i3status/src/print_battery_info.c

489 lines
18 KiB
C
Raw Normal View History

// vim:ts=4:sw=4:expandtab
#include <ctype.h>
#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
2012-03-25 18:55:55 +00:00
#include <yajl/yajl_gen.h>
2012-04-08 12:05:47 +00:00
#include <yajl/yajl_version.h>
#include "i3status.h"
2012-11-14 01:29:55 +00:00
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
#include <sys/types.h>
#include <sys/sysctl.h>
#include <dev/acpica/acpiio.h>
#endif
#if defined(__OpenBSD__)
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <machine/apmvar.h>
#endif
#if defined(__NetBSD__)
#include <fcntl.h>
#include <prop/proplib.h>
#include <sys/envsys.h>
#endif
struct battery_info {
int full_design;
int full_last;
int remaining;
int present_rate;
int seconds_remaining;
float percentage_remaining;
charging_status_t status;
};
/*
* Estimate the number of seconds remaining in state 'status'.
*
* Assumes a constant (dis)charge rate.
*/
#if defined(LINUX) || defined(__NetBSD__)
static int seconds_remaining_from_rate(charging_status_t status, float full_design, float remaining, float present_rate) {
if (status == CS_CHARGING)
return 3600.0 * (full_design - remaining) / present_rate;
else if (status == CS_DISCHARGING)
return 3600.0 * remaining / present_rate;
else
return 0;
}
#endif
static bool slurp_battery_info(struct battery_info *batt_info, yajl_gen json_gen, char *buffer, int number, const char *path, const char *format_down, bool last_full_capacity) {
char *outwalk = buffer;
#if defined(LINUX)
char buf[1024];
const char *walk, *last;
bool watt_as_unit = false;
int voltage = -1;
char batpath[512];
sprintf(batpath, path, number);
INSTANCE(batpath);
if (!slurp(batpath, buf, sizeof(buf))) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
for (walk = buf, last = buf; (walk - buf) < 1024; walk++) {
if (*walk == '\n') {
last = walk + 1;
continue;
}
if (*walk != '=')
continue;
if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_NOW")) {
watt_as_unit = true;
batt_info->remaining = atoi(walk + 1);
} else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_NOW")) {
watt_as_unit = false;
batt_info->remaining = atoi(walk + 1);
} else if (BEGINS_WITH(last, "POWER_SUPPLY_CURRENT_NOW"))
batt_info->present_rate = abs(atoi(walk + 1));
else if (BEGINS_WITH(last, "POWER_SUPPLY_VOLTAGE_NOW"))
voltage = abs(atoi(walk + 1));
/* on some systems POWER_SUPPLY_POWER_NOW does not exist, but actually
* it is the same as POWER_SUPPLY_CURRENT_NOW but with μWh as
* unit instead of μAh. We will calculate it as we need it
* later. */
else if (BEGINS_WITH(last, "POWER_SUPPLY_POWER_NOW"))
batt_info->present_rate = abs(atoi(walk + 1));
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Charging"))
batt_info->status = CS_CHARGING;
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Full"))
batt_info->status = CS_FULL;
2016-03-21 22:41:22 +00:00
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Discharging"))
batt_info->status = CS_DISCHARGING;
2016-03-21 22:41:22 +00:00
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS="))
batt_info->status = CS_UNKNOWN;
else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL_DESIGN") ||
BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL_DESIGN"))
batt_info->full_design = atoi(walk + 1);
else if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL") ||
BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL"))
batt_info->full_last = atoi(walk + 1);
}
/* the difference between POWER_SUPPLY_ENERGY_NOW and
* POWER_SUPPLY_CHARGE_NOW is the unit of measurement. The energy is
* given in mWh, the charge in mAh. So calculate every value given in
* ampere to watt */
if (!watt_as_unit && voltage != -1) {
batt_info->present_rate = (((float)voltage / 1000.0) * ((float)batt_info->present_rate / 1000.0));
batt_info->remaining = (((float)voltage / 1000.0) * ((float)batt_info->remaining / 1000.0));
batt_info->full_design = (((float)voltage / 1000.0) * ((float)batt_info->full_design / 1000.0));
}
int full = (last_full_capacity ? batt_info->full_last : batt_info->full_design);
if ((full == -1) || (batt_info->remaining == -1)) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
2009-12-20 17:45:46 +00:00
batt_info->percentage_remaining = (((float)batt_info->remaining / (float)full) * 100);
/* Some batteries report POWER_SUPPLY_CHARGE_NOW=<full_design> when fully
* charged, even though thats plainly wrong. For people who chose to see
* the percentage calculated based on the last full capacity, we clamp the
* value to 100%, as that makes more sense.
* See http://bugs.debian.org/785398 */
if (last_full_capacity && batt_info->percentage_remaining > 100) {
batt_info->percentage_remaining = 100;
}
if (batt_info->present_rate > 0 && batt_info->status != CS_FULL) {
batt_info->seconds_remaining = seconds_remaining_from_rate(batt_info->status, full, batt_info->remaining, batt_info->present_rate);
}
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
int state;
int sysctl_rslt;
size_t sysctl_size = sizeof(sysctl_rslt);
if (sysctlbyname(BATT_LIFE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
batt_info->percentage_remaining = sysctl_rslt;
if (sysctlbyname(BATT_TIME, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
batt_info->seconds_remaining = sysctl_rslt * 60;
if (sysctlbyname(BATT_STATE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
state = sysctl_rslt;
if (state == 0 && batt_info->percentage_remaining == 100)
batt_info->status = CS_FULL;
else if ((state & ACPI_BATT_STAT_CHARGING) && batt_info->percentage_remaining < 100)
batt_info->status = CS_CHARGING;
else
batt_info->status = CS_DISCHARGING;
#elif defined(__OpenBSD__)
/*
* We're using apm(4) here, which is the interface to acpi(4) on amd64/i386 and
* the generic interface on macppc/sparc64/zaurus, instead of using sysctl(3) and
* probing acpi(4) devices.
*/
struct apm_power_info apm_info;
int apm_fd;
apm_fd = open("/dev/apm", O_RDONLY);
if (apm_fd < 0) {
OUTPUT_FULL_TEXT("can't open /dev/apm");
return false;
}
if (ioctl(apm_fd, APM_IOC_GETPOWER, &apm_info) < 0)
OUTPUT_FULL_TEXT("can't read power info");
close(apm_fd);
/* Don't bother to go further if there's no battery present. */
if ((apm_info.battery_state == APM_BATTERY_ABSENT) ||
(apm_info.battery_state == APM_BATT_UNKNOWN)) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
switch (apm_info.ac_state) {
case APM_AC_OFF:
batt_info->status = CS_DISCHARGING;
break;
case APM_AC_ON:
batt_info->status = CS_CHARGING;
break;
default:
/* If we don't know what's going on, just assume we're discharging. */
batt_info->status = CS_DISCHARGING;
break;
}
batt_info->percentage_remaining = apm_info.battery_life;
/* Can't give a meaningful value for remaining minutes if we're charging. */
if (batt_info->status != CS_CHARGING) {
batt_info->seconds_remaining = apm_info.minutes_left * 60;
}
#elif defined(__NetBSD__)
/*
* Using envsys(4) via sysmon(4).
*/
bool watt_as_unit = false;
int voltage = -1;
int fd, rval;
bool is_found = false;
char *sensor_desc;
bool is_full = false;
prop_dictionary_t dict;
prop_array_t array;
prop_object_iterator_t iter;
prop_object_iterator_t iter2;
prop_object_t obj, obj2, obj3, obj4, obj5;
asprintf(&sensor_desc, "acpibat%d", number);
fd = open("/dev/sysmon", O_RDONLY);
if (fd < 0) {
OUTPUT_FULL_TEXT("can't open /dev/sysmon");
return false;
}
rval = prop_dictionary_recv_ioctl(fd, ENVSYS_GETDICTIONARY, &dict);
if (rval == -1) {
close(fd);
return false;
}
if (prop_dictionary_count(dict) == 0) {
prop_object_release(dict);
close(fd);
return false;
}
iter = prop_dictionary_iterator(dict);
if (iter == NULL) {
prop_object_release(dict);
close(fd);
}
/* iterate over the dictionary returned by the kernel */
while ((obj = prop_object_iterator_next(iter)) != NULL) {
/* skip this dict if it's not what we're looking for */
if (strcmp(sensor_desc,
prop_dictionary_keysym_cstring_nocopy(obj)) != 0)
continue;
is_found = true;
array = prop_dictionary_get_keysym(dict, obj);
if (prop_object_type(array) != PROP_TYPE_ARRAY) {
prop_object_iterator_release(iter);
prop_object_release(dict);
close(fd);
return false;
}
iter2 = prop_array_iterator(array);
if (!iter2) {
prop_object_iterator_release(iter);
prop_object_release(dict);
close(fd);
return false;
}
/* iterate over array of dicts specific to target battery */
while ((obj2 = prop_object_iterator_next(iter2)) != NULL) {
obj3 = prop_dictionary_get(obj2, "description");
if (obj3 == NULL)
continue;
if (strcmp("charging", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
if (prop_number_integer_value(obj3))
batt_info->status = CS_CHARGING;
else
batt_info->status = CS_DISCHARGING;
} else if (strcmp("charge", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
obj4 = prop_dictionary_get(obj2, "max-value");
obj5 = prop_dictionary_get(obj2, "type");
batt_info->remaining = prop_number_integer_value(obj3);
batt_info->full_design = prop_number_integer_value(obj4);
if (batt_info->remaining == batt_info->full_design)
is_full = true;
if (strcmp("Ampere hour", prop_string_cstring_nocopy(obj5)) == 0)
watt_as_unit = false;
else
watt_as_unit = true;
} else if (strcmp("discharge rate", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
batt_info->present_rate = prop_number_integer_value(obj3);
} else if (strcmp("charge rate", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
batt_info->present_rate = prop_number_integer_value(obj3);
} else if (strcmp("last full cap", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
batt_info->full_last = prop_number_integer_value(obj3);
} else if (strcmp("voltage", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
voltage = prop_number_integer_value(obj3);
}
}
prop_object_iterator_release(iter2);
}
prop_object_iterator_release(iter);
prop_object_release(dict);
close(fd);
if (!is_found) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
if (!watt_as_unit && voltage != -1) {
batt_info->present_rate = (((float)voltage / 1000.0) * ((float)batt_info->present_rate / 1000.0));
batt_info->remaining = (((float)voltage / 1000.0) * ((float)batt_info->remaining / 1000.0));
batt_info->full_design = (((float)voltage / 1000.0) * ((float)batt_info->full_design / 1000.0));
}
int full = (last_full_capacity ? batt_info->full_last : batt_info->full_design);
batt_info->percentage_remaining =
(((float)batt_info->remaining / (float)full) * 100);
if (is_full)
batt_info->status = CS_FULL;
/*
* The envsys(4) ACPI routines do not appear to provide a 'time
* remaining' figure, so we must deduce it.
*/
batt_info->seconds_remaining = seconds_remaining_from_rate(batt_info->status, full, batt_info->remaining, batt_info->present_rate);
#endif
return true;
}
void print_battery_info(yajl_gen json_gen, char *buffer, int number, const char *path, const char *format, const char *format_down, const char *status_chr, const char *status_bat, const char *status_unk, const char *status_full, int low_threshold, char *threshold_type, bool last_full_capacity, bool integer_battery_capacity, bool hide_seconds) {
const char *walk;
char *outwalk = buffer;
struct battery_info batt_info = {
.present_rate = -1,
.seconds_remaining = -1,
.percentage_remaining = -1,
.status = CS_DISCHARGING,
};
bool colorful_output = false;
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__OpenBSD__)
/* These OSes report battery stats in whole percent. */
integer_battery_capacity = true;
#endif
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
/* These OSes report battery time in minutes. */
hide_seconds = true;
#endif
if (!slurp_battery_info(&batt_info, json_gen, buffer, number, path, format_down, last_full_capacity))
return;
if (batt_info.status == CS_DISCHARGING && low_threshold > 0) {
if (batt_info.percentage_remaining >= 0 && strcasecmp(threshold_type, "percentage") == 0 && batt_info.percentage_remaining < low_threshold) {
START_COLOR("color_bad");
colorful_output = true;
} else if (batt_info.seconds_remaining >= 0 && strcasecmp(threshold_type, "time") == 0 && batt_info.seconds_remaining < 60 * low_threshold) {
START_COLOR("color_bad");
colorful_output = true;
}
}
#define EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT() \
do { \
if (outwalk == prevoutwalk) { \
if (outwalk > buffer && isspace((int)outwalk[-1])) \
outwalk--; \
else if (isspace((int)*(walk + 1))) \
walk++; \
} \
} while (0)
for (walk = format; *walk != '\0'; walk++) {
char *prevoutwalk = outwalk;
if (*walk != '%') {
*(outwalk++) = *walk;
continue;
}
if (BEGINS_WITH(walk + 1, "status")) {
const char *statusstr;
switch (batt_info.status) {
case CS_CHARGING:
statusstr = status_chr;
break;
case CS_DISCHARGING:
statusstr = status_bat;
break;
case CS_FULL:
statusstr = status_full;
break;
default:
statusstr = status_unk;
}
outwalk += sprintf(outwalk, "%s", statusstr);
walk += strlen("status");
} else if (BEGINS_WITH(walk + 1, "percentage")) {
if (integer_battery_capacity) {
outwalk += sprintf(outwalk, "%.00f%s", batt_info.percentage_remaining, pct_mark);
} else {
outwalk += sprintf(outwalk, "%.02f%s", batt_info.percentage_remaining, pct_mark);
}
walk += strlen("percentage");
} else if (BEGINS_WITH(walk + 1, "remaining")) {
if (batt_info.seconds_remaining >= 0) {
int seconds, hours, minutes;
hours = batt_info.seconds_remaining / 3600;
seconds = batt_info.seconds_remaining - (hours * 3600);
minutes = seconds / 60;
seconds -= (minutes * 60);
if (hide_seconds)
outwalk += sprintf(outwalk, "%02d:%02d",
max(hours, 0), max(minutes, 0));
else
outwalk += sprintf(outwalk, "%02d:%02d:%02d",
max(hours, 0), max(minutes, 0), max(seconds, 0));
}
walk += strlen("remaining");
EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT();
} else if (BEGINS_WITH(walk + 1, "emptytime")) {
if (batt_info.seconds_remaining >= 0) {
time_t empty_time = time(NULL) + batt_info.seconds_remaining;
struct tm *empty_tm = localtime(&empty_time);
if (hide_seconds)
outwalk += sprintf(outwalk, "%02d:%02d",
max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0));
else
outwalk += sprintf(outwalk, "%02d:%02d:%02d",
max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0), max(empty_tm->tm_sec, 0));
}
walk += strlen("emptytime");
EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT();
} else if (BEGINS_WITH(walk + 1, "consumption")) {
if (batt_info.present_rate >= 0)
outwalk += sprintf(outwalk, "%1.2fW", batt_info.present_rate / 1e6);
walk += strlen("consumption");
EAT_SPACE_FROM_OUTPUT_IF_NO_OUTPUT();
}
}
if (colorful_output)
END_COLOR;
OUTPUT_FULL_TEXT(buffer);
}