#lang sicp (define (deriv exp var) (cond ((number? exp) 0) ((variable? exp) (if (same-variable? exp var) 1 0)) ((sum? exp) (make-sum (deriv (addend exp) var) (deriv (augend exp) var))) ((product? exp) (make-sum (make-product (multiplier exp) (deriv (multiplicand exp) var)) (make-product (deriv (multiplier exp) var) (multiplicand exp)))) ((exponentiation? exp) ;;(make-product (exponent exp) (deriv (base exp) var)) (let ((e (exponent exp)) (b (base exp))) (make-product e (make-product (make-exponentiation b (- e 1)) (deriv b var))))) (else (error "unknown expression type -- DERIV" exp)))) ;; representing algebraic expressions (define (variable? x) (symbol? x)) (define (same-variable? v1 v2) (and (variable? v1) (variable? v2) (eq? v1 v2))) ;;(define (make-sum a1 a2) (list '+ a1 a2)) ;;(define (make-product m1 m2) (list '* m1 m2)) (define (more-than-2-terms x) (pair? (cdddr x))) ;;(define (sum? x) ;; (and (pair? x) (eq? (car x) '+))) ;; ;;(define (addend s) (cadr s)) ;; ;;(define (augend s) ;; (if (more-than-2-terms s) ;; (cons '+ (cddr s)) ;; (caddr s))) ;; ;;(define (product? x) ;; (and (pair? x) (eq? (car x) '*))) ;; ;;(define (multiplier p) (cadr p)) ;; ;;(define (multiplicand p) ;; (if (more-than-2-terms p) ;; (cons '* (cddr p)) ;; (caddr p))) ;: (deriv '(+ x 3) 'x) ;: (deriv '(* x y) 'x) ;: (deriv '(* (* x y) (+ x 3)) 'x) ;; With simplification ;;(define (make-sum a1 a2) ;; (cond ((=number? a1 0) a2) ;; ((=number? a2 0) a1) ;; ((and (number? a1) (number? a2)) (+ a1 a2)) ;; (else (list '+ a1 a2)))) (define (=number? exp num) (and (number? exp) (= exp num))) ;;(define (make-product m1 m2) ;; (cond ((or (=number? m1 0) (=number? m2 0)) 0) ;; ((=number? m1 1) m2) ;; ((=number? m2 1) m1) ;; ((and (number? m1) (number? m2)) (* m1 m2)) ;; (else (list '* m1 m2)))) ;; Exercise 2.56 (define (make-exponentiation b p) (cond ((=number? p 0) 1) ((=number? p 1) b) ((and (number? b) (number? p)) (expt b p)) (else (list '** b p)))) (define (base e) (cadr e)) (define (exponent e) (caddr e)) (define (exponentiation? x) (and (pair? x) (eq? (car x) '**))) ;; Exercise 2.58 (define (make-sum a1 a2) (cond ((=number? a1 0) a2) ((=number? a2 0) a1) ((and (number? a1) (number? a2)) (+ a1 a2)) ((product? a2) (list a1 '+ (multiplier a2) '* (multiplicand a2))) (else (list a1 '+ a2)))) (define (make-product m1 m2) (cond ((or (=number? m1 0) (=number? m2 0)) 0) ((=number? m1 1) m2) ((=number? m2 1) m1) ((and (number? m1) (number? m2)) (* m1 m2)) (else (list m1 '* m2)))) (define (sum? x) (and (pair? x) (eq? (cadr x) '+))) (define (addend s) (car s)) ;; Special case of multiplication distributing across addition. It ;; should be possible to rewrite augend and/or multiplicand to deal ;; with this case (define (augend s) (if (product? (cddr s)) (cddr s) (caddr s))) (define (product? x) (and (pair? x) (eq? (cadr x) '*))) (define (multiplier p) (car p)) (define (multiplicand p) (caddr p))