30].
Code transformations in this case introduce more unwanted
consequences that expected results.

III. RELATED WORK

Little work has been done in the area of detecting the
performance speedup of UB optimizations in real-life software
projects. Wang et al. [28] and Ertl [19] provide metrics for this
class of optimizations based on SPECint benchmark.

Wang et al. state that they observed a decrease in per-
formance of 7.2% with GCC and 9.0% with Clang for
456.hammer and 6.3% with GCC and 11.8% with Clang for
462.libquantum. The experiments were conducted with UB
optimizations turned off.

Ertl states that with Clang-3.1 and UB optimizations turned
on the speedup factor is 1.017 for SPECint 2006. Furthermore,
for a specific class of programs, i.e. Jon Bentley’s traveling
salesman problem, the speedup factor can reach values greater
than 2.7 if the programmer issues source-level optimizations
by hand, surpassing the UB optimizations issued by the
compiler.

IV. RESEARCH PLAN

Given the little research done in the field of analysing the
performance of UB optimizations, this study aims to provide
insights of the performance of these optimizations on a specific
class of software applications, i.e. operating systems.

The first step of our work is to filter out all undefined
behavior instances presented in the standard and focus on the
undefined behaviors that present a potential for being used in
compiler optimizations. Our filtering strategy is based on the
assumption that all undefined behaviors that conflict with the
intentionality of the programmer shall not be used to issue
code optimizations.

Then we either modify the compiler implementation or
use compiler-specific flags to turn off these optimizations. A
preliminary list of such undefined behaviors extracted from
the standard [22] is:

• An arithmetic operation is invalid (such as division or
modulus by 0) or produces a result that cannot be

represented in the space provided (such as overflow or
underflow) ($3.3).

• An invalid array reference, null pointer reference, or
reference to an object declared with automatic storage
duration in a terminated block occurs ($3.3.3.2).

• A pointer is converted to other than an integral or pointer
type ($3.3.4).

The first undefined behavior could lead to code being
eliminated if the compiler detects that the arithmetic operation
is incompatible with the standard [28]. The second undefined
behavior could discard security checks for NULL pointers [4]
and the third undefined behavior could break manual optimiza-
tions on floating point numbers [25].

To analyze the role of these optimizations in real-life
software, we take a self-contained operating system with focus
on robustness and security, i.e. OpenBSD, and compile it on
one hand with UB optimizations turned on and on the other
hand with UB optimizations turned off. After this stage, the
result will be two comparison candidates which will be tested
against various benchmarks that will highlight the advantages
and disadvantages of the UB optimizations.

Furthermore, we analyze the role of UB optimizations in
the various hardware architectures that OpenBSD supports [2].
We suspect that there are hardware setups on which undefined
behaviors play a bigger role in compiler optimizations. At the
same time, we want to see how the compiler treats robustness
and security for each hardware architecture.

At this moment we do not know which components of the
systems will be modified when UB optimizations are turned
off so we cannot provide the benchmarks that we intend to
use. However after we get this information, we plan to create
a modification map that will help us visualize the components
with the highest rate of modification. After this step, what
we will do is to provide benchmarks that will focus on those
specific components.

The final result will be a fine grained comparison between
the two test candidates that will focus on one hand of speed
and performance and on the other hand on robustness and
security.

V. CONCLUSIONS

The definition of undefined behavior is used by compiler im-
plementations to issue aggressive optimizations. We argue that
this class of optimization is very dangerous as it conflicts with
programmer intentionality and with a robust definition of code
semantics. In this study analyze the performance impact of
undefined behavior optimizations in real-life software projects.
By doing so we evaluate if the advantages of issuing UB
optimizations surpass the security risks that they introduce. In
order to do this we take a robust and secure implementation of
operating system, i.e. OpenBSD, and compare the system that
contains UB optimizations with the same system without UB
optimizations. The comparison is done on multiple hardware
architectures to inspect what role UB optimizations have for
various hardware setups.
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