arduino_projects/sleep/sleep.ino.old

165 lines
6.1 KiB
Arduino

#include <avr/sleep.h>
/* Sleep Demo Serial
* -----------------
* Example code to demonstrate the sleep functions in an Arduino.
*
* use a resistor between RX and pin2. By default RX is pulled up to 5V
* therefore, we can use a sequence of Serial data forcing RX to 0, what
* will make pin2 go LOW activating INT0 external interrupt, bringing
* the MCU back to life
*
* there is also a time counter that will put the MCU to sleep after 10 secs
*
* NOTE: when coming back from POWER-DOWN mode, it takes a bit
* until the system is functional at 100%!! (typically <1sec)
*
* Copyright (C) 2006 MacSimski 2006-12-30
* Copyright (C) 2007 D. Cuartielles 2007-07-08 - Mexico DF
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
int wakePin = 2; // pin used for waking up
int sleepStatus = 0; // variable to store a request for sleep
int count = 0; // counter
void wakeUpNow() // here the interrupt is handled after wakeup
{
// execute code here after wake-up before returning to the loop() function
// timers and code using timers (serial.print and more...) will not work here.
// we don't really need to execute any special functions here, since we
// just want the thing to wake up
}
void setup()
{
pinMode(wakePin, INPUT);
Serial.begin(9600);
/* Now it is time to enable an interrupt. In the function call
* attachInterrupt(A, B, C)
* A can be either 0 or 1 for interrupts on pin 2 or 3.
*
* B Name of a function you want to execute while in interrupt A.
*
* C Trigger mode of the interrupt pin. can be:
* LOW a low level trigger
* CHANGE a change in level trigger
* RISING a rising edge of a level trigger
* FALLING a falling edge of a level trigger
*
* In all but the IDLE sleep modes only LOW can be used.
*/
attachInterrupt(0, wakeUpNow, LOW); // use interrupt 0 (pin 2) and run function
// wakeUpNow when pin 2 gets LOW
}
void sleepNow() // here we put the arduino to sleep
{
/* Now is the time to set the sleep mode. In the Atmega8 datasheet
* http://www.atmel.com/dyn/resources/prod_documents/doc2486.pdf on page 35
* there is a list of sleep modes which explains which clocks and
* wake up sources are available in which sleep mode.
*
* In the avr/sleep.h file, the call names of these sleep modes are to be found:
*
* The 5 different modes are:
* SLEEP_MODE_IDLE -the least power savings
* SLEEP_MODE_ADC
* SLEEP_MODE_PWR_SAVE
* SLEEP_MODE_STANDBY
* SLEEP_MODE_PWR_DOWN -the most power savings
*
* For now, we want as much power savings as possible, so we
* choose the according
* sleep mode: SLEEP_MODE_PWR_DOWN
*
*/
set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
sleep_enable(); // enables the sleep bit in the mcucr register
// so sleep is possible. just a safety pin
/* Now it is time to enable an interrupt. We do it here so an
* accidentally pushed interrupt button doesn't interrupt
* our running program. if you want to be able to run
* interrupt code besides the sleep function, place it in
* setup() for example.
*
* In the function call attachInterrupt(A, B, C)
* A can be either 0 or 1 for interrupts on pin 2 or 3.
*
* B Name of a function you want to execute at interrupt for A.
*
* C Trigger mode of the interrupt pin. can be:
* LOW a low level triggers
* CHANGE a change in level triggers
* RISING a rising edge of a level triggers
* FALLING a falling edge of a level triggers
*
* In all but the IDLE sleep modes only LOW can be used.
*/
attachInterrupt(0,wakeUpNow, LOW); // use interrupt 0 (pin 2) and run function
// wakeUpNow when pin 2 gets LOW
sleep_mode(); // here the device is actually put to sleep!!
// THE PROGRAM CONTINUES FROM HERE AFTER WAKING UP
sleep_disable(); // first thing after waking from sleep:
// disable sleep...
detachInterrupt(0); // disables interrupt 0 on pin 2 so the
// wakeUpNow code will not be executed
// during normal running time.
}
void loop()
{
// display information about the counter
Serial.print("Awake for ");
Serial.print(count);
Serial.println("sec");
count++;
delay(1000); // waits for a second
// compute the serial input
if (Serial.available()) {
int val = Serial.read();
if (val == 'S') {
Serial.println("Serial: Entering Sleep mode");
delay(100); // this delay is needed, the sleep
//function will provoke a Serial error otherwise!!
count = 0;
sleepNow(); // sleep function called here
}
if (val == 'A') {
Serial.println("Hola Caracola"); // classic dummy message
}
}
// check if it should go to sleep because of time
if (count >= 10) {
Serial.println("Timer: Entering Sleep mode");
delay(100); // this delay is needed, the sleep
//function will provoke a Serial error otherwise!!
count = 0;
sleepNow(); // sleep function called here
}
}