rockbox/firmware/target/sh/archos/ondio/ata_mmc.c

979 lines
27 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2004 by Jens Arnold
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "ata_mmc.h"
#include "sdmmc.h"
#include "kernel.h"
#include "led.h"
#include "sh7034.h"
#include "system.h"
#include "debug.h"
#include "panic.h"
#include "power.h"
#include "string.h"
#include "hwcompat.h"
#include "adc.h"
#include "bitswap.h"
#include "storage.h"
#ifdef HAVE_MULTIDRIVE
#define MMC_NUM_DRIVES 2
#else
#define MMC_NUM_DRIVES 1
#endif
#define BLOCK_SIZE 512 /* fixed */
/* Command definitions */
#define CMD_GO_IDLE_STATE 0x40 /* R1 */
#define CMD_SEND_OP_COND 0x41 /* R1 */
#define CMD_SEND_CSD 0x49 /* R1 */
#define CMD_SEND_CID 0x4a /* R1 */
#define CMD_STOP_TRANSMISSION 0x4c /* R1 */
#define CMD_SEND_STATUS 0x4d /* R2 */
#define CMD_SET_BLOCKLEN 0x50 /* R1 */
#define CMD_READ_SINGLE_BLOCK 0x51 /* R1 */
#define CMD_READ_MULTIPLE_BLOCK 0x52 /* R1 */
#define CMD_WRITE_BLOCK 0x58 /* R1b */
#define CMD_WRITE_MULTIPLE_BLOCK 0x59 /* R1b */
#define CMD_READ_OCR 0x7a /* R3 */
/* Response formats:
R1 = single byte, msb=0, various error flags
R1b = R1 + busy token(s)
R2 = 2 bytes (1st byte identical to R1), additional flags
R3 = 5 bytes (R1 + OCR register)
*/
#define R1_PARAMETER_ERR 0x40
#define R1_ADDRESS_ERR 0x20
#define R1_ERASE_SEQ_ERR 0x10
#define R1_COM_CRC_ERR 0x08
#define R1_ILLEGAL_CMD 0x04
#define R1_ERASE_RESET 0x02
#define R1_IN_IDLE_STATE 0x01
#define R2_OUT_OF_RANGE 0x80
#define R2_ERASE_PARAM 0x40
#define R2_WP_VIOLATION 0x20
#define R2_CARD_ECC_FAIL 0x10
#define R2_CC_ERROR 0x08
#define R2_ERROR 0x04
#define R2_ERASE_SKIP 0x02
#define R2_CARD_LOCKED 0x01
/* Data start tokens */
#define DT_START_BLOCK 0xfe
#define DT_START_WRITE_MULTIPLE 0xfc
#define DT_STOP_TRAN 0xfd
/* for compatibility */
static long last_disk_activity = -1;
/* private variables */
#ifdef CONFIG_STORAGE_MULTI
static int mmc_first_drive = 0;
#else
#define mmc_first_drive 0
#endif
static struct mutex mmc_mutex SHAREDBSS_ATTR;
static bool initialized = false;
static bool new_mmc_circuit;
static enum {
MMC_UNKNOWN,
MMC_UNTOUCHED,
MMC_TOUCHED
} mmc_status = MMC_UNKNOWN;
static enum {
SER_POLL_WRITE,
SER_POLL_READ,
SER_DISABLED
} serial_mode;
static const unsigned char dummy[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
/* 2 buffers used alternatively for writing, including start token,
* dummy CRC and an extra byte to keep word alignment. */
static unsigned char write_buffer[2][BLOCK_SIZE+4];
static int current_buffer = 0;
static const unsigned char *send_block_addr = NULL;
static tCardInfo card_info[2];
#ifndef HAVE_MULTIDRIVE
static int current_card = 0;
#endif
static bool last_mmc_status = false;
static int countdown = -1; /* for mmc switch debouncing. -1 because the
countdown should not happen if the card
is inserted at boot */
static bool usb_activity; /* monitoring the USB bridge */
static long last_usb_activity;
/* private function declarations */
static int select_card(int card_no);
static void deselect_card(void);
static void setup_sci1(int bitrate_register);
static void set_sci1_poll_read(void);
static void write_transfer(const unsigned char *buf, int len)
__attribute__ ((section(".icode")));
static void read_transfer(unsigned char *buf, int len)
__attribute__ ((section(".icode")));
static unsigned char poll_byte(long timeout);
static unsigned char poll_busy(long timeout);
static unsigned char send_cmd(int cmd, unsigned long parameter, void *data);
static int receive_cxd(unsigned char *buf);
static int initialize_card(int card_no);
static int receive_block(unsigned char *inbuf, long timeout);
static void send_block_prepare(void);
static int send_block_send(unsigned char start_token, long timeout,
bool prepare_next);
static void mmc_tick(void);
/* implementation */
static void enable_controller(bool on)
{
PBCR1 &= ~0x0CF0; /* PB13, PB11 and PB10 become GPIO,
* if not modified below */
if (on)
PBCR1 |= 0x08A0; /* as SCK1, TxD1, RxD1 */
and_b(~0x80, &PADRL); /* assert flash reset */
sleep(HZ/100);
or_b(0x80, &PADRL); /* de-assert flash reset */
sleep(HZ/100);
card_info[0].initialized = false;
card_info[1].initialized = false;
}
void mmc_enable_int_flash_clock(bool on)
{
/* Internal flash clock is enabled by setting PA12 high with the new
* clock circuit, and by setting it low with the old clock circuit */
if (on ^ new_mmc_circuit)
and_b(~0x10, &PADRH); /* clear clock gate PA12 */
else
or_b(0x10, &PADRH); /* set clock gate PA12 */
}
static int select_card(int card_no)
{
mutex_lock(&mmc_mutex);
led(true);
last_disk_activity = current_tick;
mmc_enable_int_flash_clock(card_no == 0);
if (!card_info[card_no].initialized)
{
setup_sci1(7); /* Initial rate: 375 kbps (need <= 400 per mmc specs) */
write_transfer(dummy, 10); /* allow the card to synchronize */
while (!(SSR1 & SCI_TEND));
}
if (card_no == 0) /* internal */
and_b(~0x04, &PADRH); /* assert CS */
else /* external */
and_b(~0x02, &PADRH); /* assert CS */
if (card_info[card_no].initialized)
{
setup_sci1(card_info[card_no].bitrate_register);
return 0;
}
else
{
return initialize_card(card_no);
}
}
static void deselect_card(void)
{
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
or_b(0x06, &PADRH); /* deassert CS (both cards) */
led(false);
mutex_unlock(&mmc_mutex);
last_disk_activity = current_tick;
}
static void setup_sci1(int bitrate_register)
{
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable serial port */
SMR1 = SYNC_MODE; /* no prescale */
BRR1 = bitrate_register;
SSR1 = 0;
SCR1 = SCI_TE; /* enable transmitter */
serial_mode = SER_POLL_WRITE;
}
static void set_sci1_poll_read(void)
{
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable transmitter (& receiver) */
SCR1 = (SCI_TE|SCI_RE); /* re-enable transmitter & receiver */
while (!(SSR1 & SCI_TEND)); /* wait for SCI init completion (!) */
serial_mode = SER_POLL_READ;
TDR1 = 0xFF; /* send do-nothing while reading */
}
static void write_transfer(const unsigned char *buf, int len)
{
const unsigned char *buf_end = buf + len;
register unsigned char data;
if (serial_mode != SER_POLL_WRITE)
{
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable transmitter & receiver */
SSR1 = 0; /* clear all flags */
SCR1 = SCI_TE; /* enable transmitter only */
serial_mode = SER_POLL_WRITE;
}
while (buf < buf_end)
{
data = fliptable[(signed char)(*buf++)]; /* bitswap */
while (!(SSR1 & SCI_TDRE)); /* wait for end of transfer */
TDR1 = data; /* write byte */
SSR1 = 0; /* start transmitting */
}
}
/* don't call this with len == 0 */
static void read_transfer(unsigned char *buf, int len)
{
unsigned char *buf_end = buf + len - 1;
register signed char data;
if (serial_mode != SER_POLL_READ)
set_sci1_poll_read();
SSR1 = 0; /* start receiving first byte */
while (buf < buf_end)
{
while (!(SSR1 & SCI_RDRF)); /* wait for data */
data = RDR1; /* read byte */
SSR1 = 0; /* start receiving */
*buf++ = fliptable[data]; /* bitswap */
}
while (!(SSR1 & SCI_RDRF)); /* wait for last byte */
*buf = fliptable[(signed char)(RDR1)]; /* read & bitswap */
}
/* returns 0xFF on timeout, timeout is in bytes */
static unsigned char poll_byte(long timeout)
{
long i;
unsigned char data = 0; /* stop the compiler complaining */
if (serial_mode != SER_POLL_READ)
set_sci1_poll_read();
i = 0;
do {
SSR1 = 0; /* start receiving */
while (!(SSR1 & SCI_RDRF)); /* wait for data */
data = RDR1; /* read byte */
} while ((data == 0xFF) && (++i < timeout));
return fliptable[(signed char)data];
}
/* returns 0 on timeout, timeout is in bytes */
static unsigned char poll_busy(long timeout)
{
long i;
unsigned char data, dummy;
if (serial_mode != SER_POLL_READ)
set_sci1_poll_read();
/* get data response */
SSR1 = 0; /* start receiving */
while (!(SSR1 & SCI_RDRF)); /* wait for data */
data = fliptable[(signed char)(RDR1)]; /* read byte */
/* wait until the card is ready again */
i = 0;
do {
SSR1 = 0; /* start receiving */
while (!(SSR1 & SCI_RDRF)); /* wait for data */
dummy = RDR1; /* read byte */
} while ((dummy != 0xFF) && (++i < timeout));
return (dummy == 0xFF) ? data : 0;
}
/* Send MMC command and get response. Returns R1 byte directly.
* Returns further R2 or R3 bytes in *data (can be NULL for other commands) */
static unsigned char send_cmd(int cmd, unsigned long parameter, void *data)
{
static struct {
unsigned char cmd;
unsigned long parameter;
const unsigned char crc7; /* fixed, valid for CMD0 only */
const unsigned char trailer;
} __attribute__((packed)) command = {0x40, 0, 0x95, 0xFF};
unsigned char ret;
command.cmd = cmd;
command.parameter = htobe32(parameter);
write_transfer((unsigned char *)&command, sizeof(command));
ret = poll_byte(20);
switch (cmd)
{
case CMD_SEND_CSD: /* R1 response, leave open */
case CMD_SEND_CID:
case CMD_READ_SINGLE_BLOCK:
case CMD_READ_MULTIPLE_BLOCK:
return ret;
case CMD_SEND_STATUS: /* R2 response, close with dummy */
read_transfer(data, 1);
break;
case CMD_READ_OCR: /* R3 response, close with dummy */
read_transfer(data, 4);
break;
default: /* R1 response, close with dummy */
break; /* also catches block writes */
}
write_transfer(dummy, 1);
return ret;
}
/* Receive CID/ CSD data (16 bytes) */
static int receive_cxd(unsigned char *buf)
{
if (poll_byte(20) != DT_START_BLOCK)
{
write_transfer(dummy, 1);
return -1; /* not start of data */
}
read_transfer(buf, 16);
write_transfer(dummy, 3); /* 2 bytes dontcare crc + 1 byte trailer */
return 0;
}
static int initialize_card(int card_no)
{
int rc, i;
int blk_exp, ts_exp, taac_exp;
tCardInfo *card = &card_info[card_no];
static const char mantissa[] = { /* *10 */
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80
};
static const int exponent[] = { /* use varies */
1, 10, 100, 1000, 10000, 100000, 1000000,
10000000, 100000000, 1000000000
};
if (card_no == 1)
mmc_status = MMC_TOUCHED;
/* switch to SPI mode */
if (send_cmd(CMD_GO_IDLE_STATE, 0, NULL) != 0x01)
return -1; /* error or no response */
/* initialize card */
for (i = HZ;;) /* try for 1 second*/
{
sleep(1);
if (send_cmd(CMD_SEND_OP_COND, 0, NULL) == 0)
break;
if (--i <= 0)
return -2; /* timeout */
}
/* get OCR register */
if (send_cmd(CMD_READ_OCR, 0, &card->ocr))
return -3;
card->ocr = betoh32(card->ocr); /* no-op on big endian */
/* check voltage */
if (!(card->ocr & 0x00100000)) /* 3.2 .. 3.3 V */
return -4;
/* get CSD register */
if (send_cmd(CMD_SEND_CSD, 0, NULL))
return -5;
rc = receive_cxd((unsigned char*)card->csd);
if (rc)
return rc * 10 - 5;
blk_exp = card_extract_bits(card->csd, 83, 4);
if (blk_exp < 9) /* block size < 512 bytes not supported */
return -6;
card->numblocks = (card_extract_bits(card->csd, 73, 12) + 1)
<< (card_extract_bits(card->csd, 49, 3) + 2 + blk_exp - 9);
card->blocksize = BLOCK_SIZE;
/* max transmission speed, clock divider */
ts_exp = card_extract_bits(card->csd, 98, 3);
ts_exp = (ts_exp > 3) ? 3 : ts_exp;
card->speed = mantissa[card_extract_bits(card->csd, 102, 4)]
* exponent[ts_exp + 4];
card->bitrate_register = (FREQ/4-1) / card->speed;
/* NSAC, TAAC, read timeout */
card->nsac = 100 * card_extract_bits(card->csd, 111, 8);
card->taac = mantissa[card_extract_bits(card->csd, 118, 4)];
taac_exp = card_extract_bits(card->csd, 114, 3);
card->read_timeout = ((FREQ/4) / (card->bitrate_register + 1)
* card->taac / exponent[9 - taac_exp]
+ (10 * card->nsac));
card->read_timeout /= 8; /* clocks -> bytes */
card->taac = card->taac * exponent[taac_exp] / 10;
/* r2w_factor, write timeout */
card->r2w_factor = BIT_N(card_extract_bits(card->csd, 28, 3));
card->write_timeout = card->read_timeout * card->r2w_factor;
if (card->r2w_factor > 32) /* Such cards often need extra read delay */
card->read_timeout *= 4;
/* switch to full speed */
setup_sci1(card->bitrate_register);
/* always use 512 byte blocks */
if (send_cmd(CMD_SET_BLOCKLEN, BLOCK_SIZE, NULL))
return -7;
/* get CID register */
if (send_cmd(CMD_SEND_CID, 0, NULL))
return -8;
rc = receive_cxd((unsigned char*)card->cid);
if (rc)
return rc * 10 - 8;
card->initialized = true;
return 0;
}
tCardInfo *mmc_card_info(int card_no)
{
tCardInfo *card = &card_info[card_no];
if (!card->initialized && ((card_no == 0) || mmc_detect()))
{
select_card(card_no);
deselect_card();
}
return card;
}
/* Receive one block with DMA and bitswap it (chasing bitswap). */
static int receive_block(unsigned char *inbuf, long timeout)
{
unsigned long buf_end;
if (poll_byte(timeout) != DT_START_BLOCK)
{
write_transfer(dummy, 1);
return -1; /* not start of data */
}
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable serial */
SSR1 = 0; /* clear all flags */
/* setup DMA channel 0 */
CHCR0 = 0; /* disable */
SAR0 = RDR1_ADDR;
DAR0 = (unsigned long) inbuf;
DTCR0 = BLOCK_SIZE;
CHCR0 = 0x4601; /* fixed source address, RXI1, enable */
DMAOR = 0x0001;
SCR1 = (SCI_RE|SCI_RIE); /* kick off DMA */
/* DMA receives 2 bytes more than DTCR2, but the last 2 bytes are not
* stored. The first extra byte is available from RDR1 after the DMA ends,
* the second one is lost because of the SCI overrun. However, this
* behaviour conveniently discards the crc. */
yield(); /* be nice */
/* Bitswap received data, chasing the DMA pointer */
buf_end = (unsigned long)inbuf + BLOCK_SIZE;
do
{
/* Call bitswap whenever (a multiple of) 8 bytes are
* available (value optimised by experimentation). */
int swap_now = (DAR0 - (unsigned long)inbuf) & ~0x00000007;
if (swap_now)
{
bitswap(inbuf, swap_now);
inbuf += swap_now;
}
}
while ((unsigned long)inbuf < buf_end);
while (!(CHCR0 & 0x0002)); /* wait for end of DMA */
while (!(SSR1 & SCI_ORER)); /* wait for the trailing bytes */
SCR1 = 0;
serial_mode = SER_DISABLED;
write_transfer(dummy, 1); /* send trailer */
last_disk_activity = current_tick;
return 0;
}
/* Prepare a block for sending by copying it to the next write buffer
* and bitswapping it. */
static void send_block_prepare(void)
{
unsigned char *dest;
current_buffer ^= 1; /* toggle buffer */
dest = write_buffer[current_buffer] + 2;
memcpy(dest, send_block_addr, BLOCK_SIZE);
bitswap(dest, BLOCK_SIZE);
send_block_addr += BLOCK_SIZE;
}
/* Send one block with DMA from the current write buffer, possibly preparing
* the next block within the next write buffer in the background. */
static int send_block_send(unsigned char start_token, long timeout,
bool prepare_next)
{
int rc = 0;
unsigned char *curbuf = write_buffer[current_buffer];
curbuf[1] = fliptable[(signed char)start_token];
*(unsigned short *)(curbuf + BLOCK_SIZE + 2) = 0xFFFF;
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0; /* disable serial */
SSR1 = 0; /* clear all flags */
/* setup DMA channel 0 */
CHCR0 = 0; /* disable */
SAR0 = (unsigned long)(curbuf + 1);
DAR0 = TDR1_ADDR;
DTCR0 = BLOCK_SIZE + 3; /* start token + block + dummy crc */
CHCR0 = 0x1701; /* fixed dest. address, TXI1, enable */
DMAOR = 0x0001;
SCR1 = (SCI_TE|SCI_TIE); /* kick off DMA */
if (prepare_next)
send_block_prepare();
yield(); /* be nice */
while (!(CHCR0 & 0x0002)); /* wait for end of DMA */
while (!(SSR1 & SCI_TEND)); /* wait for end of transfer */
SCR1 = 0;
serial_mode = SER_DISABLED;
if ((poll_busy(timeout) & 0x1F) != 0x05) /* something went wrong */
rc = -1;
write_transfer(dummy, 1);
last_disk_activity = current_tick;
return rc;
}
int mmc_read_sectors(IF_MD(int drive,)
unsigned long start,
int incount,
void* inbuf)
{
int rc = 0;
int lastblock = 0;
unsigned long end_block;
tCardInfo *card;
#ifndef HAVE_MULTIDRIVE
int drive = current_card;
#endif
card = &card_info[drive];
rc = select_card(drive);
if (rc)
{
rc = rc * 10 - 1;
goto error;
}
end_block = start + incount;
if (end_block > card->numblocks)
{
rc = -2;
goto error;
}
/* Some cards don't like reading the very last block with
* CMD_READ_MULTIPLE_BLOCK, so make sure this block is always
* read with CMD_READ_SINGLE_BLOCK. */
if (end_block == card->numblocks)
lastblock = 1;
if (incount > 1)
{
/* MMC4.2: make multiplication conditional */
if (send_cmd(CMD_READ_MULTIPLE_BLOCK, start * BLOCK_SIZE, NULL))
{
rc = -3;
goto error;
}
while (--incount >= lastblock)
{
rc = receive_block(inbuf, card->read_timeout);
if (rc)
{
/* If an error occurs during multiple block reading, the
* host still needs to send CMD_STOP_TRANSMISSION */
send_cmd(CMD_STOP_TRANSMISSION, 0, NULL);
rc = rc * 10 - 4;
goto error;
}
inbuf += BLOCK_SIZE;
start++;
/* ^^ necessary for the abovementioned last block special case */
}
if (send_cmd(CMD_STOP_TRANSMISSION, 0, NULL))
{
rc = -5;
goto error;
}
}
if (incount > 0)
{
/* MMC4.2: make multiplication conditional */
if (send_cmd(CMD_READ_SINGLE_BLOCK, start * BLOCK_SIZE, NULL))
{
rc = -6;
goto error;
}
rc = receive_block(inbuf, card->read_timeout);
if (rc)
{
rc = rc * 10 - 7;
goto error;
}
}
error:
deselect_card();
return rc;
}
int mmc_write_sectors(IF_MD(int drive,)
unsigned long start,
int count,
const void* buf)
{
int rc = 0;
int write_cmd;
unsigned char start_token;
tCardInfo *card;
#ifndef HAVE_MULTIDRIVE
int drive = current_card;
#endif
card = &card_info[drive];
rc = select_card(drive);
if (rc)
{
rc = rc * 10 - 1;
goto error;
}
if (start + count > card->numblocks)
panicf("Writing past end of card");
send_block_addr = buf;
send_block_prepare();
if (count > 1)
{
write_cmd = CMD_WRITE_MULTIPLE_BLOCK;
start_token = DT_START_WRITE_MULTIPLE;
}
else
{
write_cmd = CMD_WRITE_BLOCK;
start_token = DT_START_BLOCK;
}
/* MMC4.2: make multiplication conditional */
if (send_cmd(write_cmd, start * BLOCK_SIZE, NULL))
{
rc = -2;
goto error;
}
while (--count >= 0)
{
rc = send_block_send(start_token, card->write_timeout, count > 0);
if (rc)
{
rc = rc * 10 - 3;
break;
/* If an error occurs during multiple block writing,
* the STOP_TRAN token still needs to be sent. */
}
}
if (write_cmd == CMD_WRITE_MULTIPLE_BLOCK)
{
static const unsigned char stop_tran = DT_STOP_TRAN;
write_transfer(&stop_tran, 1);
poll_busy(card->write_timeout);
}
error:
deselect_card();
return rc;
}
bool mmc_disk_is_active(void)
{
/* this is correct unless early return from write gets implemented */
return mutex_test(&mmc_mutex);
}
bool mmc_detect(void)
{
return (adc_read(ADC_MMC_SWITCH) < 0x200);
}
bool mmc_touched(void)
{
if (mmc_status == MMC_UNKNOWN) /* try to detect */
{
mutex_lock(&mmc_mutex);
setup_sci1(7); /* safe value */
and_b(~0x02, &PADRH); /* assert CS */
if (send_cmd(CMD_SEND_OP_COND, 0, NULL) == 0xFF)
mmc_status = MMC_UNTOUCHED;
else
mmc_status = MMC_TOUCHED;
deselect_card();
}
return mmc_status == MMC_TOUCHED;
}
bool mmc_usb_active(int delayticks)
{
/* reading "inactive" is delayed by user-supplied monoflop value */
return (usb_activity ||
TIME_BEFORE(current_tick, last_usb_activity + delayticks));
}
static void mmc_tick(void)
{
bool current_status;
if (new_mmc_circuit)
/* USB bridge activity is 0 on idle, ~527 on active */
current_status = adc_read(ADC_USB_ACTIVE) > 0x100;
else
current_status = adc_read(ADC_USB_ACTIVE) < 0x190;
if (!current_status && usb_activity)
last_usb_activity = current_tick;
usb_activity = current_status;
current_status = mmc_detect();
/* Only report when the status has changed */
if (current_status != last_mmc_status)
{
last_mmc_status = current_status;
countdown = HZ/3;
}
else
{
/* Count down until it gets negative */
if (countdown >= 0)
countdown--;
if (countdown == 0)
{
if (current_status)
{
queue_broadcast(SYS_HOTSWAP_INSERTED, mmc_first_drive + 1);
}
else
{
queue_broadcast(SYS_HOTSWAP_EXTRACTED, mmc_first_drive + 1);
mmc_status = MMC_UNTOUCHED;
card_info[1].initialized = false;
}
}
}
}
void mmc_enable(bool on)
{
mutex_lock(&mmc_mutex);
enable_controller(on);
mutex_unlock(&mmc_mutex);
}
int mmc_init(void)
{
int rc = 0;
if (!initialized)
mutex_init(&mmc_mutex);
mutex_lock(&mmc_mutex);
led(false);
last_mmc_status = mmc_detect();
#ifndef HAVE_MULTIDRIVE
/* Use MMC if inserted, internal flash otherwise */
current_card = last_mmc_status ? 1 : 0;
#endif
if (!initialized)
{
if (!last_mmc_status)
mmc_status = MMC_UNTOUCHED;
/* Port setup */
PACR1 &= ~0x0F3C; /* GPIO function for PA13 (flash busy), PA12
* (clk gate), PA10 (flash CS), PA9 (MMC CS) */
PACR2 &= ~0x4000; /* GPIO for PA7 (flash reset) */
PADR |= 0x0680; /* set all the selects + reset high (=inactive) */
PAIOR |= 0x1680; /* make outputs for them and the PA12 clock gate */
PBCR1 &= ~0x0CF0; /* GPIO function for PB13, PB11 and PB10 */
PBDR |= 0x2C00; /* SCK1, TxD1 and RxD1 high in GPIO */
PBIOR |= 0x2000; /* SCK1 output */
PBIOR &= ~0x0C00; /* TxD1, RxD1 input */
IPRE &= 0x0FFF; /* disable SCI1 interrupts for the CPU */
new_mmc_circuit = ((HW_MASK & MMC_CLOCK_POLARITY) != 0);
tick_add_task(mmc_tick);
initialized = true;
}
enable_controller(true);
mutex_unlock(&mmc_mutex);
return rc;
}
long mmc_last_disk_activity(void)
{
return last_disk_activity;
}
#ifdef STORAGE_GET_INFO
void mmc_get_info(IF_MD(int drive,) struct storage_info *info)
{
#ifndef HAVE_MULTIDRIVE
const int drive=0;
#endif
info->sector_size=card_info[drive].blocksize;
info->num_sectors=card_info[drive].numblocks;
info->vendor="Rockbox";
if(drive==0)
{
info->product="Internal Storage";
}
else
{
info->product="MMC Card Slot";
}
info->revision="0.00";
}
#endif
#ifdef HAVE_HOTSWAP
bool mmc_removable(IF_MD_NONVOID(int drive))
{
#ifndef HAVE_MULTIDRIVE
const int drive=0;
#endif
return (drive==1);
}
bool mmc_present(IF_MD_NONVOID(int drive))
{
#ifndef HAVE_MULTIDRIVE
const int drive=0;
#endif
if(drive==0)
{
return true;
}
else
{
return mmc_detect();
}
}
#endif
void mmc_spin(void)
{
}
void mmc_spindown(int seconds)
{
(void)seconds;
}
#ifdef CONFIG_STORAGE_MULTI
int mmc_num_drives(int first_drive)
{
mmc_first_drive = first_drive;
return MMC_NUM_DRIVES;
}
#endif /* CONFIG_STORAGE_MULTI */
int mmc_event(long id, intptr_t data)
{
return storage_event_default_handler(id, data, last_disk_activity,
STORAGE_MMC);
}