rockbox/firmware/common/ap_int.c
Michael Sevakis b70fecf21d Add proper float formatting to vuprintf
Wanted to see how gnarly it is to do.

Big number handling could be done with better algorithms
since it can get a bit slow with large integers or tiny
fractions with many lead zeros when only a few digits are
needed.

Anyway, it supports %e, %E, %f, %F, %g and %G. No %a or long
double support seems warranted at the moment.

Assumes IEEE 754 double format but it's laid out to be able to
replace a function to handle others if needed.

Tested in a driver program that has a duplicate vuprintf and
the content was pasted in once it looked sound enough to put
up a patch.

Change-Id: I6dae8624d3208e644c88e36e6a17d8fc9144f988
2019-07-19 22:07:41 -04:00

267 lines
7.5 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2018 by Michael A. Sevakis
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "ap_int.h"
#include "fixedpoint.h"
/* Miscellaneous large-sized integer functions */
/* round string, base 10 */
bool round_number_string10(char *p_rdig, long len)
{
/*
* * p should point to the digit that determines if rounding should occur
* * buffer is updated in reverse
* * an additional '1' may be added to the beginning: eg. 9.9 => 10.0
*/
#if 1 /* nearest */
bool round = p_rdig[0] >= '5';
#else /* even */
bool round = p_rdig[0] >= '5' && (p_rdig[-1] & 1);
#endif
while (round && len-- > 0) {
int d = *--p_rdig;
round = ++d > '9';
*p_rdig = round ? '0' : d;
}
if (round) {
/* carry to the next place */
*--p_rdig = '1';
}
return round;
}
/* format arbitrary-precision base 10 integer */
char * format_ap_int10(struct ap_int *a,
char *p_end)
{
/*
* * chunks are in least-to-most-significant order
* * chunk array is used for intermediate division results
* * digit string buffer is written high-to-low address order
*/
long numchunks = a->numchunks;
char *p = p_end;
if (numchunks == 0) {
/* fast formatting */
uint64_t val = a->val;
do {
*--p = val % 10 + '0';
val /= 10;
} while (val);
a->len = p_end - p;
return p;
}
uint32_t *chunks = a->chunks;
long topchunk = numchunks - 1;
/* if top chunk(s) are zero, ignore */
while (topchunk >= 0 && chunks[topchunk] == 0) {
topchunk--;
}
/* optimized to divide number by the biggest 10^x a uint32_t can hold
so that r_part holds the remainder (x % 1000000000) at the end of
the division */
do {
uint64_t r_part = 0;
for (long i = topchunk; i >= 0; i--) {
/*
* Testing showed 29 bits as a sweet spot:
* * Is a 32-bit constant (good for 32-bit hardware)
* * No more normalization is required than with 30 and 31
* (32 bits requires the least but also a large constant)
* * Doesn't need to be reduced before hand by subtracting the
* divisor in order to keep it 32-bits which obviates the need
* to correct with another term of the remainder after
* multiplying
*
* 2305843009 = floor(ldexp(1, 29) / 1000000000.0 * ldexp(1, 32))
*/
static const unsigned long c = 2305843009; /* .213693952 */
uint64_t q_part = r_part*c >> 29;
r_part = (r_part << 32) | chunks[i];
r_part -= q_part*1000000000;
/* if remainder is still out of modular range, normalize it
and carry over into quotient */
while (r_part >= 1000000000) {
r_part -= 1000000000;
q_part++;
}
chunks[i] = q_part;
}
/* if top chunk(s) became zero, ignore from now on */
while (topchunk >= 0 && chunks[topchunk] == 0) {
topchunk--;
}
/* format each digit chunk, padded to width 9 if not the leading one */
uint32_t val = r_part;
int len = 8*(topchunk >= 0);
while (len-- >= 0 || val) {
*--p = (val % 10) + '0';
val /= 10;
}
} while (topchunk >= 0);
a->len = p_end - p;
return p;
}
/* format arbitrary-precision base 10 fraction */
char * format_ap_frac10(struct ap_int *a,
char *p_start,
long precision)
{
/*
* * chunks are in least-to-most-significant order
* * chunk array is used for intermediate multiplication results
* * digit string buffer is written low-to-high address order
* * high bit of fraction must be left-justified to a chunk
* boundary
*/
long numchunks = a->numchunks;
bool trimlz = precision < 0;
char *p = p_start;
if (trimlz) {
/* trim leading zeros and provide <precision> digits; a->len
will end up greater than the specified precision unless the
value is zero */
precision = -precision;
}
a->len = precision;
if (numchunks == 0) {
/* fast formatting; shift must be <= 60 as top four bits are used
for digit carryout */
if (trimlz && !a->val) {
/* value is zero */
trimlz = false;
}
uint64_t val = a->val << (60 - a->shift);
while (precision > 0) {
val *= 10;
uint32_t c_part = val >> 60;
if (trimlz) {
if (!c_part) {
a->len++;
continue;
}
trimlz = false;
}
*p++ = c_part + '0';
val ^= (uint64_t)c_part << 60;
precision--;
}
return p;
}
uint32_t *chunks = a->chunks;
long bottomchunk = 0, topchunk = numchunks;
while (topchunk > 0 && chunks[topchunk - 1] == 0) {
topchunk--;
}
/* optimized to multiply number by the biggest 10^x a uint32_t can hold
so that c_part holds the carryover into the integer part at the end
of the multiplication */
while (precision > 0) {
/* if bottom chunk(s) are or became zero, skip them */
while (bottomchunk < numchunks && chunks[bottomchunk] == 0) {
bottomchunk++;
}
uint32_t c_part = 0;
for (long i = bottomchunk; i < topchunk; i++) {
uint64_t p_part = chunks[i];
p_part = p_part * 1000000000 + c_part;
c_part = p_part >> 32;
chunks[i] = p_part;
}
if (topchunk < numchunks && c_part) {
chunks[topchunk++] = c_part;
c_part = 0;
}
int len = 9;
if (trimlz && bottomchunk < numchunks) {
if (!c_part) {
a->len += 9;
continue;
}
/* first non-zero chunk has leading zeros? */
for (uint32_t val = c_part; val < 100000000; val *= 10) {
len--;
}
a->len += 9 - len;
trimlz = false;
}
/* format each digit chunk, padded to width 9 if not exceeding
precision */
precision -= len;
if (precision < 0) {
/* remove extra digits */
c_part /= ipow(10, -precision);
len += precision;
}
p += len;
char *p2 = p;
while (len-- > 0) {
*--p2 = (c_part % 10) + '0';
c_part /= 10;
}
}
return p;
}