rockbox/apps/plugins/fft/fft.c
Solomon Peachy 186dbb4527 Convert FFT plugin to using PLA keymapings
Based on an old patch (g#188) by Jean-Louis Biasini

Change-Id: I698b8990b7cd57a28353e86cfc35788aa42455d2
2020-10-23 09:41:21 -04:00

1338 lines
35 KiB
C

/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2009 Delyan Kratunov
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "plugin.h"
#include "lib/helper.h"
#include "lib/pluginlib_exit.h"
#include "lib/configfile.h"
#include "lib/xlcd.h"
#include "math.h"
#include "fracmul.h"
#ifndef HAVE_LCD_COLOR
#include "lib/grey.h"
#endif
#include "lib/mylcd.h"
#include "lib/osd.h"
#ifndef HAVE_LCD_COLOR
GREY_INFO_STRUCT
#endif
#include "lib/pluginlib_actions.h"
/* this set the context to use with PLA */
static const struct button_mapping *plugin_contexts[] = { pla_main_ctx };
#define FFT_PREV_GRAPH PLA_LEFT
#define FFT_NEXT_GRAPH PLA_RIGHT
#define FFT_ORIENTATION PLA_CANCEL
#define FFT_WINDOW PLA_SELECT
#define FFT_AMP_SCALE PLA_UP
#define FFT_FREQ_SCALE PLA_DOWN
#define FFT_QUIT PLA_EXIT
#ifdef HAVE_LCD_COLOR
#include "pluginbitmaps/fft_colors.h"
#endif
#include "kiss_fftr.h"
#include "_kiss_fft_guts.h" /* sizeof(struct kiss_fft_state) */
#include "const.h"
/******************************* FFT globals *******************************/
#define LCD_SIZE MAX(LCD_WIDTH, LCD_HEIGHT)
#if (LCD_SIZE <= 511)
#define FFT_SIZE 1024 /* 512*2 */
#elif (LCD_SIZE <= 1023)
#define FFT_SIZE 2048 /* 1024*2 */
#else
#define FFT_SIZE 4096 /* 2048*2 */
#endif
#define ARRAYLEN_IN (FFT_SIZE)
#define ARRAYLEN_OUT (FFT_SIZE)
#define ARRAYLEN_PLOT (FFT_SIZE/2-1) /* FFT is symmetric, ignore DC */
#define BUFSIZE_FFT (sizeof(struct kiss_fft_state)+\
sizeof(kiss_fft_cpx)*(FFT_SIZE-1))
#define __COEFF(type,size) type##_##size
#define _COEFF(x, y) __COEFF(x,y) /* force CPP evaluation of FFT_SIZE */
#define HANN_COEFF _COEFF(hann, FFT_SIZE)
#define HAMMING_COEFF _COEFF(hamming, FFT_SIZE)
/* cacheline-aligned buffers with COP, otherwise word-aligned */
/* CPU/COP only applies when compiled for more than one core */
#define CACHEALIGN_UP_SIZE(type, len) \
(CACHEALIGN_UP((len)*sizeof(type) + (sizeof(type)-1)) / sizeof(type))
/* Shared */
/* COP + CPU PCM */
static kiss_fft_cpx input[CACHEALIGN_UP_SIZE(kiss_fft_scalar, ARRAYLEN_IN)]
CACHEALIGN_AT_LEAST_ATTR(4);
/* CPU+COP */
#if NUM_CORES > 1
/* Output queue indexes */
static volatile int output_head SHAREDBSS_ATTR = 0;
static volatile int output_tail SHAREDBSS_ATTR = 0;
/* The result is nfft/2 complex frequency bins from DC to Nyquist. */
static kiss_fft_cpx output[2][CACHEALIGN_UP_SIZE(kiss_fft_cpx, ARRAYLEN_OUT)]
SHAREDBSS_ATTR;
#else
/* Only one output buffer */
#define output_head 0
#define output_tail 0
/* The result is nfft/2 complex frequency bins from DC to Nyquist. */
static kiss_fft_cpx output[1][ARRAYLEN_OUT];
#endif
/* Unshared */
/* COP */
static kiss_fft_cfg fft_state SHAREDBSS_ATTR;
static char fft_buffer[CACHEALIGN_UP_SIZE(char, BUFSIZE_FFT)]
CACHEALIGN_AT_LEAST_ATTR(4);
/* CPU */
static uint32_t linf_magnitudes[ARRAYLEN_PLOT]; /* ling freq bin plot */
static uint32_t logf_magnitudes[ARRAYLEN_PLOT]; /* log freq plot output */
static uint32_t *plot; /* use this to plot */
static struct
{
int16_t bin; /* integer bin number */
uint16_t frac; /* interpolation fraction */
} binlog[ARRAYLEN_PLOT] __attribute__((aligned(4)));
/**************************** End of FFT globals ***************************/
/********************************* Settings ********************************/
enum fft_orientation
{
FFT_MIN_OR = 0,
FFT_OR_VERT = 0, /* Amplitude vertical, frequency horizontal * */
FFT_OR_HORZ, /* Amplitude horizontal, frequency vertical */
FFT_MAX_OR,
};
enum fft_display_mode
{
FFT_MIN_DM = 0,
FFT_DM_LINES = 0, /* Bands are displayed as single-pixel lines * */
FFT_DM_BARS, /* Bands are combined into wide bars */
FFT_DM_SPECTROGRAM, /* Band amplitudes are denoted by color */
FFT_MAX_DM,
};
enum fft_amp_scale
{
FFT_MIN_AS = 0,
FFT_AS_LOG = 0, /* Amplitude is plotted on log scale * */
FFT_AS_LIN, /* Amplitude is plotted on linear scale */
FFT_MAX_AS,
};
enum fft_freq_scale
{
FFT_MIN_FS = 0,
FFT_FS_LOG = 0, /* Frequency is plotted on log scale * */
FFT_FS_LIN, /* Frequency is plotted on linear scale */
FFT_MAX_FS
};
enum fft_window_func
{
FFT_MIN_WF = 0,
FFT_WF_HAMMING = 0, /* Hamming window applied to each input frame * */
FFT_WF_HANN, /* Hann window applied to each input frame */
FFT_MAX_WF,
};
static struct fft_config
{
int orientation;
int drawmode;
int amp_scale;
int freq_scale;
int window_func;
} fft_disk =
{
/* Defaults */
.orientation = FFT_OR_VERT,
.drawmode = FFT_DM_LINES,
.amp_scale = FFT_AS_LOG,
.freq_scale = FFT_FS_LOG,
.window_func = FFT_WF_HAMMING,
};
#define CFGFILE_VERSION 0
#define CFGFILE_MINVERSION 0
static const char cfg_filename[] = "fft.cfg";
static struct configdata disk_config[] =
{
{ TYPE_ENUM, FFT_MIN_OR, FFT_MAX_OR,
{ .int_p = &fft_disk.orientation }, "orientation",
(char * []){ [FFT_OR_VERT] = "vertical",
[FFT_OR_HORZ] = "horizontal" } },
{ TYPE_ENUM, FFT_MIN_DM, FFT_MAX_DM,
{ .int_p = &fft_disk.drawmode }, "drawmode",
(char * []){ [FFT_DM_LINES] = "lines",
[FFT_DM_BARS] = "bars",
[FFT_DM_SPECTROGRAM] = "spectrogram" } },
{ TYPE_ENUM, FFT_MIN_AS, FFT_MAX_AS,
{ .int_p = &fft_disk.amp_scale }, "amp scale",
(char * []){ [FFT_AS_LOG] = "logarithmic",
[FFT_AS_LIN] = "linear" } },
{ TYPE_ENUM, FFT_MIN_FS, FFT_MAX_FS,
{ .int_p = &fft_disk.freq_scale }, "freq scale",
(char * []){ [FFT_FS_LOG] = "logarithmic",
[FFT_FS_LIN] = "linear" } },
{ TYPE_ENUM, FFT_MIN_WF, FFT_MAX_WF,
{ .int_p = &fft_disk.window_func }, "window function",
(char * []){ [FFT_WF_HAMMING] = "hamming",
[FFT_WF_HANN] = "hann" } },
};
/* Hint flags for setting changes */
enum fft_setting_flags
{
FFT_SETF_OR = 1 << 0,
FFT_SETF_DM = 1 << 1,
FFT_SETF_AS = 1 << 2,
FFT_SETF_FS = 1 << 3,
FFT_SETF_WF = 1 << 4,
FFT_SETF_ALL = 0x1f
};
/***************************** End of settings *****************************/
/**************************** Operational data *****************************/
#define COLOR_DEFAULT_FG MYLCD_DEFAULT_FG
#define COLOR_DEFAULT_BG MYLCD_DEFAULT_BG
#ifdef HAVE_LCD_COLOR
#define COLOR_MESSAGE_FRAME LCD_RGBPACK(0xc6, 0x00, 0x00)
#define COLOR_MESSAGE_BG LCD_BLACK
#define COLOR_MESSAGE_FG LCD_WHITE
#else
#define COLOR_MESSAGE_FRAME GREY_DARKGRAY
#define COLOR_MESSAGE_BG GREY_WHITE
#define COLOR_MESSAGE_FG GREY_BLACK
#endif
#define FFT_OSD_MARGIN_SIZE 1
#define FFT_PERIOD (HZ/50) /* How fast to try to go */
/* Based on feeding-in a 0db sinewave at FS/4 */
#define QLOG_MAX 0x0009154B
/* Fudge it a little or it's not very visbile */
#define QLIN_MAX (0x00002266 >> 1)
static struct fft_config fft;
typedef void (* fft_drawfn_t)(unsigned, unsigned);
static fft_drawfn_t fft_drawfn = NULL; /* plotting function */
static int fft_spectrogram_pos = -1; /* row or column - only used by one at a time */
static uint32_t fft_graph_scale = 0; /* max level over time, for scaling display */
static int fft_message_id = -1; /* current message id displayed */
static char fft_osd_message[32]; /* current message string displayed */
static long fft_next_frame_tick = 0; /* next tick to attempt drawing */
#ifdef HAVE_LCD_COLOR
#define SHADES BMPWIDTH_fft_colors
#define SPECTROGRAPH_PALETTE(index) (fft_colors[index])
#else
#define SHADES 256
#define SPECTROGRAPH_PALETTE(index) (255 - (index))
#endif
/************************* End of operational data *************************/
/***************************** Math functions ******************************/
/* Apply window function to input */
static void apply_window_func(enum fft_window_func mode)
{
static const int16_t * const coefs[] =
{
[FFT_WF_HAMMING] = HAMMING_COEFF,
[FFT_WF_HANN] = HANN_COEFF,
};
const int16_t * const c = coefs[mode];
for(int i = 0; i < ARRAYLEN_IN; ++i)
input[i].r = (input[i].r * c[i] + 16384) >> 15;
}
/* Calculates the magnitudes from complex numbers and returns the maximum */
static unsigned calc_magnitudes(enum fft_amp_scale scale)
{
/* A major assumption made when calculating the Q*MAX constants
* is that the maximum magnitude is 29 bits long. */
unsigned this_max = 0;
kiss_fft_cpx *this_output = output[output_head] + 1; /* skip DC */
/* Calculate the magnitude, discarding the phase. */
for(int i = 0; i < ARRAYLEN_PLOT; ++i)
{
int32_t re = this_output[i].r;
int32_t im = this_output[i].i;
uint32_t d = re*re + im*im;
if(d > 0)
{
if(d > 0x7FFFFFFF) /* clip */
{
d = 0x7FFFFFFF; /* if our assumptions are correct,
this should never happen. It's just
a safeguard. */
}
if(scale == FFT_AS_LOG)
{
if(d < 0x8000) /* be more precise */
{
/* ln(x ^ .5) = .5*ln(x) */
d = fp16_log(d << 16) >> 1;
}
else
{
d = fp_sqrt(d, 0); /* linear scaling, nothing
bad should happen */
d = fp16_log(d << 16); /* the log function
expects s15.16 values */
}
}
else
{
d = fp_sqrt(d, 0); /* linear scaling, nothing
bad should happen */
}
}
/* Length 2 moving average - last transform and this one */
linf_magnitudes[i] = (linf_magnitudes[i] + d) >> 1;
if(d > this_max)
this_max = d;
}
return this_max;
}
/* Move plot bins into a logarithmic scale by sliding them towards the
* Nyquist bin according to the translation in the binlog array. */
static void log_plot_translate(void)
{
for(int i = ARRAYLEN_PLOT-1; i > 0; --i)
{
int s = binlog[i].bin;
int e = binlog[i-1].bin;
unsigned frac = binlog[i].frac;
int bin = linf_magnitudes[s];
if(frac)
{
/* slope < 1, Interpolate stretched bins (linear for now) */
int diff = linf_magnitudes[s+1] - bin;
do
{
logf_magnitudes[i] = bin + FRACMUL(frac << 15, diff);
frac = binlog[--i].frac;
}
while(frac);
}
else
{
/* slope > 1, Find peak of two or more bins */
while(--s > e)
{
int val = linf_magnitudes[s];
if (val > bin)
bin = val;
}
}
logf_magnitudes[i] = bin;
}
}
/* Calculates the translation for logarithmic plot bins */
static void logarithmic_plot_init(void)
{
/*
* log: y = round(n * ln(x) / ln(n))
* anti: y = round(exp(x * ln(n) / n))
*/
int j = fp16_log((ARRAYLEN_PLOT - 1) << 16);
for(int i = 0; i < ARRAYLEN_PLOT; ++i)
{
binlog[i].bin = (fp16_exp(i * j / (ARRAYLEN_PLOT - 1)) + 32768) >> 16;
}
/* setup fractions for interpolation of stretched bins */
for(int i = 0; i < ARRAYLEN_PLOT-1; i = j)
{
j = i + 1;
/* stop when we have two different values */
while(binlog[j].bin == binlog[i].bin)
j++; /* if here, local slope of curve is < 1 */
if(j > i + 1)
{
/* distribute pieces evenly over stretched interval */
int diff = j - i;
int x = 0;
do
{
binlog[i].frac = (x++ << 16) / diff;
}
while(++i < j);
}
}
}
/************************** End of math functions **************************/
/*********************** Plotting functions (modes) ************************/
static void draw_lines_vertical(unsigned this_max, unsigned graph_max)
{
#if LCD_WIDTH < ARRAYLEN_PLOT /* graph compression */
const int offset = 0;
const int plotwidth = LCD_WIDTH;
#else
const int offset = (LCD_HEIGHT - ARRAYLEN_PLOT) / 2;
const int plotwidth = ARRAYLEN_PLOT;
#endif
mylcd_clear_display();
if(this_max == 0)
{
mylcd_hline(0, LCD_WIDTH - 1, LCD_HEIGHT - 1); /* Draw all "zero" */
return;
}
/* take the maximum of neighboring bins if we have to scale down the
* graph horizontally */
if(LCD_WIDTH < ARRAYLEN_PLOT) /* graph compression */
{
int bins_acc = LCD_WIDTH / 2;
unsigned bins_max = 0;
for(int i = 0, x = 0; i < ARRAYLEN_PLOT; ++i)
{
unsigned bin = plot[i];
if(bin > bins_max)
bins_max = bin;
bins_acc += LCD_WIDTH;
if(bins_acc >= ARRAYLEN_PLOT)
{
int h = LCD_HEIGHT*bins_max / graph_max;
mylcd_vline(x, LCD_HEIGHT - h, LCD_HEIGHT-1);
x++;
bins_acc -= ARRAYLEN_PLOT;
bins_max = 0;
}
}
}
else
{
for(int i = 0; i < plotwidth; ++i)
{
int h = LCD_HEIGHT*plot[i] / graph_max;
mylcd_vline(i + offset, LCD_HEIGHT - h, LCD_HEIGHT-1);
}
}
}
static void draw_lines_horizontal(unsigned this_max, unsigned graph_max)
{
#if LCD_WIDTH < ARRAYLEN_PLOT /* graph compression */
const int offset = 0;
const int plotwidth = LCD_HEIGHT;
#else
const int offset = (LCD_HEIGHT - ARRAYLEN_PLOT) / 2;
const int plotwidth = ARRAYLEN_PLOT;
#endif
mylcd_clear_display();
if(this_max == 0)
{
mylcd_vline(0, 0, LCD_HEIGHT-1); /* Draw all "zero" */
return;
}
/* take the maximum of neighboring bins if we have to scale the graph
* horizontally */
if(LCD_HEIGHT < ARRAYLEN_PLOT) /* graph compression */
{
int bins_acc = LCD_HEIGHT / 2;
unsigned bins_max = 0;
for(int i = 0, y = 0; i < ARRAYLEN_PLOT; ++i)
{
unsigned bin = plot[i];
if(bin > bins_max)
bins_max = bin;
bins_acc += LCD_HEIGHT;
if(bins_acc >= ARRAYLEN_PLOT)
{
int w = LCD_WIDTH*bins_max / graph_max;
mylcd_hline(0, w - 1, y);
y++;
bins_acc -= ARRAYLEN_PLOT;
bins_max = 0;
}
}
}
else
{
for(int i = 0; i < plotwidth; ++i)
{
int w = LCD_WIDTH*plot[i] / graph_max;
mylcd_hline(0, w - 1, i + offset);
}
}
}
static void draw_bars_vertical(unsigned this_max, unsigned graph_max)
{
#if LCD_WIDTH < LCD_HEIGHT
const int bars = 15;
#else
const int bars = 20;
#endif
const int border = 2;
const int barwidth = LCD_WIDTH / (bars + border);
const int width = barwidth - border;
const int offset = (LCD_WIDTH - bars*barwidth + border) / 2;
mylcd_clear_display();
mylcd_hline(0, LCD_WIDTH-1, LCD_HEIGHT-1); /* Draw baseline */
if(this_max == 0)
return; /* nothing more to draw */
int bins_acc = bars / 2;
unsigned bins_max = 0;
for(int i = 0, x = offset;; ++i)
{
unsigned bin = plot[i];
if(bin > bins_max)
bins_max = bin;
bins_acc += bars;
if(bins_acc >= ARRAYLEN_PLOT)
{
int h = LCD_HEIGHT*bins_max / graph_max;
mylcd_fillrect(x, LCD_HEIGHT - h, width, h - 1);
if(i >= ARRAYLEN_PLOT-1)
break;
x += barwidth;
bins_acc -= ARRAYLEN_PLOT;
bins_max = 0;
}
}
}
static void draw_bars_horizontal(unsigned this_max, unsigned graph_max)
{
#if LCD_WIDTH < LCD_HEIGHT
const int bars = 20;
#else
const int bars = 15;
#endif
const int border = 2;
const int barwidth = LCD_HEIGHT / (bars + border);
const int height = barwidth - border;
const int offset = (LCD_HEIGHT - bars*barwidth + border) / 2;
mylcd_clear_display();
mylcd_vline(0, 0, LCD_HEIGHT-1); /* Draw baseline */
if(this_max == 0)
return; /* nothing more to draw */
int bins_acc = bars / 2;
unsigned bins_max = 0;
for(int i = 0, y = offset;; ++i)
{
unsigned bin = plot[i];
if(bin > bins_max)
bins_max = bin;
bins_acc += bars;
if(bins_acc >= ARRAYLEN_PLOT)
{
int w = LCD_WIDTH*bins_max / graph_max;
mylcd_fillrect(1, y, w, height);
if(i >= ARRAYLEN_PLOT-1)
break;
y += barwidth;
bins_acc -= ARRAYLEN_PLOT;
bins_max = 0;
}
}
}
static void draw_spectrogram_vertical(unsigned this_max, unsigned graph_max)
{
const int scale_factor = MIN(LCD_HEIGHT, ARRAYLEN_PLOT);
if(fft_spectrogram_pos < LCD_WIDTH-1)
fft_spectrogram_pos++;
else
mylcd_scroll_left(1);
int bins_acc = scale_factor / 2;
unsigned bins_max = 0;
for(int i = 0, y = LCD_HEIGHT-1;; ++i)
{
unsigned bin = plot[i];
if(bin > bins_max)
bins_max = bin;
bins_acc += scale_factor;
if(bins_acc >= ARRAYLEN_PLOT)
{
unsigned index = (SHADES-1)*bins_max / graph_max;
unsigned color;
/* These happen because we exaggerate the graph a little for
* linear mode */
if(index >= SHADES)
index = SHADES-1;
color = FB_UNPACK_SCALAR_LCD(SPECTROGRAPH_PALETTE(index));
mylcd_set_foreground(color);
mylcd_drawpixel(fft_spectrogram_pos, y);
if(--y < 0)
break;
bins_acc -= ARRAYLEN_PLOT;
bins_max = 0;
}
}
(void)this_max;
}
static void draw_spectrogram_horizontal(unsigned this_max, unsigned graph_max)
{
const int scale_factor = MIN(LCD_WIDTH, ARRAYLEN_PLOT);
if(fft_spectrogram_pos < LCD_HEIGHT-1)
fft_spectrogram_pos++;
else
mylcd_scroll_up(1);
int bins_acc = scale_factor / 2;
unsigned bins_max = 0;
for(int i = 0, x = 0;; ++i)
{
unsigned bin = plot[i];
if(bin > bins_max)
bins_max = bin;
bins_acc += scale_factor;
if(bins_acc >= ARRAYLEN_PLOT)
{
unsigned index = (SHADES-1)*bins_max / graph_max;
unsigned color;
/* These happen because we exaggerate the graph a little for
* linear mode */
if(index >= SHADES)
index = SHADES-1;
color = FB_UNPACK_SCALAR_LCD(SPECTROGRAPH_PALETTE(index));
mylcd_set_foreground(color);
mylcd_drawpixel(x, fft_spectrogram_pos);
if(++x >= LCD_WIDTH)
break;
bins_acc -= ARRAYLEN_PLOT;
bins_max = 0;
}
}
(void)this_max;
}
/******************** End of plotting functions (modes) ********************/
/***************************** FFT functions *******************************/
static bool is_playing(void)
{
return rb->mixer_channel_status(PCM_MIXER_CHAN_PLAYBACK) == CHANNEL_PLAYING;
}
/** functions use in single/multi configuration **/
static inline bool fft_init_fft_lib(void)
{
size_t size = sizeof(fft_buffer);
fft_state = kiss_fft_alloc(FFT_SIZE, 0, fft_buffer, &size);
if(fft_state == NULL)
{
DEBUGF("needed data: %i", (int) size);
return false;
}
return true;
}
static inline bool fft_get_fft(void)
{
int count;
const int16_t *value =
rb->mixer_channel_get_buffer(PCM_MIXER_CHAN_PLAYBACK, &count);
/* This block can introduce discontinuities in our data. Meaning, the
* FFT will not be done a continuous segment of the signal. Which can
* be bad. Or not.
*
* Anyway, this is a demo, not a scientific tool. If you want accuracy,
* do a proper spectrum analysis.*/
/* there are cases when we don't have enough data to fill the buffer */
if(count != ARRAYLEN_IN)
{
if(count < ARRAYLEN_IN)
return false;
count = ARRAYLEN_IN; /* too much - limit */
}
int fft_idx = 0; /* offset in 'input' */
do
{
kiss_fft_scalar left = *value++;
kiss_fft_scalar right = *value++;
input[fft_idx].r = (left + right) >> 1; /* to mono */
} while (fft_idx++, --count > 0);
apply_window_func(fft.window_func);
rb->yield();
kiss_fft(fft_state, input, output[output_tail]);
rb->yield();
return true;
}
#if NUM_CORES > 1
/* use a worker thread if there is another processor core */
static volatile bool fft_thread_run SHAREDDATA_ATTR = false;
static unsigned long fft_thread = 0;
static long fft_thread_stack[CACHEALIGN_UP(DEFAULT_STACK_SIZE*4/sizeof(long))]
CACHEALIGN_AT_LEAST_ATTR(4);
static void fft_thread_entry(void)
{
if(!fft_init_fft_lib())
{
output_tail = -1; /* tell that we bailed */
fft_thread_run = true;
return;
}
fft_thread_run = true;
while(fft_thread_run)
{
if (!is_playing())
{
rb->sleep(HZ/5);
continue;
}
if (!fft_get_fft())
{
rb->sleep(0); /* not enough - ease up */
continue;
}
/* write back output for other processor and invalidate for next
frame read */
rb->commit_discard_dcache();
int new_tail = output_tail ^ 1;
/* if full, block waiting until reader has freed a slot */
while(fft_thread_run)
{
if(new_tail != output_head)
{
output_tail = new_tail;
break;
}
rb->sleep(0);
}
}
}
static bool fft_have_fft(void)
{
return output_head != output_tail;
}
/* Call only after fft_have_fft() has returned true */
static inline void fft_free_fft_output(void)
{
output_head ^= 1; /* finished with this */
}
static bool fft_init_fft(void)
{
/* create worker thread - on the COP for dual-core targets */
fft_thread = rb->create_thread(fft_thread_entry,
fft_thread_stack, sizeof(fft_thread_stack), 0, "fft output thread"
IF_PRIO(, PRIORITY_USER_INTERFACE+1) IF_COP(, COP));
if(fft_thread == 0)
{
rb->splash(HZ, "FFT thread failed create");
return false;
}
/* wait for it to indicate 'ready' */
while(fft_thread_run == false)
rb->sleep(0);
if(output_tail == -1)
{
/* FFT thread bailed-out like The Fed */
rb->thread_wait(fft_thread);
rb->splash(HZ, "FFT thread failed to init");
return false;
}
return true;
}
static void fft_close_fft(void)
{
/* Handle our FFT thread. */
fft_thread_run = false;
rb->thread_wait(fft_thread);
rb->commit_discard_dcache();
}
#else /* NUM_CORES == 1 */
/* everything serialize on single-core and FFT gets to use IRAM main stack if
* target uses IRAM */
static bool fft_have_fft(void)
{
return is_playing() && fft_get_fft();
}
static inline void fft_free_fft_output(void)
{
/* nothing to do */
}
static bool fft_init_fft(void)
{
return fft_init_fft_lib();
}
static inline void fft_close_fft(void)
{
/* nothing to do */
}
#endif /* NUM_CORES */
/************************** End of FFT functions ***************************/
/****************************** OSD functions ******************************/
/* Format a message to display */
static void fft_osd_format_message(enum fft_setting_flags id)
{
const char *msg = "";
switch (id)
{
case FFT_SETF_DM:
msg = (const char * [FFT_MAX_DM]) {
[FFT_DM_LINES] = "Lines",
[FFT_DM_BARS] = "Bars",
[FFT_DM_SPECTROGRAM] = "Spectrogram",
}[fft.drawmode];
break;
case FFT_SETF_WF:
msg = (const char * [FFT_MAX_WF]) {
[FFT_WF_HAMMING] = "Hamming window",
[FFT_WF_HANN] = "Hann window",
}[fft.window_func];
break;
case FFT_SETF_AS:
msg = (const char * [FFT_MAX_AS]) {
[FFT_AS_LOG] = "Logarithmic amplitude",
[FFT_AS_LIN] = "Linear amplitude"
}[fft.amp_scale];
break;
case FFT_SETF_FS:
msg = (const char * [FFT_MAX_FS]) {
[FFT_FS_LOG] = "Logarithmic frequency",
[FFT_FS_LIN] = "Linear frequency",
}[fft.freq_scale];
break;
case FFT_SETF_OR:
rb->snprintf(fft_osd_message, sizeof (fft_osd_message),
(const char * [FFT_MAX_OR]) {
[FFT_OR_VERT] = "Vertical %s",
[FFT_OR_HORZ] = "Horizontal %s",
}[fft.orientation],
(const char * [FFT_MAX_DM]) {
[FFT_DM_LINES ... FFT_DM_BARS] = "amplitude",
[FFT_DM_SPECTROGRAM] = "frequency"
}[fft.drawmode]);
return;
#if 0
/* Pertentially */
case FFT_SETF_VOLUME:
rb->snprintf(fft_osd_message, sizeof (fft_osd_message),
"Volume: %d%s",
rb->sound_val2phys(SOUND_VOLUME, global_settings.volume),
rb->sound_unit(SOUND_VOLUME));
return;
#endif
default:
break;
}
/* Default action: copy string */
rb->strlcpy(fft_osd_message, msg, sizeof (fft_osd_message));
}
static void fft_osd_draw_cb(int x, int y, int width, int height)
{
#if LCD_DEPTH > 1
mylcd_set_foreground(COLOR_MESSAGE_FG);
mylcd_set_background(COLOR_MESSAGE_BG);
#endif
#if FFT_OSD_MARGIN_SIZE != 0
mylcd_set_drawmode(DRMODE_SOLID|DRMODE_INVERSEVID);
mylcd_fillrect(1, 1, width - 2, height - 2);
mylcd_set_drawmode(DRMODE_SOLID);
#endif
mylcd_putsxy(1+FFT_OSD_MARGIN_SIZE, 1+FFT_OSD_MARGIN_SIZE,
fft_osd_message);
#if LCD_DEPTH > 1
mylcd_set_foreground(COLOR_MESSAGE_FRAME);
#endif
mylcd_drawrect(0, 0, width, height);
(void)x; (void)y;
}
static void fft_osd_show_message(enum fft_setting_flags id)
{
fft_osd_format_message(id);
if(!myosd_enabled())
return;
int width, height;
int maxwidth, maxheight;
mylcd_set_viewport(myosd_get_viewport());
myosd_get_max_dims(&maxwidth, &maxheight);
mylcd_setfont(FONT_UI);
mylcd_getstringsize(fft_osd_message, &width, &height);
mylcd_set_viewport(NULL);
width += 2 + 2*FFT_OSD_MARGIN_SIZE;
if(width > maxwidth)
width = maxwidth;
height += 2 + 2*FFT_OSD_MARGIN_SIZE;
if(height > maxheight)
height = maxheight;
bool drawn = myosd_update_pos((LCD_WIDTH - width) / 2,
(LCD_HEIGHT - height) / 2,
width, height);
myosd_show(OSD_SHOW | (drawn ? 0 : OSD_UPDATENOW));
}
static void fft_popupmsg(enum fft_setting_flags id)
{
fft_message_id = id;
}
/************************** End of OSD functions ***************************/
static void fft_setting_update(unsigned which)
{
static fft_drawfn_t fft_drawfns[FFT_MAX_DM][FFT_MAX_OR] =
{
[FFT_DM_LINES] =
{
[FFT_OR_HORZ] = draw_lines_horizontal,
[FFT_OR_VERT] = draw_lines_vertical,
},
[FFT_DM_BARS] =
{
[FFT_OR_HORZ] = draw_bars_horizontal,
[FFT_OR_VERT] = draw_bars_vertical,
},
[FFT_DM_SPECTROGRAM] =
{
[FFT_OR_HORZ] = draw_spectrogram_horizontal,
[FFT_OR_VERT] = draw_spectrogram_vertical,
},
};
if(which & (FFT_SETF_DM | FFT_SETF_OR))
{
fft_drawfn = fft_drawfns[fft.drawmode]
[fft.orientation];
if(fft.drawmode == FFT_DM_SPECTROGRAM)
{
fft_spectrogram_pos = -1;
myosd_lcd_update_prepare();
mylcd_clear_display();
myosd_lcd_update();
}
}
if(which & (FFT_SETF_DM | FFT_SETF_AS))
{
if(fft.drawmode == FFT_DM_SPECTROGRAM)
{
fft_graph_scale = fft.amp_scale == FFT_AS_LIN ?
QLIN_MAX : QLOG_MAX;
}
else
{
fft_graph_scale = 0;
}
}
if(which & FFT_SETF_FS)
{
plot = fft.freq_scale == FFT_FS_LIN ?
linf_magnitudes : logf_magnitudes;
}
if(which & FFT_SETF_AS)
{
memset(linf_magnitudes, 0, sizeof (linf_magnitudes));
memset(logf_magnitudes, 0, sizeof (logf_magnitudes));
}
}
static long fft_draw(void)
{
long tick = *rb->current_tick;
if(fft_message_id != -1)
{
/* Show a new message */
fft_osd_show_message((enum fft_setting_flags)fft_message_id);
fft_message_id = -1;
}
else
{
/* Monitor OSD timeout */
myosd_monitor_timeout();
}
if(TIME_BEFORE(tick, fft_next_frame_tick))
return fft_next_frame_tick - tick; /* Too early */
unsigned this_max;
if(!fft_have_fft())
{
if(is_playing())
return HZ/100;
/* All magnitudes == 0 thus this_max == 0 */
for(int i = 0; i < ARRAYLEN_PLOT; i++)
linf_magnitudes[i] >>= 1; /* decay */
this_max = 0;
}
else
{
this_max = calc_magnitudes(fft.amp_scale);
fft_free_fft_output(); /* COP only */
if(fft.drawmode != FFT_DM_SPECTROGRAM &&
this_max > fft_graph_scale)
{
fft_graph_scale = this_max;
}
}
if (fft.freq_scale == FFT_FS_LOG)
log_plot_translate();
myosd_lcd_update_prepare();
mylcd_set_foreground(COLOR_DEFAULT_FG);
mylcd_set_background(COLOR_DEFAULT_BG);
fft_drawfn(this_max, fft_graph_scale);
myosd_lcd_update();
fft_next_frame_tick = tick + FFT_PERIOD;
return fft_next_frame_tick - *rb->current_tick;
}
static void fft_osd_init(void *buf, size_t bufsize)
{
int width, height;
mylcd_setfont(FONT_UI);
mylcd_getstringsize("M", NULL, &height);
width = LCD_WIDTH;
height += 2 + 2*FFT_OSD_MARGIN_SIZE;
myosd_init(OSD_INIT_MAJOR_HEIGHT | OSD_INIT_MINOR_MAX, buf, bufsize,
fft_osd_draw_cb, &width, &height, NULL);
myosd_set_timeout(HZ);
}
static void fft_cleanup(void)
{
myosd_destroy();
fft_close_fft();
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
rb->cancel_cpu_boost();
#endif
#ifndef HAVE_LCD_COLOR
grey_release();
#endif
#ifdef HAVE_BACKLIGHT
backlight_use_settings();
#endif
/* save settings if changed */
if (rb->memcmp(&fft, &fft_disk, sizeof(fft)))
{
fft_disk = fft;
configfile_save(cfg_filename, disk_config, ARRAYLEN(disk_config),
CFGFILE_VERSION);
}
}
static bool fft_setup(void)
{
atexit(fft_cleanup);
configfile_load(cfg_filename, disk_config, ARRAYLEN(disk_config),
CFGFILE_MINVERSION);
fft = fft_disk; /* copy to running config */
if(!fft_init_fft())
return false;
/* get the remainder of the plugin buffer for OSD and perhaps
greylib */
size_t bufsize = 0;
unsigned char *buf = rb->plugin_get_buffer(&bufsize);
#ifndef HAVE_LCD_COLOR
/* initialize the greyscale buffer.*/
long grey_size;
if(!grey_init(buf, bufsize, GREY_ON_COP | GREY_BUFFERED,
LCD_WIDTH, LCD_HEIGHT, &grey_size))
{
rb->splash(HZ, "Couldn't init greyscale display");
return false;
}
grey_show(true);
buf += grey_size;
bufsize -= grey_size;
#endif /* !HAVE_LCD_COLOR */
fft_osd_init(buf, bufsize);
#if LCD_DEPTH > 1
myosd_lcd_update_prepare();
rb->lcd_set_backdrop(NULL);
mylcd_clear_display();
myosd_lcd_update();
#endif
#ifdef HAVE_BACKLIGHT
backlight_ignore_timeout();
#endif
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
rb->trigger_cpu_boost();
#endif
logarithmic_plot_init();
fft_setting_update(FFT_SETF_ALL);
fft_next_frame_tick = *rb->current_tick;
return true;
}
enum plugin_status plugin_start(const void* parameter)
{
bool run = true;
if(!fft_setup())
return PLUGIN_ERROR;
while(run)
{
long delay = fft_draw();
if(delay <= 0)
{
delay = 0;
rb->yield(); /* tmo = 0 won't yield */
}
int button = pluginlib_getaction(TIMEOUT_NOBLOCK, plugin_contexts, ARRAYLEN(plugin_contexts));
switch (button)
{
case FFT_QUIT:
run = false;
break;
case FFT_ORIENTATION:
if (++fft.orientation >= FFT_MAX_OR)
fft.orientation = FFT_MIN_OR;
fft_setting_update(FFT_SETF_OR);
fft_popupmsg(FFT_SETF_OR);
break;
case FFT_PREV_GRAPH:
if (fft.drawmode-- <= FFT_MIN_DM)
fft.drawmode = FFT_MAX_DM-1;
fft_setting_update(FFT_SETF_DM);
fft_popupmsg(FFT_SETF_DM);
break;
case FFT_NEXT_GRAPH:
if (++fft.drawmode >= FFT_MAX_DM)
fft.drawmode = FFT_MIN_DM;
fft_setting_update(FFT_SETF_DM);
fft_popupmsg(FFT_SETF_DM);
break;
case FFT_AMP_SCALE:
if (++fft.amp_scale >= FFT_MAX_AS)
fft.amp_scale = FFT_MIN_AS;
fft_setting_update(FFT_SETF_AS);
fft_popupmsg(FFT_SETF_AS);
break;
#ifdef FFT_FREQ_SCALE /* 'Till all keymaps are defined */
case FFT_FREQ_SCALE:
if (++fft.freq_scale >= FFT_MAX_FS)
fft.freq_scale = FFT_MIN_FS;
fft_setting_update(FFT_SETF_FS);
fft_popupmsg(FFT_SETF_FS);
break;
#endif
case FFT_WINDOW:
if(++fft.window_func >= FFT_MAX_WF)
fft.window_func = FFT_MIN_WF;
fft_setting_update(FFT_SETF_WF);
fft_popupmsg(FFT_SETF_WF);
break;
default:
exit_on_usb(button);
break;
}
}
return PLUGIN_OK;
(void)parameter;
}