imx233: fix soc header for stmp3600 and stmp3700

Document various register macros (autogenerated). Fix memory map
for stmp3700, make framebuffer size configurable and cache aligned
and fix the PHYSICAL_ADDR macro.

Change-Id: I40a2875fb3eb35c6fce1158db37dbc0c1a10c68e
This commit is contained in:
Amaury Pouly 2013-06-18 15:30:43 +02:00
parent 55babd5895
commit 0173f6edf5
1 changed files with 127 additions and 18 deletions

View File

@ -21,8 +21,16 @@
#ifndef __IMX233_H__
#define __IMX233_H__
#ifndef IMX233_SUBTARGET
#error You must define IMX233_SUBTARGET to select the chip family
#endif
#ifndef IMX233_PACKAGE
#error You must IMX233_PACKAGE to select the chip package
#endif
/*
* Chip Memory Map:
* Chip Memory Map (stmp3700,imx233):
* 0x00000000 - 0x00007fff: on chip ram
* 0x40000000 - 0x5fffffff: dram (512Mb max)
* 0x80000000 - 0x80100000: memory mapped registers
@ -31,25 +39,55 @@
* 0x90000000 - 0xafffffff: dram (buffered)
* everything else : identity mapped (uncached)
*
* Chip Memory Map (stmp3600):
* 0x00000000 - 0x00007fff: on chip ram
* 0x60000000 - 0x7fffffff: dram (512Mb max)
* 0x80000000 - 0x80100000: memory mapped registers
* We use the following map:
* 0x40000000 - 0x5fffffff: dram (cached)
* 0x90000000 - 0xafffffff: dram (buffered)
* everything else : identity mapped (uncached)
*
* As a side note it's important to notice that uncached dram is identity mapped
*/
#define IRAM_ORIG 0
#define IRAM_SIZE 0x8000
#if IMX233_SUBTARGET >= 3780
#define IRAM_SIZE (32 * 1024)
#elif IMX233_SUBTARGET >= 3770
#define IRAM_SIZE (512 * 1024)
#else
#define IRAM_SIZE (256 * 1024)
#endif
#if IMX233_SUBTARGET >= 3700
#define DRAM_ORIG 0x40000000
#else
#define DRAM_ORIG 0x60000000
#endif
#define DRAM_SIZE (MEMORYSIZE * 0x100000)
#if IMX233_SUBTARGET >= 3700
#define UNCACHED_DRAM_ADDR 0x40000000
#define CACHED_DRAM_ADDR 0x60000000
#define BUFFERED_DRAM_ADDR 0x90000000
#else
#define UNCACHED_DRAM_ADDR 0x60000000
#define CACHED_DRAM_ADDR 0x40000000
#define BUFFERED_DRAM_ADDR 0x90000000
#endif
/* 32 bytes per cache line */
#define CACHEALIGN_SIZE 32
#define CACHEALIGN_BITS 5
#define NOCACHE_BASE (UNCACHED_DRAM_ADDR - CACHED_DRAM_ADDR)
#define __IN_RANGE(type, a) (type##_DRAM_ADDR <= (a) && (a) < (type##_DRAM_ADDR + DRAM_SIZE))
#define PHYSICAL_ADDR(a) \
((typeof(a))((uintptr_t)(a) >= BUFFERED_DRAM_ADDR ? \
((typeof(a))(__IN_RANGE(BUFFERED, (uintptr_t)(a)) ? \
((uintptr_t)(a) - BUFFERED_DRAM_ADDR + UNCACHED_DRAM_ADDR) \
:(uintptr_t)(a) >= CACHED_DRAM_ADDR ? \
:__IN_RANGE(CACHED, (uintptr_t)(a)) ? \
((uintptr_t)(a) - CACHED_DRAM_ADDR + UNCACHED_DRAM_ADDR) \
:(uintptr_t)(a)))
#define UNCACHED_ADDR(a) PHYSICAL_ADDR(a)
@ -57,7 +95,11 @@
#define TTB_BASE_ADDR (DRAM_ORIG + DRAM_SIZE - TTB_SIZE)
#define TTB_SIZE 0x4000
#define TTB_BASE ((unsigned long *)TTB_BASE_ADDR)
#define FRAME_SIZE (LCD_WIDTH * LCD_HEIGHT * LCD_DEPTH / 8)
/* align to cache line */
#ifndef IMX233_FRAMEBUFFER_SIZE
#define IMX233_FRAMEBUFFER_SIZE (LCD_WIDTH * LCD_HEIGHT * LCD_DEPTH / 8)
#endif
#define FRAME_SIZE ((IMX233_FRAMEBUFFER_SIZE + CACHEALIGN_SIZE - 1) & ~(CACHEALIGN_SIZE - 1))
#define FRAME_PHYS_ADDR (DRAM_ORIG + DRAM_SIZE - TTB_SIZE - FRAME_SIZE)
#define FRAME ((void *)(FRAME_PHYS_ADDR - UNCACHED_DRAM_ADDR + BUFFERED_DRAM_ADDR))
@ -67,12 +109,19 @@
/* USBOTG */
#define USB_QHARRAY_ATTR __attribute__((section(".qharray"),nocommon,aligned(2048)))
#define USB_NUM_ENDPOINTS 5
/* STMP3600 doesn't have the bandwidth to put buffer in SDRAM */
#if IMX233_SUBTARGET < 3700
#define USB_DEVBSS_ATTR IBSS_ATTR
#else
#define USB_DEVBSS_ATTR NOCACHEBSS_ATTR
#endif
#define USB_BASE 0x80080000
/*
#define QHARRAY_SIZE ((64*USB_NUM_ENDPOINTS*2 + 2047) & (0xffffffff - 2047))
#define QHARRAY_PHYS_ADDR ((FRAME_PHYS_ADDR - QHARRAY_SIZE) & (0xffffffff - 2047))
*/
#define ___ENSURE_ZERO(line, x) static uint8_t __ensure_zero_##line[-(x)] __attribute__((unused));
#define __ENSURE_ZERO(x) ___ENSURE_ZERO(__LINE__, x)
#define __ENSURE_MULTIPLE(x, y) __ENSURE_ZERO((x) % (y))
#define __ENSURE_CACHELINE_MULTIPLE(x) __ENSURE_MULTIPLE(x, 1 << CACHEALIGN_BITS)
#define __ENSURE_STRUCT_CACHE_FRIENDLY(name) __ENSURE_CACHELINE_MULTIPLE(sizeof(name))
#define __REG_SET(reg) (*((volatile uint32_t *)(&reg + 1)))
#define __REG_CLR(reg) (*((volatile uint32_t *)(&reg + 2)))
@ -83,18 +132,78 @@
#define __BLOCK_SFTRST (1 << 31)
#define __BLOCK_CLKGATE (1 << 30)
/* 32 bytes per cache line */
#define CACHEALIGN_BITS 5
#define ___ENSURE_ZERO(line, x) static uint8_t __ensure_zero_##line[-(x)] __attribute__((unused));
#define __ENSURE_ZERO(x) ___ENSURE_ZERO(__LINE__, x)
#define __ENSURE_MULTIPLE(x, y) __ENSURE_ZERO((x) % (y))
#define __ENSURE_CACHELINE_MULTIPLE(x) __ENSURE_MULTIPLE(x, 1 << CACHEALIGN_BITS)
#define __ENSURE_STRUCT_CACHE_FRIENDLY(name) __ENSURE_CACHELINE_MULTIPLE(sizeof(name))
#define __XTRACT(reg, field) ((reg & reg##__##field##_BM) >> reg##__##field##_BP)
#define __XTRACT_EX(val, field) (((val) & field##_BM) >> field##_BP)
#define __FIELD_SET(reg, field, val) reg = (reg & ~reg##__##field##_BM) | (val << reg##__##field##_BP)
#define __FIELD_SET_CLR(reg, field, set) __REG_SET_CLR(reg, set) = reg##__##field
/**
* Register Naming Scheme
*
* => Devices
*
* Each device <dev> has its base address defined as REGS_<dev>_base:
*
* Example:
* #define REGS_APBHBASE (0x80004000)
* #define REGS_SSPBASE(i) ((i) == 1 ? 0x80010000 : 0x80034000)
*
* => Registers
*
* Each register <reg> in device <dev> has its address(es) defined as
* HW_<dev>_<reg>[_{SET,CLR,TOG}]
*
* Examples:
* #define HW_APBH_CTRL1 (*(volatile unsigned long *)(REGS_APBHBASE + 0x10 + 0))
* #define HW_APBH_CHn_CURCMDAR(n) (*(volatile unsigned long *)(REGS_APBHBASE + 0x40+(n)*0x70))
* #define HW_SSP_CTRL0_SET(d) (*(volatile unsigned long *)(REGS_SSPBASE(d) + 0 + 0x4))
*
* => Fields
*
* Each field <field> in register <reg> in device <dev> has its bit position
* and bitmask defined as {BP,BM}_<dev>_<reg>_<field>
*
* Examples:
*
*
*
*/
/**
* Register macros:
*
* BF_SET(reg, field): equivalent to HW_reg_SET = BM_reg_field;
* BF_CLR(reg, field): same with CLR
* BF_TOG(reg, field): same with TOG
*
* BF_SETV(reg, field, v): equivalent to HW_reg_SET = BF_reg_field(v)
* BF_CLRV(reg, field, v): same with CLR
* BF_TOGV(reg, fielf, v): same with TOG
*
* BF_RD(reg, field): equivalent to (HW_reg & BM_reg_field) >> BP_reg_field
* BF_WR(reg, field, v): equivalent to HW_reg = (HW_reg & ~BM_reg_field) | (((v << BP_reg_field) & BM_reg_field)
* BF_WR_V(reg, field, sym): BF_WR(reg, field, BV_reg_field__sym)
*
* BF_{SET,CLR,TOG}[V]n(reg, n, field): same for multi registers
*
* The BF_RDX(val, reg, field) reads from the value provided instead of the register
* Similarly for BF_WRX
*
*/
/**
* Handy macros for mutliple operations at once
*
* BF_ORp(reg, f1,, ..., fp) is equivalent to
* BF_reg_f1 | ... | BF_reg_fp
*
* BM_ORp is similar with BM_
*
* There exist some variadic variants which do not need to write the number
* of parameters, if supported by the compiler:
*
* BF_OR(reg, f1, ..., fn)
* BM_OR(reg, f1, ..., fn)
*/
#endif /* __IMX233_H__ */