AMS: Return ascodec to interrupt-based I2C2 driver

1. Slightly revised and regularized internal interface. Callback is used
for read and write to provide completion signal instead of having two
mechanisms.

2. Lower overhead for asynchronous or alterate completion callbacks. We
now only init what is required by the transfer. A couple unneeded
structure members were also nixed.

3. Fixes a bug that would neglect a semaphore wait if pumping the I2C
interrupts in a loop when not in thread state or interrupts are masked.

4. Corrects broken initialization order by defining KDEV_INIT, which
makes kernel_init() call kernel_device_init() to initialize additional
devices _after_ the kernel, threading and synchronization objects are
safe to use.

5. Locking set_cpu_frequency has to be done at the highest level in
system.c to ensure the boost counter and the frequency are both set in
agreement. Reconcile the locking inteface between PP and AMS (the only
two currently using locking there) to keep it clean.

Now works fine with voltages in GIT HEAD on my Fuze v2, type 0.
Previously, everything crashed and died instantly. action.c calling
set_cpu_frequency from a tick was part of it. The rest may have been
related to 3. and 4. Honestly, I'm not certain!

Testing by Mihail Zenkov indicates it solves our problems. This will
get the developer builds running again after the kernel assert code
push.

Change-Id: Ie245994fb3e318dd5ef48e383ce61fdd977224d4
This commit is contained in:
Michael Sevakis 2017-01-21 08:04:43 -05:00 committed by Gerrit Rockbox
parent a1d1832049
commit 783c77531c
13 changed files with 739 additions and 254 deletions

View File

@ -796,6 +796,12 @@ static bool dbg_cpufreq(void)
lcd_putsf(0, line++, "Frequency: %ld.%ld MHz", temp, (FREQ-temp*1000000)/100000);
lcd_putsf(0, line++, "boost_counter: %d", get_cpu_boost_counter());
#ifdef HAVE_ADJUSTABLE_CPU_VOLTAGE
extern int get_cpu_voltage_setting(void);
temp = get_cpu_voltage_setting();
lcd_putsf(0, line++, "CPU voltage: %d.%03dV", temp / 1000, temp % 1000);
#endif
lcd_update();
button = get_action(CONTEXT_STD,HZ/10);

View File

@ -26,18 +26,35 @@
/* Read 10-bit channel data */
unsigned short adc_read(int channel)
{
unsigned char buf[2];
unsigned short data = 0;
if ((unsigned)channel >= NUM_ADC_CHANNELS)
return 0;
ascodec_lock();
/* Select channel */
ascodec_write(AS3514_ADC_0, (channel << 4));
/*
* The AS3514 ADC will trigger an interrupt when the conversion
* is finished, if the corresponding enable bit in IRQ_ENRD2
* is set.
* Previously the code did not wait and this apparently did
* not pose any problems, but this should be more correct.
* Without the wait the data read back may be completely or
* partially (first one of the two bytes) stale.
*/
ascodec_wait_adc_finished();
/* Read data */
unsigned char buf[2] = { 0, 0 };
ascodec_readbytes(AS3514_ADC_0, 2, buf);
data = (((buf[0] & 0x3) << 8) | buf[1]);
ascodec_unlock();
return (((buf[0] & 0x3) << 8) | buf[1]);
return data;
}
void adc_init(void)

View File

@ -43,6 +43,8 @@ int ascodec_read(unsigned int index);
void ascodec_readbytes(unsigned int index, unsigned int len, unsigned char *data);
void ascodec_wait_adc_finished(void);
#if CONFIG_CHARGING
bool ascodec_endofch(void);
bool ascodec_chg_status(void);

View File

@ -51,10 +51,6 @@ bool detect_original_firmware(void);
#endif
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
#if NUM_CORES > 1
extern struct spinlock boostctrl_spin;
#endif
void cpu_boost_init(void);
#define FREQ cpu_frequency
void set_cpu_frequency(long frequency);
#ifdef CPU_BOOST_LOGGING
@ -214,6 +210,17 @@ enum {
#define CPU_MODE_THREAD_CONTEXT 0
#endif
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
#ifndef CPU_BOOST_LOCK_DEFINED
#define CPU_BOOST_LOCK_DEFINED
/* Compatibility defauls */
static inline bool cpu_boost_lock(void)
{ return true; }
static inline void cpu_boost_unlock(void)
{ }
#endif /* CPU_BOOST_LOCK */
#endif /* HAVE_ADJUSTABLE_CPU_FREQ */
#ifndef BIT_N
#define BIT_N(n) (1U << (n))
#endif

View File

@ -127,7 +127,13 @@ void panicf( const char *fmt, ...)
lcd_update();
DEBUGF("%s", panic_buf);
set_cpu_frequency(0);
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
if (cpu_boost_lock())
{
set_cpu_frequency(0);
cpu_boost_unlock();
}
#endif /* HAVE_ADJUSTABLE_CPU_FREQ */
#ifdef HAVE_ATA_POWER_OFF
ide_power_enable(false);

View File

@ -35,13 +35,6 @@ long cpu_frequency SHAREDBSS_ATTR = CPU_FREQ;
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
static int boost_counter SHAREDBSS_ATTR = 0;
static bool cpu_idle SHAREDBSS_ATTR = false;
#if NUM_CORES > 1
static struct corelock boostctrl_cl SHAREDBSS_ATTR;
void cpu_boost_init(void)
{
corelock_init(&boostctrl_cl);
}
#endif
int get_cpu_boost_counter(void)
{
@ -60,7 +53,7 @@ int cpu_boost_log_getcount(void)
char * cpu_boost_log_getlog_first(void)
{
char *first;
corelock_lock(&boostctrl_cl);
cpu_boost_lock();
first = NULL;
@ -70,7 +63,7 @@ char * cpu_boost_log_getlog_first(void)
first = cpu_boost_calls[cpu_boost_first];
}
corelock_unlock(&boostctrl_cl);
cpu_boost_unlock();
return first;
}
@ -79,7 +72,7 @@ char * cpu_boost_log_getlog_next(void)
int message;
char *next;
corelock_lock(&boostctrl_cl);
cpu_boost_lock();
message = (cpu_boost_track_message+cpu_boost_first)%MAX_BOOST_LOG;
next = NULL;
@ -90,13 +83,14 @@ char * cpu_boost_log_getlog_next(void)
next = cpu_boost_calls[message];
}
corelock_unlock(&boostctrl_cl);
cpu_boost_unlock();
return next;
}
void cpu_boost_(bool on_off, char* location, int line)
{
corelock_lock(&boostctrl_cl);
if (!cpu_boost_lock())
return;
if (cpu_boost_calls_count == MAX_BOOST_LOG)
{
@ -115,7 +109,9 @@ void cpu_boost_(bool on_off, char* location, int line)
#else
void cpu_boost(bool on_off)
{
corelock_lock(&boostctrl_cl);
if (!cpu_boost_lock())
return;
#endif /* CPU_BOOST_LOGGING */
if(on_off)
{
@ -141,12 +137,13 @@ void cpu_boost(bool on_off)
}
}
corelock_unlock(&boostctrl_cl);
cpu_boost_unlock();
}
void cpu_idle_mode(bool on_off)
{
corelock_lock(&boostctrl_cl);
if (!cpu_boost_lock())
return;
cpu_idle = on_off;
@ -160,7 +157,7 @@ void cpu_idle_mode(bool on_off)
set_cpu_frequency(CPUFREQ_NORMAL);
}
corelock_unlock(&boostctrl_cl);
cpu_boost_unlock();
}
#endif /* HAVE_ADJUSTABLE_CPU_FREQ */

View File

@ -50,7 +50,7 @@
#include "system.h"
#include "as3525.h"
#include "i2c.h"
#include "logf.h"
#include <linked_list.h>
#define I2C2_DATA *((volatile unsigned int *)(I2C_AUDIO_BASE + 0x00))
#define I2C2_SLAD0 *((volatile unsigned int *)(I2C_AUDIO_BASE + 0x04))
@ -78,28 +78,555 @@
#define I2C2_IRQ_RXOVER 0x10
#define I2C2_IRQ_ACKTIMEO 0x80
#define REQ_UNFINISHED 0
#define REQ_FINISHED 1
#define REQ_RETRY 2
static struct mutex as_mtx;
#if CONFIG_CHARGING
static bool chg_status = false;
static bool endofch = false;
#ifdef DEBUG
#define IFDEBUG(x) x
#else
#define IFDEBUG(x)
#endif
/* returns true when busy */
static inline bool i2c_busy(void)
#define ASCODEC_REQ_READ 0
#define ASCODEC_REQ_WRITE 1
/*
* How many bytes we using in struct ascodec_request for the data buffer.
* 4 fits the alignment best right now.
* We don't actually use more than 3 at the moment (when reading interrupts)
* Upper limit would be 255 since DACNT is 8 bits!
*/
#define ASCODEC_REQ_MAXLEN 4
struct ascodec_request;
typedef void (ascodec_cb_fn)(struct ascodec_request *req);
struct ascodec_request {
/* standard request members */
struct ll_node node; /* request list link (first!) */
unsigned char type; /* reqest type (read or write) */
unsigned char index; /* initial i2c sub address */
unsigned char cnt; /* bytes remaining */
unsigned char data[ASCODEC_REQ_MAXLEN]; /* actual I/O data */
/* members relevant when a callback is specified (callback != NULL) */
ascodec_cb_fn *callback; /* pointer to callback function */
intptr_t cbdata; /* data for callback function */
int len_done; /* amount actually transferred */
};
/* I2C driver data */
static struct mutex as_mtx;
static struct ll_head req_list;
static unsigned char *req_data_ptr;
#define REQ_FIRST ((struct ascodec_request *)req_list.head)
/* INT_AUDIO interrupt data */
static void ascodec_int_audio_cb(struct ascodec_request *req);
void INT_I2C_AUDIO(void);
static struct ascodec_request as_audio_req;
static struct semaphore adc_done_sem;
static unsigned long ascodec_enrd0_shadow = 0;
static void ascodec_wait_cb(struct ascodec_request *req);
/** --debugging help-- **/
#ifdef DEBUG
/* counters for debugging INT_AUDIO */
static struct int_audio_counters {
int int_audio;
int int_chg_finished;
int int_chg_insert;
int int_chg_remove;
int int_usb_insert;
int int_usb_remove;
int int_rtc;
int int_adc;
} int_audio_counters;
#endif /* DEBUG */
#define COUNT_INT(x) IFDEBUG((int_audio_counters.int_##x)++)
/** --stock request and callback functionality -- **/
/* init for common request data (call before submitting) */
static inline void ascodec_req_init(struct ascodec_request *req, int type,
unsigned int index, unsigned int cnt)
{
return (I2C2_SR & 1);
req->type = type;
req->index = index;
req->cnt = cnt;
}
/* stock no-wait init for request (use any callback and data) */
static inline void ascodec_async_init(struct ascodec_request *req,
ascodec_cb_fn *callback, intptr_t cbdata)
{
/* cbdata is unused if no callback is used */
if ((req->callback = callback))
req->cbdata = cbdata;
}
/* initialize the stock completion callback */
static inline void ascodec_wait_init(struct ascodec_request *req,
struct semaphore *completep)
{
req->callback = ascodec_wait_cb;
req->cbdata = (intptr_t)completep;
semaphore_init(completep, 1, 0);
}
/* caller waits here when using ascodec_wait_cb to do synchronous transfers */
static void ascodec_wait(struct ascodec_request *req)
{
struct semaphore *completep = (struct semaphore *)req->cbdata;
int timeout = TIMEOUT_BLOCK;
if (!irq_enabled() || !is_thread_context()) {
timeout = TIMEOUT_NOBLOCK; /* poll semaphore, no block */
}
while (semaphore_wait(completep, timeout) == OBJ_WAIT_TIMEDOUT) {
/* pump the i2c interrupts ourselves (only waiting can do this!) */
if (I2C2_MIS) {
INT_I2C_AUDIO();
}
}
}
/* stock callback used in order to wait for a transfer to complete */
static void ascodec_wait_cb(struct ascodec_request *req)
{
struct semaphore *completep = (struct semaphore *)req->cbdata;
semaphore_release(completep);
}
/**-- I2C2 interrupt handling --**/
/* start the controller on the next transfer */
static void ascodec_start_req(struct ascodec_request *req)
{
int unmask = 0;
/* enable clock */
bitset32(&CGU_PERI, CGU_I2C_AUDIO_MASTER_CLOCK_ENABLE);
/* start transfer */
I2C2_SADDR = req->index;
if (req->type == ASCODEC_REQ_READ) {
req_data_ptr = req->data;
I2C2_CNTRL = I2C2_CNTRL_DEFAULT | I2C2_CNTRL_READ;
unmask = I2C2_IRQ_RXFULL|I2C2_IRQ_RXOVER;
} else {
req_data_ptr = &req->data[1];
I2C2_CNTRL = I2C2_CNTRL_DEFAULT | I2C2_CNTRL_WRITE;
I2C2_DATA = req->data[0];
unmask = I2C2_IRQ_TXEMPTY|I2C2_IRQ_ACKTIMEO;
}
I2C2_DACNT = req->cnt;
I2C2_IMR |= unmask; /* enable interrupts */
}
/* send the next bytes or read bytes received */
static int ascodec_continue_req(struct ascodec_request *req, int irq_status)
{
if ((irq_status & (I2C2_IRQ_RXOVER|I2C2_IRQ_ACKTIMEO)) > 0) {
/* some error occured, restart the request */
return REQ_RETRY;
}
if (req->type == ASCODEC_REQ_READ &&
(irq_status & I2C2_IRQ_RXFULL) > 0) {
*req_data_ptr++ = I2C2_DATA;
} else {
if (req->cnt > 1 &&
(irq_status & I2C2_IRQ_TXEMPTY) > 0) {
I2C2_DATA = *req_data_ptr++;
}
}
req->index++;
if (--req->cnt > 0)
return REQ_UNFINISHED;
return REQ_FINISHED;
}
/* complete the request and call the completion callback, if any */
static void ascodec_finish_req(struct ascodec_request *req)
{
/*
* Wait if still busy, unfortunately this happens since
* the controller is running at a low divisor, so it's
* still busy when we serviced the interrupt.
* I tried upping the i2c speed to 4MHz which
* made the number of busywait cycles much smaller
* (none for reads and only a few for writes),
* but who knows if it's reliable at that frequency. ;)
* For one thing, 8MHz doesn't work, so 4MHz is likely
* borderline.
* In general writes need much more wait cycles than reads
* for some reason, possibly because we read the data register
* for reads, which will likely block the processor while
* the i2c controller responds to the register read.
*/
while (I2C2_SR & 1);
if (req->callback) {
req->len_done = req_data_ptr - req->data;
req->callback(req);
}
}
/* ISR for I2C2 */
void INT_I2C_AUDIO(void)
{
struct ascodec_request *req = REQ_FIRST;
int irq_status = I2C2_MIS;
int status = ascodec_continue_req(req, irq_status);
I2C2_INT_CLR = irq_status; /* clear interrupt status */
if (status != REQ_UNFINISHED) {
/* mask rx/tx interrupts */
I2C2_IMR &= ~(I2C2_IRQ_TXEMPTY|I2C2_IRQ_RXFULL|
I2C2_IRQ_RXOVER|I2C2_IRQ_ACKTIMEO);
if (status == REQ_FINISHED)
ascodec_finish_req(req);
int oldlevel = disable_irq_save(); /* IRQs are stacked */
/*
* If status == REQ_RETRY, this will restart the request from where
* it left off because we didn't remove it from the request list
*/
if (status == REQ_FINISHED) {
ll_remove_next(&req_list, NULL);
}
req = REQ_FIRST;
if (req == NULL) {
/* disable clock */
bitclr32(&CGU_PERI, CGU_I2C_AUDIO_MASTER_CLOCK_ENABLE);
} else {
ascodec_start_req(req);
}
restore_irq(oldlevel);
}
}
/** --Routines for reading and writing data on the bus-- **/
/* add the request to the queue */
static void ascodec_submit(struct ascodec_request *req)
{
int oldlevel = disable_irq_save();
ll_insert_last(&req_list, &req->node);
if (REQ_FIRST == req) {
/* first on list? start driver */
ascodec_start_req(req);
}
restore_irq(oldlevel);
}
/*
* The request struct passed in must be allocated statically.
* If you call ascodec_async_write from different places, each
* call needs it's own request struct.
*/
static void ascodec_async_write(struct ascodec_request *req,
unsigned int index, unsigned int value)
{
#ifndef HAVE_AS3543
if (index == AS3514_CVDD_DCDC3) /* prevent setting of the LREG_CP_not bit */
value &= ~(1 << 5);
#endif
ascodec_req_init(req, ASCODEC_REQ_WRITE, index, 1);
req->data[0] = value;
ascodec_submit(req);
}
void ascodec_write(unsigned int index, unsigned int value)
{
struct ascodec_request req;
struct semaphore complete;
ascodec_wait_init(&req, &complete);
ascodec_async_write(&req, index, value);
ascodec_wait(&req);
}
/*
* The request struct passed in must be allocated statically.
* If you call ascodec_async_read from different places, each
* call needs it's own request struct.
* If len is bigger than ASCODEC_REQ_MAXLEN it will be
* set to ASCODEC_REQ_MAXLEN.
*/
static void ascodec_async_read(struct ascodec_request *req,
unsigned int index, unsigned int len)
{
if (len > ASCODEC_REQ_MAXLEN)
len = ASCODEC_REQ_MAXLEN; /* can't fit more in one request */
ascodec_req_init(req, ASCODEC_REQ_READ, index, len);
ascodec_submit(req);
}
/* read data synchronously */
int ascodec_read(unsigned int index)
{
struct ascodec_request req;
struct semaphore complete;
ascodec_wait_init(&req, &complete);
ascodec_async_read(&req, index, 1);
ascodec_wait(&req);
return req.data[0];
}
/* read an array of bytes */
void ascodec_readbytes(unsigned int index, unsigned int len, unsigned char *data)
{
struct ascodec_request req;
struct semaphore complete;
ascodec_wait_init(&req, &complete);
/* index and cnt will be filled in later, just use 0 */
ascodec_req_init(&req, ASCODEC_REQ_READ, 0, 0);
int i = 0;
while (len > 0) {
int cnt = MIN(len, ASCODEC_REQ_MAXLEN);
req.index = index;
req.cnt = cnt;
ascodec_submit(&req);
ascodec_wait(&req);
for (int j = 0; j < cnt; j++)
data[i++] = req.data[j];
len -= cnt;
index += cnt;
}
}
#if CONFIG_CPU == AS3525v2
/* write special PMU subregisters */
void ascodec_write_pmu(unsigned int index, unsigned int subreg,
unsigned int value)
{
struct ascodec_request reqs[2];
struct semaphore complete;
ascodec_async_init(&reqs[0], NULL, 0);
ascodec_wait_init(&reqs[1], &complete);
int oldstatus = disable_irq_save();
/* we submit consecutive requests to make sure no operations happen on the
* i2c bus between selecting the sub register and writing to it */
ascodec_async_write(&reqs[0], AS3543_PMU_ENABLE, 8 | subreg);
ascodec_async_write(&reqs[1], index, value);
restore_irq(oldstatus);
/* Wait for second request to finish */
ascodec_wait(&reqs[1]);
}
/* read special PMU subregisters */
int ascodec_read_pmu(unsigned int index, unsigned int subreg)
{
struct ascodec_request reqs[2];
struct semaphore complete;
ascodec_async_init(&reqs[0], NULL, 0);
ascodec_wait_init(&reqs[1], &complete);
int oldstatus = disable_irq_save();
/* we submit consecutive requests to make sure no operations happen on the
* i2c bus between selecting the sub register and reading it */
ascodec_async_write(&reqs[0], AS3543_PMU_ENABLE, subreg);
ascodec_async_read(&reqs[1], index, 1);
restore_irq(oldstatus);
/* Wait for second request to finish */
ascodec_wait(&reqs[1]);
return reqs[1].data[0];
}
#endif /* CONFIG_CPU == AS3525v2 */
/* callback that receives results of reading INT_AUDIO status register */
static void ascodec_int_audio_cb(struct ascodec_request *req)
{
unsigned char * const data = req->data;
if (UNLIKELY(req->len_done != 3)) { /* some error happened? */
panicf("INT_AUDIO callback got %d regs", req->len_done);
}
if (data[0] & CHG_ENDOFCH) { /* chg finished */
COUNT_INT(chg_finished);
ascodec_enrd0_shadow |= CHG_ENDOFCH;
}
if (data[0] & CHG_CHANGED) { /* chg status changed */
if (data[0] & CHG_STATUS) {
COUNT_INT(chg_insert);
ascodec_enrd0_shadow |= CHG_STATUS;
} else {
COUNT_INT(chg_remove);
ascodec_enrd0_shadow &= ~CHG_STATUS;
}
}
if (data[0] & USB_CHANGED) { /* usb status changed */
if (data[0] & USB_STATUS) {
COUNT_INT(usb_insert);
usb_insert_int();
} else {
COUNT_INT(usb_remove);
usb_remove_int();
}
}
if (data[2] & IRQ_RTC) { /* rtc irq */
/*
* Can be configured for once per second or once per minute,
* default is once per second
*/
COUNT_INT(rtc);
}
if (data[2] & IRQ_ADC) { /* adc finished */
COUNT_INT(adc);
semaphore_release(&adc_done_sem);
}
VIC_INT_ENABLE = INTERRUPT_AUDIO;
}
/* ISR for all various ascodec events */
void INT_AUDIO(void)
{
VIC_INT_EN_CLEAR = INTERRUPT_AUDIO;
COUNT_INT(audio);
ascodec_async_read(&as_audio_req, AS3514_IRQ_ENRD0, 3);
}
/* wait for ADC to finish conversion */
void ascodec_wait_adc_finished(void)
{
semaphore_wait(&adc_done_sem, TIMEOUT_BLOCK);
}
#if CONFIG_CHARGING
/* read sticky end-of-charge bit and clear it */
bool ascodec_endofch(void)
{
int oldlevel = disable_irq_save();
bool ret = ascodec_enrd0_shadow & CHG_ENDOFCH;
ascodec_enrd0_shadow &= ~CHG_ENDOFCH; /* clear interrupt */
restore_irq(oldlevel);
return ret;
}
/* read the presence state of the charger */
bool ascodec_chg_status(void)
{
return ascodec_enrd0_shadow & CHG_STATUS;
}
void ascodec_monitor_endofch(void)
{
/* end of charge status interrupt already enabled */
}
/* write charger control register */
void ascodec_write_charger(int value)
{
#if CONFIG_CPU == AS3525
ascodec_write(AS3514_CHARGER, value);
#else
ascodec_write_pmu(AS3543_CHARGER, 1, value);
#endif
}
/* read charger control register */
int ascodec_read_charger(void)
{
#if CONFIG_CPU == AS3525
return ascodec_read(AS3514_CHARGER);
#else
return ascodec_read_pmu(AS3543_CHARGER, 1);
#endif
}
#endif /* CONFIG_CHARGING */
/*
* NOTE:
* After the conversion to interrupts, ascodec_(lock|unlock) are only used by
* adc-as3514.c to protect against other threads corrupting the result by using
* the ADC at the same time.
* Concurrent ascodec_(async_)?(read|write) calls are instead protected
* because ascodec_submit() is atomic and concurrent requests will wait
* in the queue until the current request is finished.
*/
void ascodec_lock(void)
{
mutex_lock(&as_mtx);
}
void ascodec_unlock(void)
{
mutex_unlock(&as_mtx);
}
/** --Startup initialization-- **/
void i2c_init(void)
{
/* required function but called too late for our needs */
}
static void i2c2_init(void)
/* initialises the internal i2c bus and prepares for transfers to the codec */
void ascodec_init(void)
{
int prescaler;
ll_init(&req_list);
mutex_init(&as_mtx);
ascodec_async_init(&as_audio_req, ascodec_int_audio_cb, 0);
semaphore_init(&adc_done_sem, 1, 0);
/* enable clock */
bitset32(&CGU_PERI, CGU_I2C_AUDIO_MASTER_CLOCK_ENABLE);
/* prescaler for i2c clock */
prescaler = AS3525_I2C_PRESCALER;
I2C2_CPSR0 = prescaler & 0xFF; /* 8 lsb */
@ -110,18 +637,15 @@ static void i2c2_init(void)
I2C2_CNTRL = I2C2_CNTRL_DEFAULT;
}
I2C2_IMR = 0x00; /* disable interrupts */
I2C2_INT_CLR = I2C2_RIS; /* clear interrupt status */
VIC_INT_ENABLE = INTERRUPT_I2C_AUDIO;
VIC_INT_ENABLE = INTERRUPT_AUDIO;
/* initialises the internal i2c bus and prepares for transfers to the codec */
void ascodec_init(void)
{
mutex_init(&as_mtx);
/* enable clock */
bitset32(&CGU_PERI, CGU_I2C_AUDIO_MASTER_CLOCK_ENABLE);
i2c2_init();
/* detect if USB was connected at startup since there is no transition */
ascodec_enrd0_shadow = ascodec_read(AS3514_IRQ_ENRD0);
if(ascodec_enrd0_shadow & USB_STATUS)
usb_insert_int();
/* Generate irq for usb+charge status change */
ascodec_write(AS3514_IRQ_ENRD0,
@ -133,204 +657,11 @@ void ascodec_init(void)
#if CONFIG_CPU == AS3525v2
/* XIRQ = IRQ, active low reset signal, 6mA push-pull output */
ascodec_write_pmu(0x1a, 3, (1<<2)|3); /* 1A-3 = Out_Cntr3 register */
/* reset for compatible with old bootloader */
ascodec_write(AS3514_IRQ_ENRD2, 0x0);
/* Generate irq on (rtc,) adc change */
ascodec_write(AS3514_IRQ_ENRD2, /*IRQ_RTC |*/ IRQ_ADC);
#else
/* Generate irq for push-pull, active high, irq on rtc+adc change */
ascodec_write(AS3514_IRQ_ENRD2, IRQ_PUSHPULL | IRQ_HIGHACTIVE);
#endif
VIC_INT_ENABLE = INTERRUPT_AUDIO;
/* detect if USB was connected at startup since there is no transition */
int data = ascodec_read(AS3514_IRQ_ENRD0);
if(data & USB_STATUS)
usb_insert_int();
#if CONFIG_CHARGING
chg_status = data & CHG_STATUS;
ascodec_write(AS3514_IRQ_ENRD2, IRQ_PUSHPULL | IRQ_HIGHACTIVE |
/*IRQ_RTC |*/ IRQ_ADC);
#endif
}
/* returns false if transfer incomplete */
static bool i2c2_transfer(void)
{
static int try = 0;
/* wait for transfer*/
int i = 10000;
while (I2C2_DACNT != 0 && i--);
if (!i) {
if (try == 5)
panicf("I2C2 reset failed");
logf("reset I2C2 %d", try);
i2c2_init();
try++;
return false;
}
try = 0;
return true;
}
void ascodec_write(unsigned int index, unsigned int value)
{
ascodec_lock();
#ifndef HAVE_AS3543
if (index == AS3514_CVDD_DCDC3) /* prevent setting of the LREG_CP_not bit */
value &= ~(1 << 5);
#endif
do {
/* wait if still busy */
while (i2c_busy());
/* start transfer */
I2C2_SADDR = index;
I2C2_CNTRL &= ~(1 << 1);
I2C2_DATA = value;
I2C2_DACNT = 1;
} while (!i2c2_transfer());
ascodec_unlock();
}
int ascodec_read(unsigned int index)
{
int data;
ascodec_lock();
do {
/* wait if still busy */
while (i2c_busy());
/* start transfer */
I2C2_SADDR = index;
I2C2_CNTRL |= (1 << 1);
I2C2_DACNT = 1;
} while (!i2c2_transfer());
data = I2C2_DATA;
ascodec_unlock();
return data;
}
void ascodec_readbytes(unsigned int index, unsigned int len, unsigned char *data)
{
unsigned int i;
for(i = 0; i < len; i++)
data[i] = ascodec_read(index+i);
}
#if CONFIG_CPU == AS3525v2
void ascodec_write_pmu(unsigned int index, unsigned int subreg,
unsigned int value)
{
ascodec_lock();
/* we submit consecutive requests to make sure no operations happen on the
* i2c bus between selecting the sub register and writing to it */
ascodec_write(AS3543_PMU_ENABLE, 8 | subreg);
ascodec_write(index, value);
ascodec_unlock();
}
int ascodec_read_pmu(unsigned int index, unsigned int subreg)
{
ascodec_lock();
/* we submit consecutive requests to make sure no operations happen on the
* i2c bus between selecting the sub register and reading it */
ascodec_write(AS3543_PMU_ENABLE, subreg);
int ret = ascodec_read(index);
ascodec_unlock();
return ret;
}
#endif /* CONFIG_CPU == AS3525v2 */
void INT_AUDIO(void)
{
int oldstatus = disable_irq_save();
int data = ascodec_read(AS3514_IRQ_ENRD0);
#if CONFIG_CHARGING
if (data & CHG_ENDOFCH) { /* chg finished */
endofch = true;
}
chg_status = data & CHG_STATUS;
#endif
if (data & USB_CHANGED) { /* usb status changed */
if (data & USB_STATUS) {
usb_insert_int();
} else {
usb_remove_int();
}
}
restore_irq(oldstatus);
}
#if CONFIG_CHARGING
bool ascodec_endofch(void)
{
int oldstatus = disable_irq_save();
bool ret = endofch;
endofch = false;
restore_irq(oldstatus);
return ret;
}
bool ascodec_chg_status(void)
{
return chg_status;
}
void ascodec_monitor_endofch(void)
{
/* already enabled */
}
void ascodec_write_charger(int value)
{
#if CONFIG_CPU == AS3525
ascodec_write(AS3514_CHARGER, value);
#else
ascodec_write_pmu(AS3543_CHARGER, 1, value);
#endif
}
int ascodec_read_charger(void)
{
#if CONFIG_CPU == AS3525
return ascodec_read(AS3514_CHARGER);
#else
return ascodec_read_pmu(AS3543_CHARGER, 1);
#endif
}
#endif /* CONFIG_CHARGING */
void ascodec_lock(void)
{
mutex_lock(&as_mtx);
}
void ascodec_unlock(void)
{
mutex_unlock(&as_mtx);
}

View File

@ -605,3 +605,33 @@ end:
lcd_setfont(FONT_UI);
return false;
}
#ifdef HAVE_ADJUSTABLE_CPU_VOLTAGE
/* Return CPU voltage setting in millivolts */
int get_cpu_voltage_setting(void)
{
int value;
#if CONFIG_CPU == AS3525
value = ascodec_read(AS3514_CVDD_DCDC3) & 0x3;
value = 1200 - value * 50;
#else /* as3525v2 */
value = ascodec_read_pmu(0x17, 1) & 0x7f;
/* Calculate in 0.1mV steps */
if (value == 0)
/* 0 volts */;
else if (value <= 0x40)
value = 6000 + value * 125;
else if (value <= 0x70)
value = 14000 + (value - 0x40) * 250;
else if (value <= 0x7f)
value = 26000 + (value - 0x70) * 500;
/* Return voltage setting in millivolts */
value = (value + 5) / 10;
#endif /* CONFIG_CPU */
return value;
}
#endif /* HAVE_ADJUSTABLE_CPU_VOLTAGE */

View File

@ -33,6 +33,8 @@
#include "backlight-target.h"
#include "lcd.h"
struct mutex cpufreq_mtx;
/* Charge Pump and Power management Settings */
#define AS314_CP_DCDC3_SETTING \
((0<<7) | /* CP_SW Auto-Switch Margin 0=200/300 1=150/255 */ \
@ -144,6 +146,7 @@ static const struct { int source; void (*isr) (void); } vec_int_srcs[] =
{ INT_SRC_USB, INT_USB_FUNC, },
{ INT_SRC_TIMER1, INT_TIMER1 },
{ INT_SRC_TIMER2, INT_TIMER2 },
{ INT_SRC_I2C_AUDIO, INT_I2C_AUDIO },
{ INT_SRC_AUDIO, INT_AUDIO },
/* Lowest priority at the end of the list */
};
@ -322,6 +325,12 @@ void system_init(void)
setup_vic();
dma_init();
}
/* this is called after kernel and threading are initialized */
void kernel_device_init(void)
{
mutex_init(&cpufreq_mtx);
ascodec_init();
@ -329,7 +338,8 @@ void system_init(void)
#ifdef HAVE_AS3543
/* PLL: disable audio PLL, we use MCLK already */
ascodec_write_pmu(0x1A, 7, 0x02);
/* DCDC_Cntr: set switching speed of CVDD1/2 power supplies to 1 MHz */
/* DCDC_Cntr: set switching speed of CVDD1/2 power supplies to 1 MHz,
immediate change */
ascodec_write_pmu(0x17, 7, 0x30);
/* Out_Cntr2: set drive strength of 24 MHz and 32 kHz clocks to 1 mA */
ascodec_write_pmu(0x1A, 2, 0xCC);
@ -414,11 +424,28 @@ void udelay(unsigned usecs)
#ifndef BOOTLOADER
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
bool set_cpu_frequency__lock(void)
{
if (get_processor_mode() != CPU_MODE_THREAD_CONTEXT)
return false;
mutex_lock(&cpufreq_mtx);
return true;
}
void set_cpu_frequency__unlock(void)
{
mutex_unlock(&cpufreq_mtx);
}
#if CONFIG_CPU == AS3525
void set_cpu_frequency(long frequency)
{
if(frequency == CPUFREQ_MAX)
if (frequency == cpu_frequency)
{
/* avoid redundant activity */
}
else if(frequency == CPUFREQ_MAX)
{
#ifdef HAVE_ADJUSTABLE_CPU_VOLTAGE
/* Increasing frequency so boost voltage before change */
@ -464,7 +491,11 @@ void set_cpu_frequency(long frequency)
#else /* as3525v2 */
void set_cpu_frequency(long frequency)
{
if(frequency == CPUFREQ_MAX)
if (frequency == cpu_frequency)
{
/* avoid redundant activity */
}
else if(frequency == CPUFREQ_MAX)
{
#ifdef HAVE_ADJUSTABLE_CPU_VOLTAGE
/* Set CVDD1 power supply */

View File

@ -21,12 +21,17 @@
#ifndef SYSTEM_TARGET_H
#define SYSTEM_TARGET_H
/* we need some system things initialized after the kernel init */
#define KDEV_INIT
#include "system-arm.h"
#include "mmu-arm.h"
#include "panic.h"
#include "clock-target.h" /* CPUFREQ_* are defined here */
void kernel_device_init(void);
#define STORAGE_WANTS_ALIGN
/* We can use a interrupt-based mechanism on the fuzev2 */
@ -68,4 +73,20 @@ static inline void mdelay(unsigned msecs)
void usb_insert_int(void);
void usb_remove_int(void);
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
#define CPU_BOOST_LOCK_DEFINED
static inline bool cpu_boost_lock(void)
{
bool set_cpu_frequency__lock(void);
return set_cpu_frequency__lock();
}
static inline void cpu_boost_unlock(void)
{
void set_cpu_frequency__unlock(void);
set_cpu_frequency__unlock();
}
#endif /* HAVE_ADJUSTABLE_CPU_FREQ */
#endif /* SYSTEM_TARGET_H */

View File

@ -24,6 +24,11 @@
#include "adc-target.h"
#include "button-target.h"
#if defined(HAVE_ADJUSTABLE_CPU_FREQ) && (NUM_CORES > 1)
#include "corelock.h"
static struct corelock cpufreq_cl SHAREDBSS_ATTR;
#endif
extern void TIMER1(void);
extern void TIMER2(void);
@ -122,6 +127,18 @@ static void ipod_init_cache(void)
}
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
#if NUM_CORES > 1
void set_cpu_frequency__lock(void)
{
corelock_lock(&cpufreq_cl);
}
void set_cpu_frequency__unlock(void)
{
corelock_unlock(&cpufreq_cl);
}
#endif /* NUM_CORES > 1 */
void set_cpu_frequency(long frequency)
#else
static void pp_set_cpu_frequency(long frequency)
@ -193,7 +210,7 @@ void system_init(void)
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
#if NUM_CORES > 1
cpu_boost_init();
corelock_init(&cpufreq_cl);
#endif
#else
pp_set_cpu_frequency(CPUFREQ_MAX);

View File

@ -308,16 +308,24 @@ void scale_suspend_core(bool suspend)
}
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
#if NUM_CORES > 1
void set_cpu_frequency__lock(void)
{
corelock_lock(&cpufreq_cl);
}
void set_cpu_frequency__unlock(void)
{
corelock_unlock(&cpufreq_cl);
}
#endif /* NUM_CORES > 1 */
void set_cpu_frequency(long frequency) ICODE_ATTR;
void set_cpu_frequency(long frequency)
#else
static void pp_set_cpu_frequency(long frequency)
#endif
{
#if defined(HAVE_ADJUSTABLE_CPU_FREQ) && (NUM_CORES > 1)
corelock_lock(&cpufreq_cl);
#endif
switch (frequency)
{
/* Note1: The PP5022 PLL must be run at >= 96MHz
@ -424,10 +432,6 @@ static void pp_set_cpu_frequency(long frequency)
DEV_INIT2 &= ~INIT_PLL; /* disable PLL power */
break;
}
#if defined(HAVE_ADJUSTABLE_CPU_FREQ) && (NUM_CORES > 1)
corelock_unlock(&cpufreq_cl);
#endif
}
#endif /* !BOOTLOADER || (SANSA_E200 || SANSA_C200 || PHILIPS_SA9200) */
@ -544,7 +548,6 @@ void system_init(void)
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
#if NUM_CORES > 1
corelock_init(&cpufreq_cl);
cpu_boost_init();
#endif
#else
pp_set_cpu_frequency(CPUFREQ_MAX);

View File

@ -199,4 +199,21 @@ void system_prepare_fw_start(void);
#endif /* BOOTLOADER */
#if defined(HAVE_ADJUSTABLE_CPU_FREQ) && (NUM_CORES > 1)
#define CPU_BOOST_LOCK_DEFINED
static inline bool cpu_boost_lock(void)
{
void set_cpu_frequency__lock(void);
set_cpu_frequency__lock();
return true;
}
static inline void cpu_boost_unlock(void)
{
void set_cpu_frequency__unlock(void);
set_cpu_frequency__unlock();
}
#endif /* HAVE_ADJUSTABLE_CPU_FREQ && NUM_CORES > 1 */
#endif /* SYSTEM_TARGET_H */