sicp/2_56.rkt

134 lines
3.3 KiB
Racket

#lang sicp
(define (deriv exp var)
(cond ((number? exp) 0)
((variable? exp)
(if (same-variable? exp var) 1 0))
((sum? exp)
(make-sum (deriv (addend exp) var)
(deriv (augend exp) var)))
((product? exp)
(make-sum
(make-product (multiplier exp)
(deriv (multiplicand exp) var))
(make-product (deriv (multiplier exp) var)
(multiplicand exp))))
((exponentiation? exp) ;;(make-product (exponent exp) (deriv (base exp) var))
(let ((e (exponent exp))
(b (base exp)))
(make-product e
(make-product
(make-exponentiation b (- e 1))
(deriv b var)))))
(else
(error "unknown expression type -- DERIV" exp))))
;; representing algebraic expressions
(define (variable? x) (symbol? x))
(define (same-variable? v1 v2)
(and (variable? v1) (variable? v2) (eq? v1 v2)))
;;(define (make-sum a1 a2) (list '+ a1 a2))
;;(define (make-product m1 m2) (list '* m1 m2))
(define (more-than-2-terms x) (pair? (cdddr x)))
;;(define (sum? x)
;; (and (pair? x) (eq? (car x) '+)))
;;
;;(define (addend s) (cadr s))
;;
;;(define (augend s)
;; (if (more-than-2-terms s)
;; (cons '+ (cddr s))
;; (caddr s)))
;;
;;(define (product? x)
;; (and (pair? x) (eq? (car x) '*)))
;;
;;(define (multiplier p) (cadr p))
;;
;;(define (multiplicand p)
;; (if (more-than-2-terms p)
;; (cons '* (cddr p))
;; (caddr p)))
;: (deriv '(+ x 3) 'x)
;: (deriv '(* x y) 'x)
;: (deriv '(* (* x y) (+ x 3)) 'x)
;; With simplification
;;(define (make-sum a1 a2)
;; (cond ((=number? a1 0) a2)
;; ((=number? a2 0) a1)
;; ((and (number? a1) (number? a2)) (+ a1 a2))
;; (else (list '+ a1 a2))))
(define (=number? exp num)
(and (number? exp) (= exp num)))
;;(define (make-product m1 m2)
;; (cond ((or (=number? m1 0) (=number? m2 0)) 0)
;; ((=number? m1 1) m2)
;; ((=number? m2 1) m1)
;; ((and (number? m1) (number? m2)) (* m1 m2))
;; (else (list '* m1 m2))))
;; Exercise 2.56
(define (make-exponentiation b p)
(cond ((=number? p 0) 1)
((=number? p 1) b)
((and (number? b) (number? p)) (expt b p))
(else (list '** b p))))
(define (base e) (cadr e))
(define (exponent e) (caddr e))
(define (exponentiation? x) (and (pair? x) (eq? (car x) '**)))
;; Exercise 2.58
(define (make-sum a1 a2)
(cond ((=number? a1 0) a2)
((=number? a2 0) a1)
((and (number? a1) (number? a2)) (+ a1 a2))
((product? a2) (list a1 '+ (multiplier a2) '* (multiplicand a2)))
(else (list a1 '+ a2))))
(define (make-product m1 m2)
(cond ((or (=number? m1 0) (=number? m2 0)) 0)
((=number? m1 1) m2)
((=number? m2 1) m1)
((and (number? m1) (number? m2)) (* m1 m2))
(else (list m1 '* m2))))
(define (sum? x)
(and (pair? x) (eq? (cadr x) '+)))
(define (addend s) (car s))
;; Special case of multiplication distributing across addition. It
;; should be possible to rewrite augend and/or multiplicand to deal
;; with this case
(define (augend s)
(if (product? (cddr s))
(cddr s)
(caddr s)))
(define (product? x)
(and (pair? x) (eq? (cadr x) '*)))
(define (multiplier p) (car p))
(define (multiplicand p) (caddr p))