change math library

fixed bug
This commit is contained in:
Perfare 2019-01-03 08:55:43 +08:00
parent 33461e068f
commit e6ed312de2
28 changed files with 2011 additions and 90 deletions

View File

@ -31,15 +31,9 @@
<WarningLevel>4</WarningLevel>
</PropertyGroup>
<ItemGroup>
<Reference Include="SharpDX.Mathematics">
<HintPath>Libraries\SharpDX.Mathematics.dll</HintPath>
</Reference>
<Reference Include="System" />
<Reference Include="System.Core" />
<Reference Include="System.Drawing" />
<Reference Include="System.Half">
<HintPath>Libraries\System.Half.dll</HintPath>
</Reference>
<Reference Include="System.Xml.Linq" />
<Reference Include="System.Data.DataSetExtensions" />
<Reference Include="Microsoft.CSharp" />
@ -63,6 +57,14 @@
<Compile Include="7zip\Compress\RangeCoder\RangeCoderBitTree.cs" />
<Compile Include="7zip\ICoder.cs" />
<Compile Include="Classes\RuntimeAnimatorController.cs" />
<Compile Include="Math\Color.cs" />
<Compile Include="Math\Half.cs" />
<Compile Include="Math\HalfHelper.cs" />
<Compile Include="Math\Matrix4x4f.cs" />
<Compile Include="Math\Quaternion.cs" />
<Compile Include="Math\Vector2.cs" />
<Compile Include="Math\Vector3.cs" />
<Compile Include="Math\Vector4.cs" />
<Compile Include="ResourceReader.cs" />
<Compile Include="IImported.cs" />
<Compile Include="SerializedFile.cs" />
@ -145,5 +147,6 @@
<Compile Include="TypeTreeNode.cs" />
<Compile Include="WebFile.cs" />
</ItemGroup>
<ItemGroup />
<Import Project="$(MSBuildToolsPath)\Microsoft.CSharp.targets" />
</Project>

View File

@ -2,7 +2,6 @@
using System.Collections.Generic;
using System.IO;
using System.Linq;
using SharpDX;
namespace AssetStudio
{

View File

@ -2,7 +2,6 @@
using System.Collections.Generic;
using System.Linq;
using System.Text;
using SharpDX;
namespace AssetStudio
{

View File

@ -1,5 +1,4 @@
using SharpDX;
using System.Collections.Generic;
using System.Collections.Generic;
using System.Linq;
namespace AssetStudio

View File

@ -1,5 +1,4 @@
using System.Collections.Generic;
using SharpDX;
namespace AssetStudio
{
@ -21,7 +20,7 @@ namespace AssetStudio
{
public KeyValuePair<string, UnityTexEnv>[] m_TexEnvs;
public KeyValuePair<string, float>[] m_Floats;
public KeyValuePair<string, Color4>[] m_Colors;
public KeyValuePair<string, Color>[] m_Colors;
public UnityPropertySheet(ObjectReader reader)
{
@ -40,10 +39,10 @@ namespace AssetStudio
}
int m_ColorsSize = reader.ReadInt32();
m_Colors = new KeyValuePair<string, Color4>[m_ColorsSize];
m_Colors = new KeyValuePair<string, Color>[m_ColorsSize];
for (int i = 0; i < m_ColorsSize; i++)
{
m_Colors[i] = new KeyValuePair<string, Color4>(reader.ReadAlignedString(), reader.ReadColor4());
m_Colors[i] = new KeyValuePair<string, Color>(reader.ReadAlignedString(), reader.ReadColor4());
}
}
}

View File

@ -2,7 +2,6 @@
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using SharpDX;
namespace AssetStudio
{
@ -428,7 +427,7 @@ namespace AssetStudio
public SubMesh[] m_SubMeshes;
private uint[] m_IndexBuffer;
public BlendShapeData m_Shapes;
public Matrix[] m_BindPose;
public Matrix4x4[] m_BindPose;
public uint[] m_BoneNameHashes;
public int m_VertexCount;
public float[] m_Vertices;
@ -845,13 +844,13 @@ namespace AssetStudio
{
if (m_CompressedMesh.m_BindPoses.m_NumItems > 0)
{
m_BindPose = new Matrix[m_CompressedMesh.m_BindPoses.m_NumItems / 16];
m_BindPose = new Matrix4x4[m_CompressedMesh.m_BindPoses.m_NumItems / 16];
var m_BindPoses_Unpacked = m_CompressedMesh.m_BindPoses.UnpackFloats(16, 4 * 16);
var buffer = new float[16];
for (int i = 0; i < m_BindPose.Length; i++)
{
Array.Copy(m_BindPoses_Unpacked, i * 16, buffer, 0, 16);
m_BindPose[i] = new Matrix(buffer);
m_BindPose[i] = new Matrix4x4(buffer);
}
}
}
@ -1082,7 +1081,7 @@ namespace AssetStudio
value = inputBytes[i] / 255.0f;
break;
case 2:
value = System.Half.ToHalf(inputBytes, i * 2);
value = Half.ToHalf(inputBytes, i * 2);
break;
case 4:
value = BitConverter.ToSingle(inputBytes, i * 4);

View File

@ -1,7 +1,6 @@
using System;
using System.Collections.Generic;
using SharpDX;
using RectangleF = System.Drawing.RectangleF;
using System.Drawing;
namespace AssetStudio
{
@ -67,7 +66,7 @@ namespace AssetStudio
public VertexData m_VertexData;
public SpriteVertex[] vertices;
public ushort[] indices;
public Matrix[] m_Bindpose;
public Matrix4x4[] m_Bindpose;
public BoneWeights4[] m_SourceSkin;
public RectangleF textureRect;
public Vector2 textureRectOffset;

View File

@ -1,5 +1,4 @@
using SharpDX;
using System;
using System;
using System.Collections.Generic;
namespace AssetStudio

View File

@ -1,5 +1,4 @@
using SharpDX;
using System;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

View File

@ -2,7 +2,6 @@
using System.Collections.Generic;
using System.IO;
using System.Text;
using SharpDX;
namespace AssetStudio
{
@ -78,22 +77,14 @@ namespace AssetStudio
return new System.Drawing.RectangleF(reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle());
}
public static Color4 ReadColor4(this BinaryReader reader)
public static Color ReadColor4(this BinaryReader reader)
{
return new Color4(reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle());
return new Color(reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle(), reader.ReadSingle());
}
public static Matrix ReadMatrix(this BinaryReader reader)
public static Matrix4x4 ReadMatrix(this BinaryReader reader)
{
var m = new Matrix();
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
m[i, j] = reader.ReadSingle();
}
}
return m;
return new Matrix4x4(reader.ReadSingleArray(16));
}
private static T[] ReadArray<T>(Func<T> del, int length)
@ -161,7 +152,7 @@ namespace AssetStudio
return ReadArray(reader.ReadVector4, reader.ReadInt32());
}
public static Matrix[] ReadMatrixArray(this BinaryReader reader)
public static Matrix4x4[] ReadMatrixArray(this BinaryReader reader)
{
return ReadArray(reader.ReadMatrix, reader.ReadInt32());
}

View File

@ -2,7 +2,6 @@ using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using SharpDX;
namespace AssetStudio
{
@ -146,7 +145,7 @@ namespace AssetStudio
public class ImportedVertexWithColour : ImportedVertex
{
public Color4 Colour { get; set; }
public Color Colour { get; set; }
}
public class ImportedFace
@ -157,17 +156,17 @@ namespace AssetStudio
public class ImportedBone
{
public string Path { get; set; }
public Matrix Matrix { get; set; }
public Matrix4x4 Matrix { get; set; }
}
public class ImportedMaterial
{
public string Name { get; set; }
public Color4 Diffuse { get; set; }
public Color4 Ambient { get; set; }
public Color4 Specular { get; set; }
public Color4 Emissive { get; set; }
public Color4 Reflection { get; set; }
public Color Diffuse { get; set; }
public Color Ambient { get; set; }
public Color Specular { get; set; }
public Color Emissive { get; set; }
public Color Reflection { get; set; }
public float Shininess { get; set; }
public float Transparency { get; set; }
public List<ImportedMaterialTexture> Textures { get; set; }

84
AssetStudio/Math/Color.cs Normal file
View File

@ -0,0 +1,84 @@
using System;
using System.Runtime.InteropServices;
namespace AssetStudio
{
[StructLayout(LayoutKind.Sequential, Size = 4)]
public struct Color : IEquatable<Color>
{
public float R;
public float G;
public float B;
public float A;
public Color(float r, float g, float b, float a)
{
R = r;
G = g;
B = b;
A = a;
}
public override int GetHashCode()
{
return ((Vector4)this).GetHashCode();
}
public override bool Equals(object other)
{
if (!(other is Color))
return false;
return Equals((Color)other);
}
public bool Equals(Color other)
{
return R.Equals(other.R) && G.Equals(other.G) && B.Equals(other.B) && A.Equals(other.A);
}
public static Color operator +(Color a, Color b)
{
return new Color(a.R + b.R, a.G + b.G, a.B + b.B, a.A + b.A);
}
public static Color operator -(Color a, Color b)
{
return new Color(a.R - b.R, a.G - b.G, a.B - b.B, a.A - b.A);
}
public static Color operator *(Color a, Color b)
{
return new Color(a.R * b.R, a.G * b.G, a.B * b.B, a.A * b.A);
}
public static Color operator *(Color a, float b)
{
return new Color(a.R * b, a.G * b, a.B * b, a.A * b);
}
public static Color operator *(float b, Color a)
{
return new Color(a.R * b, a.G * b, a.B * b, a.A * b);
}
public static Color operator /(Color a, float b)
{
return new Color(a.R / b, a.G / b, a.B / b, a.A / b);
}
public static bool operator ==(Color lhs, Color rhs)
{
return (Vector4)lhs == (Vector4)rhs;
}
public static bool operator !=(Color lhs, Color rhs)
{
return !(lhs == rhs);
}
public static implicit operator Vector4(Color c)
{
return new Vector4(c.R, c.G, c.B, c.A);
}
}
}

888
AssetStudio/Math/Half.cs Normal file
View File

@ -0,0 +1,888 @@
using System.Diagnostics;
using System.Globalization;
using System.Runtime.InteropServices;
namespace System
{
/// <summary>
/// Represents a half-precision floating point number.
/// </summary>
/// <remarks>
/// Note:
/// Half is not fast enought and precision is also very bad,
/// so is should not be used for matemathical computation (use Single instead).
/// The main advantage of Half type is lower memory cost: two bytes per number.
/// Half is typically used in graphical applications.
///
/// Note:
/// All functions, where is used conversion half->float/float->half,
/// are approx. ten times slower than float->double/double->float, i.e. ~3ns on 2GHz CPU.
///
/// References:
/// - Fast Half Float Conversions, Jeroen van der Zijp, link: http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf
/// - IEEE 754 revision, link: http://grouper.ieee.org/groups/754/
/// </remarks>
[Serializable]
public struct Half : IComparable, IFormattable, IConvertible, IComparable<Half>, IEquatable<Half>
{
/// <summary>
/// Internal representation of the half-precision floating-point number.
/// </summary>
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
internal ushort value;
#region Constants
/// <summary>
/// Represents the smallest positive System.Half value greater than zero. This field is constant.
/// </summary>
public static readonly Half Epsilon = Half.ToHalf(0x0001);
/// <summary>
/// Represents the largest possible value of System.Half. This field is constant.
/// </summary>
public static readonly Half MaxValue = Half.ToHalf(0x7bff);
/// <summary>
/// Represents the smallest possible value of System.Half. This field is constant.
/// </summary>
public static readonly Half MinValue = Half.ToHalf(0xfbff);
/// <summary>
/// Represents not a number (NaN). This field is constant.
/// </summary>
public static readonly Half NaN = Half.ToHalf(0xfe00);
/// <summary>
/// Represents negative infinity. This field is constant.
/// </summary>
public static readonly Half NegativeInfinity = Half.ToHalf(0xfc00);
/// <summary>
/// Represents positive infinity. This field is constant.
/// </summary>
public static readonly Half PositiveInfinity = Half.ToHalf(0x7c00);
#endregion
#region Constructors
/// <summary>
/// Initializes a new instance of System.Half to the value of the specified single-precision floating-point number.
/// </summary>
/// <param name="value">The value to represent as a System.Half.</param>
public Half(float value) { this = HalfHelper.SingleToHalf(value); }
/// <summary>
/// Initializes a new instance of System.Half to the value of the specified 32-bit signed integer.
/// </summary>
/// <param name="value">The value to represent as a System.Half.</param>
public Half(int value) : this((float)value) { }
/// <summary>
/// Initializes a new instance of System.Half to the value of the specified 64-bit signed integer.
/// </summary>
/// <param name="value">The value to represent as a System.Half.</param>
public Half(long value) : this((float)value) { }
/// <summary>
/// Initializes a new instance of System.Half to the value of the specified double-precision floating-point number.
/// </summary>
/// <param name="value">The value to represent as a System.Half.</param>
public Half(double value) : this((float)value) { }
/// <summary>
/// Initializes a new instance of System.Half to the value of the specified decimal number.
/// </summary>
/// <param name="value">The value to represent as a System.Half.</param>
public Half(decimal value) : this((float)value) { }
/// <summary>
/// Initializes a new instance of System.Half to the value of the specified 32-bit unsigned integer.
/// </summary>
/// <param name="value">The value to represent as a System.Half.</param>
public Half(uint value) : this((float)value) { }
/// <summary>
/// Initializes a new instance of System.Half to the value of the specified 64-bit unsigned integer.
/// </summary>
/// <param name="value">The value to represent as a System.Half.</param>
public Half(ulong value) : this((float)value) { }
#endregion
#region Numeric operators
/// <summary>
/// Returns the result of multiplying the specified System.Half value by negative one.
/// </summary>
/// <param name="half">A System.Half.</param>
/// <returns>A System.Half with the value of half, but the opposite sign. -or- Zero, if half is zero.</returns>
public static Half Negate(Half half) { return -half; }
/// <summary>
/// Adds two specified System.Half values.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>A System.Half value that is the sum of half1 and half2.</returns>
public static Half Add(Half half1, Half half2) { return half1 + half2; }
/// <summary>
/// Subtracts one specified System.Half value from another.
/// </summary>
/// <param name="half1">A System.Half (the minuend).</param>
/// <param name="half2">A System.Half (the subtrahend).</param>
/// <returns>The System.Half result of subtracting half2 from half1.</returns>
public static Half Subtract(Half half1, Half half2) { return half1 - half2; }
/// <summary>
/// Multiplies two specified System.Half values.
/// </summary>
/// <param name="half1">A System.Half (the multiplicand).</param>
/// <param name="half2">A System.Half (the multiplier).</param>
/// <returns>A System.Half that is the result of multiplying half1 and half2.</returns>
public static Half Multiply(Half half1, Half half2) { return half1 * half2; }
/// <summary>
/// Divides two specified System.Half values.
/// </summary>
/// <param name="half1">A System.Half (the dividend).</param>
/// <param name="half2">A System.Half (the divisor).</param>
/// <returns>The System.Half that is the result of dividing half1 by half2.</returns>
/// <exception cref="System.DivideByZeroException">half2 is zero.</exception>
public static Half Divide(Half half1, Half half2) { return half1 / half2; }
/// <summary>
/// Returns the value of the System.Half operand (the sign of the operand is unchanged).
/// </summary>
/// <param name="half">The System.Half operand.</param>
/// <returns>The value of the operand, half.</returns>
public static Half operator +(Half half) { return half; }
/// <summary>
/// Negates the value of the specified System.Half operand.
/// </summary>
/// <param name="half">The System.Half operand.</param>
/// <returns>The result of half multiplied by negative one (-1).</returns>
public static Half operator -(Half half) { return HalfHelper.Negate(half); }
/// <summary>
/// Increments the System.Half operand by 1.
/// </summary>
/// <param name="half">The System.Half operand.</param>
/// <returns>The value of half incremented by 1.</returns>
public static Half operator ++(Half half) { return (Half)(half + 1f); }
/// <summary>
/// Decrements the System.Half operand by one.
/// </summary>
/// <param name="half">The System.Half operand.</param>
/// <returns>The value of half decremented by 1.</returns>
public static Half operator --(Half half) { return (Half)(half - 1f); }
/// <summary>
/// Adds two specified System.Half values.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>The System.Half result of adding half1 and half2.</returns>
public static Half operator +(Half half1, Half half2) { return (Half)((float)half1 + (float)half2); }
/// <summary>
/// Subtracts two specified System.Half values.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>The System.Half result of subtracting half1 and half2.</returns>
public static Half operator -(Half half1, Half half2) { return (Half)((float)half1 - (float)half2); }
/// <summary>
/// Multiplies two specified System.Half values.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>The System.Half result of multiplying half1 by half2.</returns>
public static Half operator *(Half half1, Half half2) { return (Half)((float)half1 * (float)half2); }
/// <summary>
/// Divides two specified System.Half values.
/// </summary>
/// <param name="half1">A System.Half (the dividend).</param>
/// <param name="half2">A System.Half (the divisor).</param>
/// <returns>The System.Half result of half1 by half2.</returns>
public static Half operator /(Half half1, Half half2) { return (Half)((float)half1 / (float)half2); }
/// <summary>
/// Returns a value indicating whether two instances of System.Half are equal.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>true if half1 and half2 are equal; otherwise, false.</returns>
public static bool operator ==(Half half1, Half half2) { return (!IsNaN(half1) && (half1.value == half2.value)); }
/// <summary>
/// Returns a value indicating whether two instances of System.Half are not equal.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>true if half1 and half2 are not equal; otherwise, false.</returns>
public static bool operator !=(Half half1, Half half2) { return !(half1.value == half2.value); }
/// <summary>
/// Returns a value indicating whether a specified System.Half is less than another specified System.Half.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>true if half1 is less than half1; otherwise, false.</returns>
public static bool operator <(Half half1, Half half2) { return (float)half1 < (float)half2; }
/// <summary>
/// Returns a value indicating whether a specified System.Half is greater than another specified System.Half.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>true if half1 is greater than half2; otherwise, false.</returns>
public static bool operator >(Half half1, Half half2) { return (float)half1 > (float)half2; }
/// <summary>
/// Returns a value indicating whether a specified System.Half is less than or equal to another specified System.Half.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>true if half1 is less than or equal to half2; otherwise, false.</returns>
public static bool operator <=(Half half1, Half half2) { return (half1 == half2) || (half1 < half2); }
/// <summary>
/// Returns a value indicating whether a specified System.Half is greater than or equal to another specified System.Half.
/// </summary>
/// <param name="half1">A System.Half.</param>
/// <param name="half2">A System.Half.</param>
/// <returns>true if half1 is greater than or equal to half2; otherwise, false.</returns>
public static bool operator >=(Half half1, Half half2) { return (half1 == half2) || (half1 > half2); }
#endregion
#region Type casting operators
/// <summary>
/// Converts an 8-bit unsigned integer to a System.Half.
/// </summary>
/// <param name="value">An 8-bit unsigned integer.</param>
/// <returns>A System.Half that represents the converted 8-bit unsigned integer.</returns>
public static implicit operator Half(byte value) { return new Half((float)value); }
/// <summary>
/// Converts a 16-bit signed integer to a System.Half.
/// </summary>
/// <param name="value">A 16-bit signed integer.</param>
/// <returns>A System.Half that represents the converted 16-bit signed integer.</returns>
public static implicit operator Half(short value) { return new Half((float)value); }
/// <summary>
/// Converts a Unicode character to a System.Half.
/// </summary>
/// <param name="value">A Unicode character.</param>
/// <returns>A System.Half that represents the converted Unicode character.</returns>
public static implicit operator Half(char value) { return new Half((float)value); }
/// <summary>
/// Converts a 32-bit signed integer to a System.Half.
/// </summary>
/// <param name="value">A 32-bit signed integer.</param>
/// <returns>A System.Half that represents the converted 32-bit signed integer.</returns>
public static implicit operator Half(int value) { return new Half((float)value); }
/// <summary>
/// Converts a 64-bit signed integer to a System.Half.
/// </summary>
/// <param name="value">A 64-bit signed integer.</param>
/// <returns>A System.Half that represents the converted 64-bit signed integer.</returns>
public static implicit operator Half(long value) { return new Half((float)value); }
/// <summary>
/// Converts a single-precision floating-point number to a System.Half.
/// </summary>
/// <param name="value">A single-precision floating-point number.</param>
/// <returns>A System.Half that represents the converted single-precision floating point number.</returns>
public static explicit operator Half(float value) { return new Half((float)value); }
/// <summary>
/// Converts a double-precision floating-point number to a System.Half.
/// </summary>
/// <param name="value">A double-precision floating-point number.</param>
/// <returns>A System.Half that represents the converted double-precision floating point number.</returns>
public static explicit operator Half(double value) { return new Half((float)value); }
/// <summary>
/// Converts a decimal number to a System.Half.
/// </summary>
/// <param name="value">decimal number</param>
/// <returns>A System.Half that represents the converted decimal number.</returns>
public static explicit operator Half(decimal value) { return new Half((float)value); }
/// <summary>
/// Converts a System.Half to an 8-bit unsigned integer.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>An 8-bit unsigned integer that represents the converted System.Half.</returns>
public static explicit operator byte(Half value) { return (byte)(float)value; }
/// <summary>
/// Converts a System.Half to a Unicode character.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A Unicode character that represents the converted System.Half.</returns>
public static explicit operator char(Half value) { return (char)(float)value; }
/// <summary>
/// Converts a System.Half to a 16-bit signed integer.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A 16-bit signed integer that represents the converted System.Half.</returns>
public static explicit operator short(Half value) { return (short)(float)value; }
/// <summary>
/// Converts a System.Half to a 32-bit signed integer.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A 32-bit signed integer that represents the converted System.Half.</returns>
public static explicit operator int(Half value) { return (int)(float)value; }
/// <summary>
/// Converts a System.Half to a 64-bit signed integer.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A 64-bit signed integer that represents the converted System.Half.</returns>
public static explicit operator long(Half value) { return (long)(float)value; }
/// <summary>
/// Converts a System.Half to a single-precision floating-point number.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A single-precision floating-point number that represents the converted System.Half.</returns>
public static implicit operator float(Half value) { return (float)HalfHelper.HalfToSingle(value); }
/// <summary>
/// Converts a System.Half to a double-precision floating-point number.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A double-precision floating-point number that represents the converted System.Half.</returns>
public static implicit operator double(Half value) { return (double)(float)value; }
/// <summary>
/// Converts a System.Half to a decimal number.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A decimal number that represents the converted System.Half.</returns>
public static explicit operator decimal(Half value) { return (decimal)(float)value; }
/// <summary>
/// Converts an 8-bit signed integer to a System.Half.
/// </summary>
/// <param name="value">An 8-bit signed integer.</param>
/// <returns>A System.Half that represents the converted 8-bit signed integer.</returns>
public static implicit operator Half(sbyte value) { return new Half((float)value); }
/// <summary>
/// Converts a 16-bit unsigned integer to a System.Half.
/// </summary>
/// <param name="value">A 16-bit unsigned integer.</param>
/// <returns>A System.Half that represents the converted 16-bit unsigned integer.</returns>
public static implicit operator Half(ushort value) { return new Half((float)value); }
/// <summary>
/// Converts a 32-bit unsigned integer to a System.Half.
/// </summary>
/// <param name="value">A 32-bit unsigned integer.</param>
/// <returns>A System.Half that represents the converted 32-bit unsigned integer.</returns>
public static implicit operator Half(uint value) { return new Half((float)value); }
/// <summary>
/// Converts a 64-bit unsigned integer to a System.Half.
/// </summary>
/// <param name="value">A 64-bit unsigned integer.</param>
/// <returns>A System.Half that represents the converted 64-bit unsigned integer.</returns>
public static implicit operator Half(ulong value) { return new Half((float)value); }
/// <summary>
/// Converts a System.Half to an 8-bit signed integer.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>An 8-bit signed integer that represents the converted System.Half.</returns>
public static explicit operator sbyte(Half value) { return (sbyte)(float)value; }
/// <summary>
/// Converts a System.Half to a 16-bit unsigned integer.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A 16-bit unsigned integer that represents the converted System.Half.</returns>
public static explicit operator ushort(Half value) { return (ushort)(float)value; }
/// <summary>
/// Converts a System.Half to a 32-bit unsigned integer.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A 32-bit unsigned integer that represents the converted System.Half.</returns>
public static explicit operator uint(Half value) { return (uint)(float)value; }
/// <summary>
/// Converts a System.Half to a 64-bit unsigned integer.
/// </summary>
/// <param name="value">A System.Half to convert.</param>
/// <returns>A 64-bit unsigned integer that represents the converted System.Half.</returns>
public static explicit operator ulong(Half value) { return (ulong)(float)value; }
#endregion
/// <summary>
/// Compares this instance to a specified System.Half object.
/// </summary>
/// <param name="other">A System.Half object.</param>
/// <returns>
/// A signed number indicating the relative values of this instance and value.
/// Return Value Meaning Less than zero This instance is less than value. Zero
/// This instance is equal to value. Greater than zero This instance is greater than value.
/// </returns>
public int CompareTo(Half other)
{
int result = 0;
if (this < other)
{
result = -1;
}
else if (this > other)
{
result = 1;
}
else if (this != other)
{
if (!IsNaN(this))
{
result = 1;
}
else if (!IsNaN(other))
{
result = -1;
}
}
return result;
}
/// <summary>
/// Compares this instance to a specified System.Object.
/// </summary>
/// <param name="obj">An System.Object or null.</param>
/// <returns>
/// A signed number indicating the relative values of this instance and value.
/// Return Value Meaning Less than zero This instance is less than value. Zero
/// This instance is equal to value. Greater than zero This instance is greater
/// than value. -or- value is null.
/// </returns>
/// <exception cref="System.ArgumentException">value is not a System.Half</exception>
public int CompareTo(object obj)
{
int result = 0;
if (obj == null)
{
result = 1;
}
else
{
if (obj is Half)
{
result = CompareTo((Half)obj);
}
else
{
throw new ArgumentException("Object must be of type Half.");
}
}
return result;
}
/// <summary>
/// Returns a value indicating whether this instance and a specified System.Half object represent the same value.
/// </summary>
/// <param name="other">A System.Half object to compare to this instance.</param>
/// <returns>true if value is equal to this instance; otherwise, false.</returns>
public bool Equals(Half other)
{
return ((other == this) || (IsNaN(other) && IsNaN(this)));
}
/// <summary>
/// Returns a value indicating whether this instance and a specified System.Object
/// represent the same type and value.
/// </summary>
/// <param name="obj">An System.Object.</param>
/// <returns>true if value is a System.Half and equal to this instance; otherwise, false.</returns>
public override bool Equals(object obj)
{
bool result = false;
if (obj is Half)
{
Half half = (Half)obj;
if ((half == this) || (IsNaN(half) && IsNaN(this)))
{
result = true;
}
}
return result;
}
/// <summary>
/// Returns the hash code for this instance.
/// </summary>
/// <returns>A 32-bit signed integer hash code.</returns>
public override int GetHashCode()
{
return value.GetHashCode();
}
/// <summary>
/// Returns the System.TypeCode for value type System.Half.
/// </summary>
/// <returns>The enumerated constant (TypeCode)255.</returns>
public TypeCode GetTypeCode()
{
return (TypeCode)255;
}
#region BitConverter & Math methods for Half
/// <summary>
/// Returns the specified half-precision floating point value as an array of bytes.
/// </summary>
/// <param name="value">The number to convert.</param>
/// <returns>An array of bytes with length 2.</returns>
public static byte[] GetBytes(Half value)
{
return BitConverter.GetBytes(value.value);
}
/// <summary>
/// Converts the value of a specified instance of System.Half to its equivalent binary representation.
/// </summary>
/// <param name="value">A System.Half value.</param>
/// <returns>A 16-bit unsigned integer that contain the binary representation of value.</returns>
public static ushort GetBits(Half value)
{
return value.value;
}
/// <summary>
/// Returns a half-precision floating point number converted from two bytes
/// at a specified position in a byte array.
/// </summary>
/// <param name="value">An array of bytes.</param>
/// <param name="startIndex">The starting position within value.</param>
/// <returns>A half-precision floating point number formed by two bytes beginning at startIndex.</returns>
/// <exception cref="System.ArgumentException">
/// startIndex is greater than or equal to the length of value minus 1, and is
/// less than or equal to the length of value minus 1.
/// </exception>
/// <exception cref="System.ArgumentNullException">value is null.</exception>
/// <exception cref="System.ArgumentOutOfRangeException">startIndex is less than zero or greater than the length of value minus 1.</exception>
public static Half ToHalf(byte[] value, int startIndex)
{
return Half.ToHalf((ushort)BitConverter.ToInt16(value, startIndex));
}
/// <summary>
/// Returns a half-precision floating point number converted from its binary representation.
/// </summary>
/// <param name="bits">Binary representation of System.Half value</param>
/// <returns>A half-precision floating point number formed by its binary representation.</returns>
public static Half ToHalf(ushort bits)
{
return new Half { value = bits };
}
/// <summary>
/// Returns a value indicating the sign of a half-precision floating-point number.
/// </summary>
/// <param name="value">A signed number.</param>
/// <returns>
/// A number indicating the sign of value. Number Description -1 value is less
/// than zero. 0 value is equal to zero. 1 value is greater than zero.
/// </returns>
/// <exception cref="System.ArithmeticException">value is equal to System.Half.NaN.</exception>
public static int Sign(Half value)
{
if (value < 0)
{
return -1;
}
else if (value > 0)
{
return 1;
}
else
{
if (value != 0)
{
throw new ArithmeticException("Function does not accept floating point Not-a-Number values.");
}
}
return 0;
}
/// <summary>
/// Returns the absolute value of a half-precision floating-point number.
/// </summary>
/// <param name="value">A number in the range System.Half.MinValue ≤ value ≤ System.Half.MaxValue.</param>
/// <returns>A half-precision floating-point number, x, such that 0 ≤ x ≤System.Half.MaxValue.</returns>
public static Half Abs(Half value)
{
return HalfHelper.Abs(value);
}
/// <summary>
/// Returns the larger of two half-precision floating-point numbers.
/// </summary>
/// <param name="value1">The first of two half-precision floating-point numbers to compare.</param>
/// <param name="value2">The second of two half-precision floating-point numbers to compare.</param>
/// <returns>
/// Parameter value1 or value2, whichever is larger. If value1, or value2, or both val1
/// and value2 are equal to System.Half.NaN, System.Half.NaN is returned.
/// </returns>
public static Half Max(Half value1, Half value2)
{
return (value1 < value2) ? value2 : value1;
}
/// <summary>
/// Returns the smaller of two half-precision floating-point numbers.
/// </summary>
/// <param name="value1">The first of two half-precision floating-point numbers to compare.</param>
/// <param name="value2">The second of two half-precision floating-point numbers to compare.</param>
/// <returns>
/// Parameter value1 or value2, whichever is smaller. If value1, or value2, or both val1
/// and value2 are equal to System.Half.NaN, System.Half.NaN is returned.
/// </returns>
public static Half Min(Half value1, Half value2)
{
return (value1 < value2) ? value1 : value2;
}
#endregion
/// <summary>
/// Returns a value indicating whether the specified number evaluates to not a number (System.Half.NaN).
/// </summary>
/// <param name="half">A half-precision floating-point number.</param>
/// <returns>true if value evaluates to not a number (System.Half.NaN); otherwise, false.</returns>
public static bool IsNaN(Half half)
{
return HalfHelper.IsNaN(half);
}
/// <summary>
/// Returns a value indicating whether the specified number evaluates to negative or positive infinity.
/// </summary>
/// <param name="half">A half-precision floating-point number.</param>
/// <returns>true if half evaluates to System.Half.PositiveInfinity or System.Half.NegativeInfinity; otherwise, false.</returns>
public static bool IsInfinity(Half half)
{
return HalfHelper.IsInfinity(half);
}
/// <summary>
/// Returns a value indicating whether the specified number evaluates to negative infinity.
/// </summary>
/// <param name="half">A half-precision floating-point number.</param>
/// <returns>true if half evaluates to System.Half.NegativeInfinity; otherwise, false.</returns>
public static bool IsNegativeInfinity(Half half)
{
return HalfHelper.IsNegativeInfinity(half);
}
/// <summary>
/// Returns a value indicating whether the specified number evaluates to positive infinity.
/// </summary>
/// <param name="half">A half-precision floating-point number.</param>
/// <returns>true if half evaluates to System.Half.PositiveInfinity; otherwise, false.</returns>
public static bool IsPositiveInfinity(Half half)
{
return HalfHelper.IsPositiveInfinity(half);
}
#region String operations (Parse and ToString)
/// <summary>
/// Converts the string representation of a number to its System.Half equivalent.
/// </summary>
/// <param name="value">The string representation of the number to convert.</param>
/// <returns>The System.Half number equivalent to the number contained in value.</returns>
/// <exception cref="System.ArgumentNullException">value is null.</exception>
/// <exception cref="System.FormatException">value is not in the correct format.</exception>
/// <exception cref="System.OverflowException">value represents a number less than System.Half.MinValue or greater than System.Half.MaxValue.</exception>
public static Half Parse(string value)
{
return (Half)float.Parse(value, CultureInfo.InvariantCulture);
}
/// <summary>
/// Converts the string representation of a number to its System.Half equivalent
/// using the specified culture-specific format information.
/// </summary>
/// <param name="value">The string representation of the number to convert.</param>
/// <param name="provider">An System.IFormatProvider that supplies culture-specific parsing information about value.</param>
/// <returns>The System.Half number equivalent to the number contained in s as specified by provider.</returns>
/// <exception cref="System.ArgumentNullException">value is null.</exception>
/// <exception cref="System.FormatException">value is not in the correct format.</exception>
/// <exception cref="System.OverflowException">value represents a number less than System.Half.MinValue or greater than System.Half.MaxValue.</exception>
public static Half Parse(string value, IFormatProvider provider)
{
return (Half)float.Parse(value, provider);
}
/// <summary>
/// Converts the string representation of a number in a specified style to its System.Half equivalent.
/// </summary>
/// <param name="value">The string representation of the number to convert.</param>
/// <param name="style">
/// A bitwise combination of System.Globalization.NumberStyles values that indicates
/// the style elements that can be present in value. A typical value to specify is
/// System.Globalization.NumberStyles.Number.
/// </param>
/// <returns>The System.Half number equivalent to the number contained in s as specified by style.</returns>
/// <exception cref="System.ArgumentNullException">value is null.</exception>
/// <exception cref="System.ArgumentException">
/// style is not a System.Globalization.NumberStyles value. -or- style is the
/// System.Globalization.NumberStyles.AllowHexSpecifier value.
/// </exception>
/// <exception cref="System.FormatException">value is not in the correct format.</exception>
/// <exception cref="System.OverflowException">value represents a number less than System.Half.MinValue or greater than System.Half.MaxValue.</exception>
public static Half Parse(string value, NumberStyles style)
{
return (Half)float.Parse(value, style, CultureInfo.InvariantCulture);
}
/// <summary>
/// Converts the string representation of a number to its System.Half equivalent
/// using the specified style and culture-specific format.
/// </summary>
/// <param name="value">The string representation of the number to convert.</param>
/// <param name="style">
/// A bitwise combination of System.Globalization.NumberStyles values that indicates
/// the style elements that can be present in value. A typical value to specify is
/// System.Globalization.NumberStyles.Number.
/// </param>
/// <param name="provider">An System.IFormatProvider object that supplies culture-specific information about the format of value.</param>
/// <returns>The System.Half number equivalent to the number contained in s as specified by style and provider.</returns>
/// <exception cref="System.ArgumentNullException">value is null.</exception>
/// <exception cref="System.ArgumentException">
/// style is not a System.Globalization.NumberStyles value. -or- style is the
/// System.Globalization.NumberStyles.AllowHexSpecifier value.
/// </exception>
/// <exception cref="System.FormatException">value is not in the correct format.</exception>
/// <exception cref="System.OverflowException">value represents a number less than System.Half.MinValue or greater than System.Half.MaxValue.</exception>
public static Half Parse(string value, NumberStyles style, IFormatProvider provider)
{
return (Half)float.Parse(value, style, provider);
}
/// <summary>
/// Converts the string representation of a number to its System.Half equivalent.
/// A return value indicates whether the conversion succeeded or failed.
/// </summary>
/// <param name="value">The string representation of the number to convert.</param>
/// <param name="result">
/// When this method returns, contains the System.Half number that is equivalent
/// to the numeric value contained in value, if the conversion succeeded, or is zero
/// if the conversion failed. The conversion fails if the s parameter is null,
/// is not a number in a valid format, or represents a number less than System.Half.MinValue
/// or greater than System.Half.MaxValue. This parameter is passed uninitialized.
/// </param>
/// <returns>true if s was converted successfully; otherwise, false.</returns>
public static bool TryParse(string value, out Half result)
{
float f;
if (float.TryParse(value, out f))
{
result = (Half)f;
return true;
}
result = new Half();
return false;
}
/// <summary>
/// Converts the string representation of a number to its System.Half equivalent
/// using the specified style and culture-specific format. A return value indicates
/// whether the conversion succeeded or failed.
/// </summary>
/// <param name="value">The string representation of the number to convert.</param>
/// <param name="style">
/// A bitwise combination of System.Globalization.NumberStyles values that indicates
/// the permitted format of value. A typical value to specify is System.Globalization.NumberStyles.Number.
/// </param>
/// <param name="provider">An System.IFormatProvider object that supplies culture-specific parsing information about value.</param>
/// <param name="result">
/// When this method returns, contains the System.Half number that is equivalent
/// to the numeric value contained in value, if the conversion succeeded, or is zero
/// if the conversion failed. The conversion fails if the s parameter is null,
/// is not in a format compliant with style, or represents a number less than
/// System.Half.MinValue or greater than System.Half.MaxValue. This parameter is passed uninitialized.
/// </param>
/// <returns>true if s was converted successfully; otherwise, false.</returns>
/// <exception cref="System.ArgumentException">
/// style is not a System.Globalization.NumberStyles value. -or- style
/// is the System.Globalization.NumberStyles.AllowHexSpecifier value.
/// </exception>
public static bool TryParse(string value, NumberStyles style, IFormatProvider provider, out Half result)
{
bool parseResult = false;
float f;
if (float.TryParse(value, style, provider, out f))
{
result = (Half)f;
parseResult = true;
}
else
{
result = new Half();
}
return parseResult;
}
/// <summary>
/// Converts the numeric value of this instance to its equivalent string representation.
/// </summary>
/// <returns>A string that represents the value of this instance.</returns>
public override string ToString()
{
return ((float)this).ToString(CultureInfo.InvariantCulture);
}
/// <summary>
/// Converts the numeric value of this instance to its equivalent string representation
/// using the specified culture-specific format information.
/// </summary>
/// <param name="formatProvider">An System.IFormatProvider that supplies culture-specific formatting information.</param>
/// <returns>The string representation of the value of this instance as specified by provider.</returns>
public string ToString(IFormatProvider formatProvider)
{
return ((float)this).ToString(formatProvider);
}
/// <summary>
/// Converts the numeric value of this instance to its equivalent string representation, using the specified format.
/// </summary>
/// <param name="format">A numeric format string.</param>
/// <returns>The string representation of the value of this instance as specified by format.</returns>
public string ToString(string format)
{
return ((float)this).ToString(format, CultureInfo.InvariantCulture);
}
/// <summary>
/// Converts the numeric value of this instance to its equivalent string representation
/// using the specified format and culture-specific format information.
/// </summary>
/// <param name="format">A numeric format string.</param>
/// <param name="formatProvider">An System.IFormatProvider that supplies culture-specific formatting information.</param>
/// <returns>The string representation of the value of this instance as specified by format and provider.</returns>
/// <exception cref="System.FormatException">format is invalid.</exception>
public string ToString(string format, IFormatProvider formatProvider)
{
return ((float)this).ToString(format, formatProvider);
}
#endregion
#region IConvertible Members
float IConvertible.ToSingle(IFormatProvider provider)
{
return (float)this;
}
TypeCode IConvertible.GetTypeCode()
{
return GetTypeCode();
}
bool IConvertible.ToBoolean(IFormatProvider provider)
{
return Convert.ToBoolean((float)this);
}
byte IConvertible.ToByte(IFormatProvider provider)
{
return Convert.ToByte((float)this);
}
char IConvertible.ToChar(IFormatProvider provider)
{
throw new InvalidCastException(string.Format(CultureInfo.CurrentCulture, "Invalid cast from '{0}' to '{1}'.", "Half", "Char"));
}
DateTime IConvertible.ToDateTime(IFormatProvider provider)
{
throw new InvalidCastException(string.Format(CultureInfo.CurrentCulture, "Invalid cast from '{0}' to '{1}'.", "Half", "DateTime"));
}
decimal IConvertible.ToDecimal(IFormatProvider provider)
{
return Convert.ToDecimal((float)this);
}
double IConvertible.ToDouble(IFormatProvider provider)
{
return Convert.ToDouble((float)this);
}
short IConvertible.ToInt16(IFormatProvider provider)
{
return Convert.ToInt16((float)this);
}
int IConvertible.ToInt32(IFormatProvider provider)
{
return Convert.ToInt32((float)this);
}
long IConvertible.ToInt64(IFormatProvider provider)
{
return Convert.ToInt64((float)this);
}
sbyte IConvertible.ToSByte(IFormatProvider provider)
{
return Convert.ToSByte((float)this);
}
string IConvertible.ToString(IFormatProvider provider)
{
return Convert.ToString((float)this, CultureInfo.InvariantCulture);
}
object IConvertible.ToType(Type conversionType, IFormatProvider provider)
{
return (((float)this) as IConvertible).ToType(conversionType, provider);
}
ushort IConvertible.ToUInt16(IFormatProvider provider)
{
return Convert.ToUInt16((float)this);
}
uint IConvertible.ToUInt32(IFormatProvider provider)
{
return Convert.ToUInt32((float)this);
}
ulong IConvertible.ToUInt64(IFormatProvider provider)
{
return Convert.ToUInt64((float)this);
}
#endregion
}
}

View File

@ -0,0 +1,211 @@
using System.Runtime.InteropServices;
namespace System
{
/// <summary>
/// Helper class for Half conversions and some low level operations.
/// This class is internally used in the Half class.
/// </summary>
/// <remarks>
/// References:
/// - Fast Half Float Conversions, Jeroen van der Zijp, link: http://www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf
/// </remarks>
[ComVisible(false)]
internal static class HalfHelper
{
private static uint[] mantissaTable = GenerateMantissaTable();
private static uint[] exponentTable = GenerateExponentTable();
private static ushort[] offsetTable = GenerateOffsetTable();
private static ushort[] baseTable = GenerateBaseTable();
private static sbyte[] shiftTable = GenerateShiftTable();
// Transforms the subnormal representation to a normalized one.
private static uint ConvertMantissa(int i)
{
uint m = (uint)(i << 13); // Zero pad mantissa bits
uint e = 0; // Zero exponent
// While not normalized
while ((m & 0x00800000) == 0)
{
e -= 0x00800000; // Decrement exponent (1<<23)
m <<= 1; // Shift mantissa
}
m &= unchecked((uint)~0x00800000); // Clear leading 1 bit
e += 0x38800000; // Adjust bias ((127-14)<<23)
return m | e; // Return combined number
}
private static uint[] GenerateMantissaTable()
{
uint[] mantissaTable = new uint[2048];
mantissaTable[0] = 0;
for (int i = 1; i < 1024; i++)
{
mantissaTable[i] = ConvertMantissa(i);
}
for (int i = 1024; i < 2048; i++)
{
mantissaTable[i] = (uint)(0x38000000 + ((i - 1024) << 13));
}
return mantissaTable;
}
private static uint[] GenerateExponentTable()
{
uint[] exponentTable = new uint[64];
exponentTable[0] = 0;
for (int i = 1; i < 31; i++)
{
exponentTable[i] = (uint)(i << 23);
}
exponentTable[31] = 0x47800000;
exponentTable[32] = 0x80000000;
for (int i = 33; i < 63; i++)
{
exponentTable[i] = (uint)(0x80000000 + ((i - 32) << 23));
}
exponentTable[63] = 0xc7800000;
return exponentTable;
}
private static ushort[] GenerateOffsetTable()
{
ushort[] offsetTable = new ushort[64];
offsetTable[0] = 0;
for (int i = 1; i < 32; i++)
{
offsetTable[i] = 1024;
}
offsetTable[32] = 0;
for (int i = 33; i < 64; i++)
{
offsetTable[i] = 1024;
}
return offsetTable;
}
private static ushort[] GenerateBaseTable()
{
ushort[] baseTable = new ushort[512];
for (int i = 0; i < 256; ++i)
{
sbyte e = (sbyte)(127 - i);
if (e > 24)
{ // Very small numbers map to zero
baseTable[i | 0x000] = 0x0000;
baseTable[i | 0x100] = 0x8000;
}
else if (e > 14)
{ // Small numbers map to denorms
baseTable[i | 0x000] = (ushort)(0x0400 >> (18 + e));
baseTable[i | 0x100] = (ushort)((0x0400 >> (18 + e)) | 0x8000);
}
else if (e >= -15)
{ // Normal numbers just lose precision
baseTable[i | 0x000] = (ushort)((15 - e) << 10);
baseTable[i | 0x100] = (ushort)(((15 - e) << 10) | 0x8000);
}
else if (e > -128)
{ // Large numbers map to Infinity
baseTable[i | 0x000] = 0x7c00;
baseTable[i | 0x100] = 0xfc00;
}
else
{ // Infinity and NaN's stay Infinity and NaN's
baseTable[i | 0x000] = 0x7c00;
baseTable[i | 0x100] = 0xfc00;
}
}
return baseTable;
}
private static sbyte[] GenerateShiftTable()
{
sbyte[] shiftTable = new sbyte[512];
for (int i = 0; i < 256; ++i)
{
sbyte e = (sbyte)(127 - i);
if (e > 24)
{ // Very small numbers map to zero
shiftTable[i | 0x000] = 24;
shiftTable[i | 0x100] = 24;
}
else if (e > 14)
{ // Small numbers map to denorms
shiftTable[i | 0x000] = (sbyte)(e - 1);
shiftTable[i | 0x100] = (sbyte)(e - 1);
}
else if (e >= -15)
{ // Normal numbers just lose precision
shiftTable[i | 0x000] = 13;
shiftTable[i | 0x100] = 13;
}
else if (e > -128)
{ // Large numbers map to Infinity
shiftTable[i | 0x000] = 24;
shiftTable[i | 0x100] = 24;
}
else
{ // Infinity and NaN's stay Infinity and NaN's
shiftTable[i | 0x000] = 13;
shiftTable[i | 0x100] = 13;
}
}
return shiftTable;
}
/*public static unsafe float HalfToSingle(Half half)
{
uint result = mantissaTable[offsetTable[half.value >> 10] + (half.value & 0x3ff)] + exponentTable[half.value >> 10];
return *((float*)&result);
}
public static unsafe Half SingleToHalf(float single)
{
uint value = *((uint*)&single);
ushort result = (ushort)(baseTable[(value >> 23) & 0x1ff] + ((value & 0x007fffff) >> shiftTable[value >> 23]));
return Half.ToHalf(result);
}*/
public static float HalfToSingle(Half half)
{
uint result = mantissaTable[offsetTable[half.value >> 10] + (half.value & 0x3ff)] + exponentTable[half.value >> 10];
byte[] uintBytes = BitConverter.GetBytes(result);
return BitConverter.ToSingle(uintBytes, 0);
}
public static Half SingleToHalf(float single)
{
byte[] singleBytes = BitConverter.GetBytes(single);
uint value = BitConverter.ToUInt32(singleBytes, 0);
ushort result = (ushort)(baseTable[(value >> 23) & 0x1ff] + ((value & 0x007fffff) >> shiftTable[value >> 23]));
return Half.ToHalf(result);
}
public static Half Negate(Half half)
{
return Half.ToHalf((ushort)(half.value ^ 0x8000));
}
public static Half Abs(Half half)
{
return Half.ToHalf((ushort)(half.value & 0x7fff));
}
public static bool IsNaN(Half half)
{
return ((half.value & 0x7fff) > 0x7c00);
}
public static bool IsInfinity(Half half)
{
return ((half.value & 0x7fff) == 0x7c00);
}
public static bool IsPositiveInfinity(Half half)
{
return (half.value == 0x7c00);
}
public static bool IsNegativeInfinity(Half half)
{
return (half.value == 0xfc00);
}
}
}

View File

@ -0,0 +1,241 @@
using System;
using System.Runtime.InteropServices;
namespace AssetStudio
{
[StructLayout(LayoutKind.Sequential, Pack = 4)]
public struct Matrix4x4 : IEquatable<Matrix4x4>
{
public float M00;
public float M10;
public float M20;
public float M30;
public float M01;
public float M11;
public float M21;
public float M31;
public float M02;
public float M12;
public float M22;
public float M32;
public float M03;
public float M13;
public float M23;
public float M33;
public Matrix4x4(float[] values)
{
if (values == null)
throw new ArgumentNullException(nameof(values));
if (values.Length != 16)
throw new ArgumentOutOfRangeException(nameof(values), "There must be sixteen and only sixteen input values for Matrix.");
M00 = values[0];
M10 = values[1];
M20 = values[2];
M30 = values[3];
M01 = values[4];
M11 = values[5];
M21 = values[6];
M31 = values[7];
M02 = values[8];
M12 = values[9];
M22 = values[10];
M32 = values[11];
M03 = values[12];
M13 = values[13];
M23 = values[14];
M33 = values[15];
}
public float this[int row, int column]
{
get => this[row + column * 4];
set => this[row + column * 4] = value;
}
public float this[int index]
{
get
{
switch (index)
{
case 0: return M00;
case 1: return M10;
case 2: return M20;
case 3: return M30;
case 4: return M01;
case 5: return M11;
case 6: return M21;
case 7: return M31;
case 8: return M02;
case 9: return M12;
case 10: return M22;
case 11: return M32;
case 12: return M03;
case 13: return M13;
case 14: return M23;
case 15: return M33;
default: throw new IndexOutOfRangeException("Invalid matrix index!");
}
}
set
{
switch (index)
{
case 0: M00 = value; break;
case 1: M10 = value; break;
case 2: M20 = value; break;
case 3: M30 = value; break;
case 4: M01 = value; break;
case 5: M11 = value; break;
case 6: M21 = value; break;
case 7: M31 = value; break;
case 8: M02 = value; break;
case 9: M12 = value; break;
case 10: M22 = value; break;
case 11: M32 = value; break;
case 12: M03 = value; break;
case 13: M13 = value; break;
case 14: M23 = value; break;
case 15: M33 = value; break;
default: throw new IndexOutOfRangeException("Invalid matrix index!");
}
}
}
public override int GetHashCode()
{
return GetColumn(0).GetHashCode() ^ (GetColumn(1).GetHashCode() << 2) ^ (GetColumn(2).GetHashCode() >> 2) ^ (GetColumn(3).GetHashCode() >> 1);
}
public override bool Equals(object other)
{
if (!(other is Matrix4x4))
return false;
return Equals((Matrix4x4)other);
}
public bool Equals(Matrix4x4 other)
{
return GetColumn(0).Equals(other.GetColumn(0))
&& GetColumn(1).Equals(other.GetColumn(1))
&& GetColumn(2).Equals(other.GetColumn(2))
&& GetColumn(3).Equals(other.GetColumn(3));
}
public Vector4 GetColumn(int index)
{
switch (index)
{
case 0: return new Vector4(M00, M10, M20, M30);
case 1: return new Vector4(M01, M11, M21, M31);
case 2: return new Vector4(M02, M12, M22, M32);
case 3: return new Vector4(M03, M13, M23, M33);
default: throw new IndexOutOfRangeException("Invalid column index!");
}
}
public Vector4 GetRow(int index)
{
switch (index)
{
case 0: return new Vector4(M00, M01, M02, M03);
case 1: return new Vector4(M10, M11, M12, M13);
case 2: return new Vector4(M20, M21, M22, M23);
case 3: return new Vector4(M30, M31, M32, M33);
default: throw new IndexOutOfRangeException("Invalid row index!");
}
}
public static Matrix4x4 operator *(Matrix4x4 lhs, Matrix4x4 rhs)
{
Matrix4x4 res;
res.M00 = lhs.M00 * rhs.M00 + lhs.M01 * rhs.M10 + lhs.M02 * rhs.M20 + lhs.M03 * rhs.M30;
res.M01 = lhs.M00 * rhs.M01 + lhs.M01 * rhs.M11 + lhs.M02 * rhs.M21 + lhs.M03 * rhs.M31;
res.M02 = lhs.M00 * rhs.M02 + lhs.M01 * rhs.M12 + lhs.M02 * rhs.M22 + lhs.M03 * rhs.M32;
res.M03 = lhs.M00 * rhs.M03 + lhs.M01 * rhs.M13 + lhs.M02 * rhs.M23 + lhs.M03 * rhs.M33;
res.M10 = lhs.M10 * rhs.M00 + lhs.M11 * rhs.M10 + lhs.M12 * rhs.M20 + lhs.M13 * rhs.M30;
res.M11 = lhs.M10 * rhs.M01 + lhs.M11 * rhs.M11 + lhs.M12 * rhs.M21 + lhs.M13 * rhs.M31;
res.M12 = lhs.M10 * rhs.M02 + lhs.M11 * rhs.M12 + lhs.M12 * rhs.M22 + lhs.M13 * rhs.M32;
res.M13 = lhs.M10 * rhs.M03 + lhs.M11 * rhs.M13 + lhs.M12 * rhs.M23 + lhs.M13 * rhs.M33;
res.M20 = lhs.M20 * rhs.M00 + lhs.M21 * rhs.M10 + lhs.M22 * rhs.M20 + lhs.M23 * rhs.M30;
res.M21 = lhs.M20 * rhs.M01 + lhs.M21 * rhs.M11 + lhs.M22 * rhs.M21 + lhs.M23 * rhs.M31;
res.M22 = lhs.M20 * rhs.M02 + lhs.M21 * rhs.M12 + lhs.M22 * rhs.M22 + lhs.M23 * rhs.M32;
res.M23 = lhs.M20 * rhs.M03 + lhs.M21 * rhs.M13 + lhs.M22 * rhs.M23 + lhs.M23 * rhs.M33;
res.M30 = lhs.M30 * rhs.M00 + lhs.M31 * rhs.M10 + lhs.M32 * rhs.M20 + lhs.M33 * rhs.M30;
res.M31 = lhs.M30 * rhs.M01 + lhs.M31 * rhs.M11 + lhs.M32 * rhs.M21 + lhs.M33 * rhs.M31;
res.M32 = lhs.M30 * rhs.M02 + lhs.M31 * rhs.M12 + lhs.M32 * rhs.M22 + lhs.M33 * rhs.M32;
res.M33 = lhs.M30 * rhs.M03 + lhs.M31 * rhs.M13 + lhs.M32 * rhs.M23 + lhs.M33 * rhs.M33;
return res;
}
public static bool operator ==(Matrix4x4 lhs, Matrix4x4 rhs)
{
return lhs.GetColumn(0) == rhs.GetColumn(0)
&& lhs.GetColumn(1) == rhs.GetColumn(1)
&& lhs.GetColumn(2) == rhs.GetColumn(2)
&& lhs.GetColumn(3) == rhs.GetColumn(3);
}
public static bool operator !=(Matrix4x4 lhs, Matrix4x4 rhs)
{
return !(lhs == rhs);
}
public static Matrix4x4 Scale(Vector3 vector)
{
Matrix4x4 m;
m.M00 = vector.X; m.M01 = 0F; m.M02 = 0F; m.M03 = 0F;
m.M10 = 0F; m.M11 = vector.Y; m.M12 = 0F; m.M13 = 0F;
m.M20 = 0F; m.M21 = 0F; m.M22 = vector.Z; m.M23 = 0F;
m.M30 = 0F; m.M31 = 0F; m.M32 = 0F; m.M33 = 1F;
return m;
}
public static Matrix4x4 Translate(Vector3 vector)
{
Matrix4x4 m;
m.M00 = 1F; m.M01 = 0F; m.M02 = 0F; m.M03 = vector.X;
m.M10 = 0F; m.M11 = 1F; m.M12 = 0F; m.M13 = vector.Y;
m.M20 = 0F; m.M21 = 0F; m.M22 = 1F; m.M23 = vector.Z;
m.M30 = 0F; m.M31 = 0F; m.M32 = 0F; m.M33 = 1F;
return m;
}
public static Matrix4x4 Rotate(Quaternion q)
{
float x = q.X * 2.0F;
float y = q.Y * 2.0F;
float z = q.Z * 2.0F;
float xx = q.X * x;
float yy = q.Y * y;
float zz = q.Z * z;
float xy = q.X * y;
float xz = q.X * z;
float yz = q.Y * z;
float wx = q.W * x;
float wy = q.W * y;
float wz = q.W * z;
Matrix4x4 m;
m.M00 = 1.0f - (yy + zz); m.M10 = xy + wz; m.M20 = xz - wy; m.M30 = 0.0F;
m.M01 = xy - wz; m.M11 = 1.0f - (xx + zz); m.M21 = yz + wx; m.M31 = 0.0F;
m.M02 = xz + wy; m.M12 = yz - wx; m.M22 = 1.0f - (xx + yy); m.M32 = 0.0F;
m.M03 = 0.0F; m.M13 = 0.0F; m.M23 = 0.0F; m.M33 = 1.0F;
return m;
}
}
}

View File

@ -0,0 +1,66 @@
using System;
using System.Runtime.InteropServices;
namespace AssetStudio
{
[StructLayout(LayoutKind.Sequential)]
public struct Quaternion : IEquatable<Quaternion>
{
public float X;
public float Y;
public float Z;
public float W;
public Quaternion(float x, float y, float z, float w)
{
X = x;
Y = y;
Z = z;
W = w;
}
public float this[int index]
{
get
{
switch (index)
{
case 0: return X;
case 1: return Y;
case 2: return Z;
case 3: return W;
default: throw new IndexOutOfRangeException("Invalid Quaternion index!");
}
}
set
{
switch (index)
{
case 0: X = value; break;
case 1: Y = value; break;
case 2: Z = value; break;
case 3: W = value; break;
default: throw new IndexOutOfRangeException("Invalid Quaternion index!");
}
}
}
public override int GetHashCode()
{
return X.GetHashCode() ^ (Y.GetHashCode() << 2) ^ (Z.GetHashCode() >> 2) ^ (W.GetHashCode() >> 1);
}
public override bool Equals(object other)
{
if (!(other is Quaternion))
return false;
return Equals((Quaternion)other);
}
public bool Equals(Quaternion other)
{
return X.Equals(other.X) && Y.Equals(other.Y) && Z.Equals(other.Z) && W.Equals(other.W);
}
}
}

150
AssetStudio/Math/Vector2.cs Normal file
View File

@ -0,0 +1,150 @@
using System;
using System.Runtime.InteropServices;
namespace AssetStudio
{
[StructLayout(LayoutKind.Sequential, Pack = 4)]
public struct Vector2 : IEquatable<Vector2>
{
public float X;
public float Y;
public Vector2(float x, float y)
{
X = x;
Y = y;
}
public float this[int index]
{
get
{
switch (index)
{
case 0: return X;
case 1: return Y;
default:
throw new IndexOutOfRangeException("Invalid Vector2 index!");
}
}
set
{
switch (index)
{
case 0: X = value; break;
case 1: Y = value; break;
default:
throw new IndexOutOfRangeException("Invalid Vector2 index!");
}
}
}
public override int GetHashCode()
{
return X.GetHashCode() ^ (Y.GetHashCode() << 2);
}
public override bool Equals(object other)
{
if (!(other is Vector2))
return false;
return Equals((Vector2)other);
}
public bool Equals(Vector2 other)
{
return X.Equals(other.X) && Y.Equals(other.Y);
}
public void Normalize()
{
var length = Length();
if (length > kEpsilon)
{
var invNorm = 1.0f / length;
X *= invNorm;
Y *= invNorm;
}
else
{
X = 0;
Y = 0;
}
}
public float Length()
{
return (float)Math.Sqrt(LengthSquared());
}
public float LengthSquared()
{
return X * X + Y * Y;
}
public static Vector2 Zero => new Vector2();
public static Vector2 operator +(Vector2 a, Vector2 b)
{
return new Vector2(a.X + b.X, a.Y + b.Y);
}
public static Vector2 operator -(Vector2 a, Vector2 b)
{
return new Vector2(a.X - b.X, a.Y - b.Y);
}
public static Vector2 operator *(Vector2 a, Vector2 b)
{
return new Vector2(a.X * b.X, a.Y * b.Y);
}
public static Vector2 operator /(Vector2 a, Vector2 b)
{
return new Vector2(a.X / b.X, a.Y / b.Y);
}
public static Vector2 operator -(Vector2 a)
{
return new Vector2(-a.X, -a.Y);
}
public static Vector2 operator *(Vector2 a, float d)
{
return new Vector2(a.X * d, a.Y * d);
}
public static Vector2 operator *(float d, Vector2 a)
{
return new Vector2(a.X * d, a.Y * d);
}
public static Vector2 operator /(Vector2 a, float d)
{
return new Vector2(a.X / d, a.Y / d);
}
public static bool operator ==(Vector2 lhs, Vector2 rhs)
{
return (lhs - rhs).LengthSquared() < kEpsilon * kEpsilon;
}
public static bool operator !=(Vector2 lhs, Vector2 rhs)
{
return !(lhs == rhs);
}
public static implicit operator Vector3(Vector2 v)
{
return new Vector3(v.X, v.Y, 0);
}
public static implicit operator Vector4(Vector2 v)
{
return new Vector4(v.X, v.Y, 0.0F, 0.0F);
}
private const float kEpsilon = 0.00001F;
}
}

146
AssetStudio/Math/Vector3.cs Normal file
View File

@ -0,0 +1,146 @@
using System;
using System.Runtime.InteropServices;
namespace AssetStudio
{
[StructLayout(LayoutKind.Sequential, Pack = 4)]
public struct Vector3 : IEquatable<Vector3>
{
public float X;
public float Y;
public float Z;
public Vector3(float x, float y, float z)
{
X = x;
Y = y;
Z = z;
}
public float this[int index]
{
get
{
switch (index)
{
case 0: return X;
case 1: return Y;
case 2: return Z;
default:
throw new IndexOutOfRangeException("Invalid Vector3 index!");
}
}
set
{
switch (index)
{
case 0: X = value; break;
case 1: Y = value; break;
case 2: Z = value; break;
default:
throw new IndexOutOfRangeException("Invalid Vector3 index!");
}
}
}
public override int GetHashCode()
{
return X.GetHashCode() ^ (Y.GetHashCode() << 2) ^ (Z.GetHashCode() >> 2);
}
public override bool Equals(object other)
{
if (!(other is Vector3))
return false;
return Equals((Vector3)other);
}
public bool Equals(Vector3 other)
{
return X.Equals(other.X) && Y.Equals(other.Y) && Z.Equals(other.Z);
}
public void Normalize()
{
var length = Length();
if (length > kEpsilon)
{
var invNorm = 1.0f / length;
X *= invNorm;
Y *= invNorm;
Z *= invNorm;
}
else
{
X = 0;
Y = 0;
Z = 0;
}
}
public float Length()
{
return (float)Math.Sqrt(LengthSquared());
}
public float LengthSquared()
{
return X * X + Y * Y + Z * Z;
}
public static Vector3 Zero => new Vector3();
public static Vector3 operator +(Vector3 a, Vector3 b)
{
return new Vector3(a.X + b.X, a.Y + b.Y, a.Z + b.Z);
}
public static Vector3 operator -(Vector3 a, Vector3 b)
{
return new Vector3(a.X - b.X, a.Y - b.Y, a.Z - b.Z);
}
public static Vector3 operator -(Vector3 a)
{
return new Vector3(-a.X, -a.Y, -a.Z);
}
public static Vector3 operator *(Vector3 a, float d)
{
return new Vector3(a.X * d, a.Y * d, a.Z * d);
}
public static Vector3 operator *(float d, Vector3 a)
{
return new Vector3(a.X * d, a.Y * d, a.Z * d);
}
public static Vector3 operator /(Vector3 a, float d)
{
return new Vector3(a.X / d, a.Y / d, a.Z / d);
}
public static bool operator ==(Vector3 lhs, Vector3 rhs)
{
return (lhs - rhs).LengthSquared() < kEpsilon * kEpsilon;
}
public static bool operator !=(Vector3 lhs, Vector3 rhs)
{
return !(lhs == rhs);
}
public static implicit operator Vector2(Vector3 v)
{
return new Vector2(v.X, v.Y);
}
public static implicit operator Vector4(Vector3 v)
{
return new Vector4(v.X, v.Y, v.Z, 0.0F);
}
private const float kEpsilon = 0.00001F;
}
}

163
AssetStudio/Math/Vector4.cs Normal file
View File

@ -0,0 +1,163 @@
using System;
using System.Runtime.InteropServices;
namespace AssetStudio
{
[StructLayout(LayoutKind.Sequential, Pack = 4)]
public struct Vector4 : IEquatable<Vector4>
{
public float X;
public float Y;
public float Z;
public float W;
public Vector4(float x, float y, float z, float w)
{
X = x;
Y = y;
Z = z;
W = w;
}
public Vector4(Vector3 value, float w)
{
X = value.X;
Y = value.Y;
Z = value.Z;
W = w;
}
public float this[int index]
{
get
{
switch (index)
{
case 0: return X;
case 1: return Y;
case 2: return Z;
case 3: return W;
default: throw new IndexOutOfRangeException("Invalid Vector4 index!");
}
}
set
{
switch (index)
{
case 0: X = value; break;
case 1: Y = value; break;
case 2: Z = value; break;
case 3: W = value; break;
default: throw new IndexOutOfRangeException("Invalid Vector4 index!");
}
}
}
public override int GetHashCode()
{
return X.GetHashCode() ^ (Y.GetHashCode() << 2) ^ (Z.GetHashCode() >> 2) ^ (W.GetHashCode() >> 1);
}
public override bool Equals(object other)
{
if (!(other is Vector4))
return false;
return Equals((Vector4)other);
}
public bool Equals(Vector4 other)
{
return X.Equals(other.X) && Y.Equals(other.Y) && Z.Equals(other.Z) && W.Equals(other.W);
}
public void Normalize()
{
var length = Length();
if (length > kEpsilon)
{
var invNorm = 1.0f / length;
X *= invNorm;
Y *= invNorm;
Z *= invNorm;
W *= invNorm;
}
else
{
X = 0;
Y = 0;
Z = 0;
W = 0;
}
}
public float Length()
{
return (float)Math.Sqrt(LengthSquared());
}
public float LengthSquared()
{
return X * X + Y * Y + Z * Z + W * W;
}
public static Vector4 Zero => new Vector4();
public static Vector4 operator +(Vector4 a, Vector4 b)
{
return new Vector4(a.X + b.X, a.Y + b.Y, a.Z + b.Z, a.W + b.W);
}
public static Vector4 operator -(Vector4 a, Vector4 b)
{
return new Vector4(a.X - b.X, a.Y - b.Y, a.Z - b.Z, a.W - b.W);
}
public static Vector4 operator -(Vector4 a)
{
return new Vector4(-a.X, -a.Y, -a.Z, -a.W);
}
public static Vector4 operator *(Vector4 a, float d)
{
return new Vector4(a.X * d, a.Y * d, a.Z * d, a.W * d);
}
public static Vector4 operator *(float d, Vector4 a)
{
return new Vector4(a.X * d, a.Y * d, a.Z * d, a.W * d);
}
public static Vector4 operator /(Vector4 a, float d)
{
return new Vector4(a.X / d, a.Y / d, a.Z / d, a.W / d);
}
public static bool operator ==(Vector4 lhs, Vector4 rhs)
{
return (lhs - rhs).LengthSquared() < kEpsilon * kEpsilon;
}
public static bool operator !=(Vector4 lhs, Vector4 rhs)
{
return !(lhs == rhs);
}
public static implicit operator Vector2(Vector4 v)
{
return new Vector2(v.X, v.Y);
}
public static implicit operator Vector3(Vector4 v)
{
return new Vector3(v.X, v.Y, v.Z);
}
public static implicit operator Color(Vector4 v)
{
return new Color(v.X, v.Y, v.Z, v.W);
}
private const float kEpsilon = 0.00001F;
}
}

View File

@ -9,7 +9,6 @@ using namespace System;
using namespace System::Collections::Generic;
using namespace System::IO;
using namespace System::Runtime::InteropServices;
using namespace SharpDX;
#define WITH_MARSHALLED_STRING(name,str,block)\
{ \

View File

@ -140,12 +140,6 @@
<ClInclude Include="AssetStudioFBX.h" />
</ItemGroup>
<ItemGroup>
<Reference Include="SharpDX">
<HintPath>..\AssetStudio\Libraries\SharpDX.dll</HintPath>
</Reference>
<Reference Include="SharpDX.Mathematics">
<HintPath>..\AssetStudio\Libraries\SharpDX.Mathematics.dll</HintPath>
</Reference>
<Reference Include="System" />
<Reference Include="System.Core" />
</ItemGroup>

View File

@ -409,7 +409,7 @@ namespace AssetStudio
for (int j = 0; j < vertexList->Count; j++)
{
ImportedVertexWithColour^ vert = (ImportedVertexWithColour^)vertexList[j];
lGeometryElementVertexColor->GetDirectArray().Add(FbxColor(vert->Colour.Red, vert->Colour.Green, vert->Colour.Blue, vert->Colour.Alpha));
lGeometryElementVertexColor->GetDirectArray().Add(FbxColor(vert->Colour.R, vert->Colour.G, vert->Colour.B, vert->Colour.A));
}
}
@ -451,22 +451,22 @@ namespace AssetStudio
else
{
FbxString lShadingName = "Phong";
Color4 diffuse = mat->Diffuse;
Color4 ambient = mat->Ambient;
Color4 emissive = mat->Emissive;
Color4 specular = mat->Specular;
Color4 reflection = mat->Reflection;
Color diffuse = mat->Diffuse;
Color ambient = mat->Ambient;
Color emissive = mat->Emissive;
Color specular = mat->Specular;
Color reflection = mat->Reflection;
pMat = FbxSurfacePhong::Create(pScene, pMatName);
pMat->Diffuse.Set(FbxDouble3(diffuse.Red, diffuse.Green, diffuse.Blue));
pMat->DiffuseFactor.Set(FbxDouble(diffuse.Alpha));
pMat->Ambient.Set(FbxDouble3(ambient.Red, ambient.Green, ambient.Blue));
pMat->AmbientFactor.Set(FbxDouble(ambient.Alpha));
pMat->Emissive.Set(FbxDouble3(emissive.Red, emissive.Green, emissive.Blue));
pMat->EmissiveFactor.Set(FbxDouble(emissive.Alpha));
pMat->Specular.Set(FbxDouble3(specular.Red, specular.Green, specular.Blue));
pMat->SpecularFactor.Set(FbxDouble(specular.Alpha));
pMat->Reflection.Set(FbxDouble3(reflection.Red, reflection.Green, reflection.Blue));
pMat->ReflectionFactor.Set(FbxDouble(reflection.Alpha));
pMat->Diffuse.Set(FbxDouble3(diffuse.R, diffuse.G, diffuse.B));
pMat->DiffuseFactor.Set(FbxDouble(diffuse.A));
pMat->Ambient.Set(FbxDouble3(ambient.R, ambient.G, ambient.B));
pMat->AmbientFactor.Set(FbxDouble(ambient.A));
pMat->Emissive.Set(FbxDouble3(emissive.R, emissive.G, emissive.B));
pMat->EmissiveFactor.Set(FbxDouble(emissive.A));
pMat->Specular.Set(FbxDouble3(specular.R, specular.G, specular.B));
pMat->SpecularFactor.Set(FbxDouble(specular.A));
pMat->Reflection.Set(FbxDouble3(reflection.R, reflection.G, reflection.B));
pMat->ReflectionFactor.Set(FbxDouble(reflection.A));
pMat->Shininess.Set(FbxDouble(mat->Shininess));
pMat->TransparencyFactor.Set(FbxDouble(mat->Transparency));
pMat->ShadingModel.Set(lShadingName);

View File

@ -16,6 +16,8 @@ using AssetStudio;
using static AssetStudioGUI.Studio;
using Object = AssetStudio.Object;
using Font = AssetStudio.Font;
using Vector3 = OpenTK.Vector3;
using Vector4 = OpenTK.Vector4;
namespace AssetStudioGUI
{
@ -1449,7 +1451,7 @@ namespace AssetStudioGUI
private void InitOpenTK()
{
ChangeGLSize(glControl1.Size);
GL.ClearColor(Color.CadetBlue);
GL.ClearColor(System.Drawing.Color.CadetBlue);
pgmID = GL.CreateProgram();
LoadShader("vs", ShaderType.VertexShader, pgmID, out int vsID);
LoadShader("fs", ShaderType.FragmentShader, pgmID, out int fsID);

View File

@ -59,15 +59,9 @@
<Reference Include="SharpDX.D3DCompiler">
<HintPath>..\AssetStudio\Libraries\SharpDX.D3DCompiler.dll</HintPath>
</Reference>
<Reference Include="SharpDX.Mathematics">
<HintPath>..\AssetStudio\Libraries\SharpDX.Mathematics.dll</HintPath>
</Reference>
<Reference Include="System" />
<Reference Include="System.Core" />
<Reference Include="System.Drawing" />
<Reference Include="System.Half">
<HintPath>..\AssetStudio\Libraries\System.Half.dll</HintPath>
</Reference>
<Reference Include="System.Xml.Linq" />
<Reference Include="System.Data.DataSetExtensions" />
<Reference Include="Microsoft.CSharp" />

View File

@ -4,7 +4,6 @@ using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using System.Text;
using SharpDX;
namespace AssetStudio
{
@ -308,11 +307,11 @@ namespace AssetStudio
{
if (mesh.m_Colors.Length == mesh.m_VertexCount * 3)
{
((ImportedVertexWithColour)iVertex).Colour = new Color4(mesh.m_Colors[j * 3], mesh.m_Colors[j * 3 + 1], mesh.m_Colors[j * 3 + 2], 1.0f);
((ImportedVertexWithColour)iVertex).Colour = new Color(mesh.m_Colors[j * 3], mesh.m_Colors[j * 3 + 1], mesh.m_Colors[j * 3 + 2], 1.0f);
}
else
{
((ImportedVertexWithColour)iVertex).Colour = new Color4(mesh.m_Colors[j * 4], mesh.m_Colors[j * 4 + 1], mesh.m_Colors[j * 4 + 2], mesh.m_Colors[j * 4 + 3]);
((ImportedVertexWithColour)iVertex).Colour = new Color(mesh.m_Colors[j * 4], mesh.m_Colors[j * 4 + 1], mesh.m_Colors[j * 4 + 2], mesh.m_Colors[j * 4 + 3]);
}
}
//UV
@ -364,8 +363,9 @@ namespace AssetStudio
//Bone
if (sMesh.m_Bones.Length > 0)
{
iMesh.BoneList = new List<ImportedBone>(sMesh.m_Bones.Length);
for (int i = 0; i < sMesh.m_Bones.Length; i++)
var boneMax = Math.Min(sMesh.m_Bones.Length, mesh.m_BindPose.Length);
iMesh.BoneList = new List<ImportedBone>(boneMax);
for (int i = 0; i < boneMax; i++)
{
var bone = new ImportedBone();
if (sMesh.m_Bones[i].TryGet(out var m_Transform))
@ -374,8 +374,8 @@ namespace AssetStudio
}
if (!string.IsNullOrEmpty(bone.Path))
{
var convert = Matrix.Scaling(new Vector3(-1, 1, 1));
bone.Matrix = convert * Matrix.Transpose(mesh.m_BindPose[i]) * convert;
var convert = Matrix4x4.Scale(new Vector3(-1, 1, 1));
bone.Matrix = convert * mesh.m_BindPose[i] * convert;
iMesh.BoneList.Add(bone);
}
}
@ -391,8 +391,8 @@ namespace AssetStudio
bone.Path = FixBonePath(path);
if (!string.IsNullOrEmpty(bone.Path))
{
var convert = Matrix.Scaling(new Vector3(-1, 1, 1));
bone.Matrix = convert * Matrix.Transpose(mesh.m_BindPose[i]) * convert;
var convert = Matrix4x4.Scale(new Vector3(-1, 1, 1));
bone.Matrix = convert * mesh.m_BindPose[i] * convert;
iMesh.BoneList.Add(bone);
}
}

View File

@ -4,8 +4,6 @@ using System.Drawing.Drawing2D;
using System.Drawing.Imaging;
using System.IO;
using System.Linq;
using SharpDX;
using RectangleF = System.Drawing.RectangleF;
namespace AssetStudio
{
@ -73,7 +71,7 @@ namespace AssetStudio
{
path.AddPolygon(p);
}
using (var matr = new System.Drawing.Drawing2D.Matrix())
using (var matr = new Matrix())
{
if (m_Sprite.m_Pivot == Vector2.Zero) //5.4.2 down
{