sicp/2_63.rkt

148 lines
4.6 KiB
Racket

#lang sicp
;; BINARY TREES
(define (entry tree) (car tree))
(define (left-branch tree) (cadr tree))
(define (right-branch tree) (caddr tree))
(define (make-tree entry left right)
(list entry left right))
(define (element-of-set? x set)
(cond ((null? set) false)
((= x (entry set)) true)
((< x (entry set))
(element-of-set? x (left-branch set)))
((> x (entry set))
(element-of-set? x (right-branch set)))))
(define (adjoin-set x set)
(cond ((null? set) (make-tree x '() '()))
((= x (entry set)) set)
((< x (entry set))
(make-tree (entry set)
(adjoin-set x (left-branch set))
(right-branch set)))
((> x (entry set))
(make-tree (entry set)
(left-branch set)
(adjoin-set x (right-branch set))))))
;; Ordered
(define (intersection-ordered-list set1 set2)
(if (or (null? set1) (null? set2))
'()
(let ((x1 (car set1)) (x2 (car set2)))
(cond ((= x1 x2)
(cons x1
(intersection-ordered-list (cdr set1)
(cdr set2))))
((< x1 x2)
(intersection-ordered-list (cdr set1) set2))
((< x2 x1)
(intersection-ordered-list set1 (cdr set2)))))))
(define (union-ordered-list set1 set2)
(cond ((null? set1) set2)
((null? set2) set1)
(else
(let ((x1 (car set1))
(x2 (car set2)))
(cond ((= x1 x2) (cons x1 (union-ordered-list (cdr set1) (cdr set2))))
((< x1 x2) (cons x1 (union-ordered-list (cdr set1) set2)))
(else (cons x2 (union-ordered-list set1 (cdr set2)))))))))
;; EXERCISE 2.63
(define (tree->list-1 tree)
(if (null? tree)
'()
(append (tree->list-1 (left-branch tree))
(cons (entry tree)
(tree->list-1 (right-branch tree))))))
(define (tree->list-2 tree)
(define (copy-to-list tree result-list)
(if (null? tree)
result-list
(copy-to-list (left-branch tree)
(cons (entry tree)
(copy-to-list (right-branch tree)
result-list)))))
(copy-to-list tree '()))
(define (list->tree elements)
(car (partial-tree elements (length elements))))
(define (partial-tree elts n)
(if (= n 0)
(cons '() elts)
(let ((left-size (quotient (- n 1) 2)))
(let ((left-result (partial-tree elts left-size)))
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1))))
(let ((this-entry (car non-left-elts))
(right-result (partial-tree (cdr non-left-elts)
right-size)))
(let ((right-tree (car right-result))
(remaining-elts (cdr right-result)))
(cons (make-tree this-entry left-tree right-tree)
remaining-elts))))))))
(define tree1
(make-tree 7
(make-tree 3
(make-tree 1 '() '())
(make-tree 5 '() '()))
(make-tree 9
'()
(make-tree 11 '() '()))))
(define tree2
(make-tree 3
(make-tree 1 '() '())
(make-tree 7
(make-tree 5 '() '())
(make-tree 9
'()
(make-tree 11 '() '())))))
(define tree3
(make-tree 5
(make-tree 3
(make-tree 1 '() '())
'())
(make-tree 9
(make-tree 7 '() '())
(make-tree 11 '() '()))))
(define tree4
(make-tree 1 '()
(make-tree 3 '()
(make-tree 5 '()
(make-tree 7 '()
(make-tree 9 '()
(make-tree 11 '() '())))))))
(define set1 (list->tree '(1 2 3 4)))
(define set2 (list->tree '(3 4 5 6)))
;; 2.65
;; list->tree and tree->list-2 are O(n). So are intersection and union for
;; ordered lists. So the following are O(n).
(define (intersection-set set1 set2)
(list->tree
(intersection-ordered-list
(tree->list-2 set1)
(tree->list-2 set2))))
(define (union-set set1 set2)
(list->tree
(union-ordered-list
(tree->list-2 set1)
(tree->list-2 set2))))