dissertation/usr.bin/top/machine.c

849 lines
20 KiB
C

/* $OpenBSD: machine.c,v 1.112 2022/09/10 16:58:51 cheloha Exp $ */
/*-
* Copyright (c) 1994 Thorsten Lockert <tholo@sigmasoft.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* AUTHOR: Thorsten Lockert <tholo@sigmasoft.com>
* Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
* Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
* Patch for -DORDER by Kenneth Stailey <kstailey@disclosure.com>
* Patch for new swapctl(2) by Tobias Weingartner <weingart@openbsd.org>
*/
#include <sys/param.h> /* DEV_BSIZE PZERO */
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/swap.h>
#include <sys/sysctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <err.h>
#include <errno.h>
#include "top.h"
#include "display.h"
#include "machine.h"
#include "utils.h"
static int swapmode(int *, int *);
static char *state_abbr(struct kinfo_proc *);
static char *format_comm(struct kinfo_proc *);
static int cmd_matches(struct kinfo_proc *, char *);
static char **get_proc_args(struct kinfo_proc *);
/* get_process_info passes back a handle. This is what it looks like: */
struct handle {
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
};
/* what we consider to be process size: */
#define PROCSIZE(pp) ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X PRI NICE SIZE RES STATE WAIT TIME CPU COMMAND";
/* offsets in the header line to start alternative columns */
#define UNAME_START 6
#define RTABLE_START 46
#define Proc_format \
"%5d %-8.8s %3d %4d %5s %5s %-9s %-7.7s %6s %5.2f%% %s"
/* process state names for the "STATE" column of the display */
char *state_abbrev[] = {
"", "start", "run", "sleep", "stop", "zomb", "dead", "onproc"
};
/* these are for calculating cpu state percentages */
static struct cpustats *cp_time;
static struct cpustats *cp_old;
static struct cpustats *cp_diff;
/* these are for detailing the process states */
int process_states[8];
char *procstatenames[] = {
"", " starting, ", " running, ", " idle, ",
" stopped, ", " zombie, ", " dead, ", " on processor, ",
NULL
};
/* these are for detailing the cpu states */
int64_t *cpu_states;
char *cpustatenames[] = {
"user", "nice", "sys", "spin", "intr", "idle", NULL
};
/* this is for tracking which cpus are online */
int *cpu_online;
/* these are for detailing the memory statistics */
int memory_stats[10];
char *memorynames[] = {
"Real: ", "K/", "K act/tot ", "Free: ", "K ",
"Cache: ", "K ",
"Swap: ", "K/", "K",
NULL
};
/* these are names given to allowed sorting orders -- first is default */
char *ordernames[] = {
"cpu", "size", "res", "time", "pri", "pid", "command", NULL
};
/* these are for keeping track of the proc array */
static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
int ncpu;
int ncpuonline;
int fscale;
unsigned int maxslp;
int
getfscale(void)
{
int mib[] = { CTL_KERN, KERN_FSCALE };
size_t size = sizeof(fscale);
if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
&fscale, &size, NULL, 0) == -1)
return (-1);
return fscale;
}
int
getncpu(void)
{
int mib[] = { CTL_HW, HW_NCPU };
int numcpu;
size_t size = sizeof(numcpu);
if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
&numcpu, &size, NULL, 0) == -1)
return (-1);
return (numcpu);
}
int
getncpuonline(void)
{
int mib[] = { CTL_HW, HW_NCPUONLINE };
int numcpu;
size_t size = sizeof(numcpu);
if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
&numcpu, &size, NULL, 0) == -1)
return (-1);
return (numcpu);
}
int
machine_init(struct statics *statics)
{
int pagesize;
ncpu = getncpu();
if (ncpu == -1)
return (-1);
if (getfscale() == -1)
return (-1);
cpu_states = calloc(ncpu, CPUSTATES * sizeof(int64_t));
if (cpu_states == NULL)
err(1, NULL);
cp_time = calloc(ncpu, sizeof(*cp_time));
cp_old = calloc(ncpu, sizeof(*cp_old));
cp_diff = calloc(ncpu, sizeof(*cp_diff));
if (cp_time == NULL || cp_old == NULL || cp_diff == NULL)
err(1, NULL);
cpu_online = calloc(ncpu, sizeof(*cpu_online));
if (cpu_online == NULL)
err(1, NULL);
/*
* get the page size with "getpagesize" and calculate pageshift from
* it
*/
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->order_names = ordernames;
return (0);
}
char *
format_header(char *second_field, char *eighth_field)
{
char *second_fieldp = second_field, *eighth_fieldp = eighth_field, *ptr;
ptr = header + UNAME_START;
while (*second_fieldp != '\0')
*ptr++ = *second_fieldp++;
ptr = header + RTABLE_START;
while (*eighth_fieldp != '\0')
*ptr++ = *eighth_fieldp++;
return (header);
}
void
get_system_info(struct system_info *si)
{
static int cpustats_mib[] = {CTL_KERN, KERN_CPUSTATS, /*fillme*/0};
static int sysload_mib[] = {CTL_VM, VM_LOADAVG};
static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP};
static int bcstats_mib[] = {CTL_VFS, VFS_GENERIC, VFS_BCACHESTAT};
struct loadavg sysload;
struct uvmexp uvmexp;
struct bcachestats bcstats;
double *infoloadp;
size_t size;
int i;
int64_t *tmpstate;
size = sizeof(*cp_time);
for (i = 0; i < ncpu; i++) {
cpustats_mib[2] = i;
tmpstate = cpu_states + (CPUSTATES * i);
if (sysctl(cpustats_mib, 3, &cp_time[i], &size, NULL, 0) == -1)
warn("sysctl kern.cpustats failed");
/* convert cpustats counts to percentages */
(void) percentages(CPUSTATES, tmpstate, cp_time[i].cs_time,
cp_old[i].cs_time, cp_diff[i].cs_time);
/* note whether the cpu is online */
cpu_online[i] = (cp_time[i].cs_flags & CPUSTATS_ONLINE) != 0;
}
size = sizeof(sysload);
if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) == -1)
warn("sysctl failed");
infoloadp = si->load_avg;
for (i = 0; i < 3; i++)
*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
/* get total -- systemwide main memory usage structure */
size = sizeof(uvmexp);
if (sysctl(uvmexp_mib, 2, &uvmexp, &size, NULL, 0) == -1) {
warn("sysctl failed");
bzero(&uvmexp, sizeof(uvmexp));
}
size = sizeof(bcstats);
if (sysctl(bcstats_mib, 3, &bcstats, &size, NULL, 0) == -1) {
warn("sysctl failed");
bzero(&bcstats, sizeof(bcstats));
}
/* convert memory stats to Kbytes */
memory_stats[0] = -1;
memory_stats[1] = pagetok(uvmexp.active);
memory_stats[2] = pagetok(uvmexp.npages - uvmexp.free);
memory_stats[3] = -1;
memory_stats[4] = pagetok(uvmexp.free);
memory_stats[5] = -1;
memory_stats[6] = pagetok(bcstats.numbufpages);
memory_stats[7] = -1;
if (!swapmode(&memory_stats[8], &memory_stats[9])) {
memory_stats[8] = 0;
memory_stats[9] = 0;
}
/* set arrays and strings */
si->cpustates = cpu_states;
si->cpuonline = cpu_online;
si->memory = memory_stats;
}
static struct handle handle;
struct kinfo_proc *
getprocs(int op, int arg, int *cnt)
{
size_t size;
int mib[6] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0,
sizeof(struct kinfo_proc), 0};
static int maxslp_mib[] = {CTL_VM, VM_MAXSLP};
static struct kinfo_proc *procbase;
int st;
mib[2] = op;
mib[3] = arg;
size = sizeof(maxslp);
if (sysctl(maxslp_mib, 2, &maxslp, &size, NULL, 0) == -1) {
warn("sysctl vm.maxslp failed");
return (0);
}
retry:
free(procbase);
st = sysctl(mib, 6, NULL, &size, NULL, 0);
if (st == -1) {
/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
return (0);
}
size = 5 * size / 4; /* extra slop */
if ((procbase = malloc(size)) == NULL)
return (0);
mib[5] = (int)(size / sizeof(struct kinfo_proc));
st = sysctl(mib, 6, procbase, &size, NULL, 0);
if (st == -1) {
if (errno == ENOMEM)
goto retry;
/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
return (0);
}
*cnt = (int)(size / sizeof(struct kinfo_proc));
return (procbase);
}
static char **
get_proc_args(struct kinfo_proc *kp)
{
static char **s;
static size_t siz = 1023;
int mib[4];
if (!s && !(s = malloc(siz)))
err(1, NULL);
mib[0] = CTL_KERN;
mib[1] = KERN_PROC_ARGS;
mib[2] = kp->p_pid;
mib[3] = KERN_PROC_ARGV;
for (;;) {
size_t space = siz;
if (sysctl(mib, 4, s, &space, NULL, 0) == 0)
break;
if (errno != ENOMEM)
return NULL;
siz *= 2;
if ((s = realloc(s, siz)) == NULL)
err(1, NULL);
}
return s;
}
static int
cmd_matches(struct kinfo_proc *proc, char *term)
{
extern int show_args;
char **args = NULL;
if (!term) {
/* No command filter set */
return 1;
} else {
/* Filter set, process name needs to contain term */
if (strstr(proc->p_comm, term))
return 1;
/* If showing arguments, search those as well */
if (show_args) {
args = get_proc_args(proc);
if (args == NULL) {
/* Failed to get args, so can't search them */
return 0;
}
while (*args != NULL) {
if (strstr(*args, term))
return 1;
args++;
}
}
}
return 0;
}
struct handle *
get_process_info(struct system_info *si, struct process_select *sel,
int (*compare) (const void *, const void *))
{
int show_idle, show_system, show_threads, show_uid, show_pid, show_cmd;
int show_rtableid, hide_rtableid, hide_uid;
int total_procs, active_procs;
struct kinfo_proc **prefp, *pp;
int what = KERN_PROC_ALL;
show_system = sel->system;
show_threads = sel->threads;
if (show_system)
what = KERN_PROC_KTHREAD;
if (show_threads)
what |= KERN_PROC_SHOW_THREADS;
if ((pbase = getprocs(what, 0, &nproc)) == NULL) {
/* warnx("%s", kvm_geterr(kd)); */
quit(23);
}
if (nproc > onproc)
pref = reallocarray(pref, (onproc = nproc),
sizeof(struct kinfo_proc *));
if (pref == NULL) {
warnx("Out of memory.");
quit(23);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_uid = sel->uid != (uid_t)-1;
hide_uid = sel->huid != (uid_t)-1;
show_pid = sel->pid != (pid_t)-1;
show_rtableid = sel->rtableid != -1;
hide_rtableid = sel->hrtableid != -1;
show_cmd = sel->command != NULL;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *) process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase; pp < &pbase[nproc]; pp++) {
/*
* When showing threads, we want to ignore the structure
* that represents the entire process, which has TID == -1
*/
if (show_threads && pp->p_tid == -1)
continue;
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field.
*/
if (pp->p_stat != 0) {
total_procs++;
process_states[(unsigned char) pp->p_stat]++;
if ((pp->p_psflags & PS_ZOMBIE) == 0 &&
(show_idle || pp->p_pctcpu != 0 ||
pp->p_stat == SRUN) &&
(!hide_uid || pp->p_ruid != sel->huid) &&
(!show_uid || pp->p_ruid == sel->uid) &&
(!show_pid || pp->p_pid == sel->pid) &&
(!hide_rtableid || pp->p_rtableid != sel->hrtableid) &&
(!show_rtableid || pp->p_rtableid == sel->rtableid) &&
(!show_cmd || cmd_matches(pp, sel->command))) {
*prefp++ = pp;
active_procs++;
}
}
}
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
return &handle;
}
char fmt[MAX_COLS]; /* static area where result is built */
static char *
state_abbr(struct kinfo_proc *pp)
{
static char buf[10];
if (ncpu > 1 && pp->p_cpuid != KI_NOCPU)
snprintf(buf, sizeof buf, "%s/%llu",
state_abbrev[(unsigned char)pp->p_stat], pp->p_cpuid);
else
snprintf(buf, sizeof buf, "%s",
state_abbrev[(unsigned char)pp->p_stat]);
return buf;
}
static char *
format_comm(struct kinfo_proc *kp)
{
static char buf[MAX_COLS];
char **p, **s;
extern int show_args;
if (!show_args)
return (kp->p_comm);
s = get_proc_args(kp);
if (s == NULL)
return kp->p_comm;
buf[0] = '\0';
for (p = s; *p != NULL; p++) {
if (p != s)
strlcat(buf, " ", sizeof(buf));
strlcat(buf, *p, sizeof(buf));
}
if (buf[0] == '\0')
return (kp->p_comm);
return (buf);
}
void
skip_processes(struct handle *hndl, int n)
{
hndl->next_proc += n;
}
char *
format_next_process(struct handle *hndl, const char *(*get_userid)(uid_t, int),
int rtable, pid_t *pid)
{
struct kinfo_proc *pp;
int cputime;
double pct;
char second_buf[16], eighth_buf[8];
/* find and remember the next proc structure */
pp = *(hndl->next_proc++);
cputime = pp->p_rtime_sec + ((pp->p_rtime_usec + 500000) / 1000000);
/* calculate the base for cpu percentages */
pct = (double)pp->p_pctcpu / fscale;
if (get_userid == NULL)
snprintf(second_buf, sizeof(second_buf), "%8d", pp->p_tid);
else
strlcpy(second_buf, (*get_userid)(pp->p_ruid, 0),
sizeof(second_buf));
if (rtable)
snprintf(eighth_buf, sizeof(eighth_buf), "%7d", pp->p_rtableid);
else
strlcpy(eighth_buf, pp->p_wmesg[0] ? pp->p_wmesg : "-",
sizeof(eighth_buf));
/* format this entry */
snprintf(fmt, sizeof(fmt), Proc_format, pp->p_pid, second_buf,
pp->p_priority - PZERO, pp->p_nice - NZERO,
format_k(pagetok(PROCSIZE(pp))),
format_k(pagetok(pp->p_vm_rssize)),
(pp->p_stat == SSLEEP && pp->p_slptime > maxslp) ?
"idle" : state_abbr(pp),
eighth_buf, format_time(cputime), 100.0 * pct,
printable(format_comm(pp)));
*pid = pp->p_pid;
/* return the result */
return (fmt);
}
/* comparison routine for qsort */
static unsigned char sorted_state[] =
{
0, /* not used */
4, /* start */
5, /* run */
2, /* sleep */
3, /* stop */
1 /* zombie */
};
extern int rev_order;
/*
* proc_compares - comparison functions for "qsort"
*/
/*
* First, the possible comparison keys. These are defined in such a way
* that they can be merely listed in the source code to define the actual
* desired ordering.
*/
#define ORDERKEY_PCTCPU \
if ((result = (int)(p2->p_pctcpu - p1->p_pctcpu)) == 0)
#define ORDERKEY_CPUTIME \
if ((result = p2->p_rtime_sec - p1->p_rtime_sec) == 0) \
if ((result = p2->p_rtime_usec - p1->p_rtime_usec) == 0)
#define ORDERKEY_STATE \
if ((result = sorted_state[(unsigned char)p2->p_stat] - \
sorted_state[(unsigned char)p1->p_stat]) == 0)
#define ORDERKEY_PRIO \
if ((result = p2->p_priority - p1->p_priority) == 0)
#define ORDERKEY_RSSIZE \
if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
#define ORDERKEY_MEM \
if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0)
#define ORDERKEY_PID \
if ((result = p1->p_pid - p2->p_pid) == 0)
#define ORDERKEY_CMD \
if ((result = strcmp(p1->p_comm, p2->p_comm)) == 0)
/* remove one level of indirection and set sort order */
#define SETORDER do { \
if (rev_order) { \
p1 = *(struct kinfo_proc **) v2; \
p2 = *(struct kinfo_proc **) v1; \
} else { \
p1 = *(struct kinfo_proc **) v1; \
p2 = *(struct kinfo_proc **) v2; \
} \
} while (0)
/* compare_cpu - the comparison function for sorting by cpu percentage */
static int
compare_cpu(const void *v1, const void *v2)
{
struct kinfo_proc *p1, *p2;
int result;
SETORDER;
ORDERKEY_PCTCPU
ORDERKEY_CPUTIME
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
/* compare_size - the comparison function for sorting by total memory usage */
static int
compare_size(const void *v1, const void *v2)
{
struct kinfo_proc *p1, *p2;
int result;
SETORDER;
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU
ORDERKEY_CPUTIME
ORDERKEY_STATE
ORDERKEY_PRIO
;
return (result);
}
/* compare_res - the comparison function for sorting by resident set size */
static int
compare_res(const void *v1, const void *v2)
{
struct kinfo_proc *p1, *p2;
int result;
SETORDER;
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_CPUTIME
ORDERKEY_STATE
ORDERKEY_PRIO
;
return (result);
}
/* compare_time - the comparison function for sorting by CPU time */
static int
compare_time(const void *v1, const void *v2)
{
struct kinfo_proc *p1, *p2;
int result;
SETORDER;
ORDERKEY_CPUTIME
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_MEM
ORDERKEY_RSSIZE
;
return (result);
}
/* compare_prio - the comparison function for sorting by CPU time */
static int
compare_prio(const void *v1, const void *v2)
{
struct kinfo_proc *p1, *p2;
int result;
SETORDER;
ORDERKEY_PRIO
ORDERKEY_PCTCPU
ORDERKEY_CPUTIME
ORDERKEY_STATE
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
static int
compare_pid(const void *v1, const void *v2)
{
struct kinfo_proc *p1, *p2;
int result;
SETORDER;
ORDERKEY_PID
ORDERKEY_PCTCPU
ORDERKEY_CPUTIME
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
static int
compare_cmd(const void *v1, const void *v2)
{
struct kinfo_proc *p1, *p2;
int result;
SETORDER;
ORDERKEY_CMD
ORDERKEY_PCTCPU
ORDERKEY_CPUTIME
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
int (*proc_compares[])(const void *, const void *) = {
compare_cpu,
compare_size,
compare_res,
compare_time,
compare_prio,
compare_pid,
compare_cmd,
NULL
};
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMELY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
uid_t
proc_owner(pid_t pid)
{
struct kinfo_proc **prefp, *pp;
int cnt;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0) {
pp = *prefp++;
if (pp->p_pid == pid)
return ((uid_t)pp->p_ruid);
}
return (uid_t)(-1);
}
/*
* swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
* to be based on the new swapctl(2) system call.
*/
static int
swapmode(int *used, int *total)
{
struct swapent *swdev;
int nswap, rnswap, i;
nswap = swapctl(SWAP_NSWAP, 0, 0);
if (nswap == 0)
return 0;
swdev = calloc(nswap, sizeof(*swdev));
if (swdev == NULL)
return 0;
rnswap = swapctl(SWAP_STATS, swdev, nswap);
if (rnswap == -1) {
free(swdev);
return 0;
}
/* if rnswap != nswap, then what? */
/* Total things up */
*total = *used = 0;
for (i = 0; i < nswap; i++) {
if (swdev[i].se_flags & SWF_ENABLE) {
*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
}
}
free(swdev);
return 1;
}