Initial commit

This commit is contained in:
g1n 2021-07-25 21:39:02 +03:00
commit bd2b796c50
24 changed files with 1917 additions and 0 deletions

18
.cargo/config.toml Normal file
View File

@ -0,0 +1,18 @@
[target.'cfg(target_os = "linux")']
rustflags = ["-C", "link-arg=-nostartfiles"]
[target.'cfg(target_os = "windows")']
rustflags = ["-C", "link-args=/ENTRY:_start /SUBSYSTEM:console"]
[target.'cfg(target_os = "macos")']
rustflags = ["-C", "link-args=-e __start -static -nostartfiles"]
[unstable]
build-std-features = ["compiler-builtins-mem"]
build-std = ["core", "compiler_builtins", "alloc"]
[build]
target = "x86_64-gros.json"
[target.'cfg(target_os = "none")']
runner = "bootimage runner"

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
/target
*~
*#

226
Cargo.lock generated Normal file
View File

@ -0,0 +1,226 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "autocfg"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cdb031dd78e28731d87d56cc8ffef4a8f36ca26c38fe2de700543e627f8a464a"
[[package]]
name = "bit_field"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ed8765909f9009617974ab6b7d332625b320b33c326b1e9321382ef1999b5d56"
[[package]]
name = "bitflags"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cf1de2fe8c75bc145a2f577add951f8134889b4795d47466a54a5c846d691693"
[[package]]
name = "bootloader"
version = "0.9.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a3c1ceed1cd9e61c7998100cc18c13d413aa40d018992b871ab8e7435ce6372"
[[package]]
name = "cfg-if"
version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4785bdd1c96b2a846b2bd7cc02e86b6b3dbf14e7e53446c4f54c92a361040822"
[[package]]
name = "conquer-once"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "96eb12fb69466716fbae9009d389e6a30830ae8975e170eff2d2cff579f9efa3"
dependencies = [
"conquer-util",
]
[[package]]
name = "conquer-util"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "654fb2472cc369d311c547103a1fa81d467bef370ae7a0680f65939895b1182a"
[[package]]
name = "crossbeam-queue"
version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "774ba60a54c213d409d5353bda12d49cd68d14e45036a285234c8d6f91f92570"
dependencies = [
"cfg-if",
"crossbeam-utils",
"maybe-uninit",
]
[[package]]
name = "crossbeam-utils"
version = "0.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c3c7c73a2d1e9fc0886a08b93e98eb643461230d5f1925e4036204d5f2e261a8"
dependencies = [
"autocfg",
"cfg-if",
]
[[package]]
name = "futures-core"
version = "0.3.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "af51b1b4a7fdff033703db39de8802c673eb91855f2e0d47dcf3bf2c0ef01f99"
[[package]]
name = "futures-task"
version = "0.3.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bbe54a98670017f3be909561f6ad13e810d9a51f3f061b902062ca3da80799f2"
[[package]]
name = "futures-util"
version = "0.3.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "67eb846bfd58e44a8481a00049e82c43e0ccb5d61f8dc071057cb19249dd4d78"
dependencies = [
"autocfg",
"futures-core",
"futures-task",
"pin-project-lite",
"pin-utils",
]
[[package]]
name = "gros"
version = "0.1.0"
dependencies = [
"bootloader",
"conquer-once",
"crossbeam-queue",
"futures-util",
"lazy_static",
"linked_list_allocator",
"pc-keyboard",
"pic8259",
"spin",
"uart_16550",
"volatile 0.2.7",
"x86_64",
]
[[package]]
name = "lazy_static"
version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646"
dependencies = [
"spin",
]
[[package]]
name = "linked_list_allocator"
version = "0.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d0b725207570aa16096962d0b20c79f8a543df2280bd3c903022b9b0b4d7ea68"
dependencies = [
"spinning_top",
]
[[package]]
name = "lock_api"
version = "0.4.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0382880606dff6d15c9476c416d18690b72742aa7b605bb6dd6ec9030fbf07eb"
dependencies = [
"scopeguard",
]
[[package]]
name = "maybe-uninit"
version = "2.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "60302e4db3a61da70c0cb7991976248362f30319e88850c487b9b95bbf059e00"
[[package]]
name = "pc-keyboard"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c6f2d937e3b8d63449b01401e2bae4041bc9dd1129c2e3e0d239407cf6635ac"
[[package]]
name = "pic8259"
version = "0.10.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "08cc920d83ee33c0f9b73aa441e75468bf2d10c959a3eb6260cf720b05ac91a1"
dependencies = [
"x86_64",
]
[[package]]
name = "pin-project-lite"
version = "0.2.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8d31d11c69a6b52a174b42bdc0c30e5e11670f90788b2c471c31c1d17d449443"
[[package]]
name = "pin-utils"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8b870d8c151b6f2fb93e84a13146138f05d02ed11c7e7c54f8826aaaf7c9f184"
[[package]]
name = "scopeguard"
version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d29ab0c6d3fc0ee92fe66e2d99f700eab17a8d57d1c1d3b748380fb20baa78cd"
[[package]]
name = "spin"
version = "0.5.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6e63cff320ae2c57904679ba7cb63280a3dc4613885beafb148ee7bf9aa9042d"
[[package]]
name = "spinning_top"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "75adad84ee84b521fb2cca2d4fd0f1dab1d8d026bda3c5bea4ca63b5f9f9293c"
dependencies = [
"lock_api",
]
[[package]]
name = "uart_16550"
version = "0.2.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "65ad019480ef5ff8ffe66d6f6a259cd87cf317649481394981db1739d844f374"
dependencies = [
"bitflags",
"x86_64",
]
[[package]]
name = "volatile"
version = "0.2.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f6b06ad3ed06fef1713569d547cdbdb439eafed76341820fb0e0344f29a41945"
[[package]]
name = "volatile"
version = "0.4.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e4c2dbd44eb8b53973357e6e207e370f0c1059990df850aca1eca8947cf464f0"
[[package]]
name = "x86_64"
version = "0.14.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d95947de37ad0d2d9a4a4dd22e0d042e034e5cbd7ab53edbca0d8035e0a6a64d"
dependencies = [
"bit_field",
"bitflags",
"volatile 0.4.4",
]

51
Cargo.toml Normal file
View File

@ -0,0 +1,51 @@
[package]
name = "gros"
version = "0.1.0"
authors = ["g1n <g1n@ttm.sh>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
bootloader = { version = "0.9.8", features = ["map_physical_memory"]}
volatile = "0.2.6"
spin = "0.5.2"
x86_64 = "0.14.2"
uart_16550 = "0.2.0"
pic8259 = "0.10.1"
pc-keyboard = "0.5.0"
linked_list_allocator = "0.9.0"
[dependencies.lazy_static]
version = "1.0"
features = ["spin_no_std"]
[dependencies.crossbeam-queue]
version = "0.2.1"
default-features = false
features = ["alloc"]
[dependencies.conquer-once]
version = "0.2.0"
default-features = false
[dependencies.futures-util]
version = "0.3.4"
default-features = false
features = ["alloc"]
[package.metadata.bootimage]
test-args = [
"-device", "isa-debug-exit,iobase=0xf4,iosize=0x04", "-serial", "stdio",
"-display", "none"
]
test-success-exit-code = 33 # (0x10 << 1) | 1
test-timeout = 300
[[test]]
name = "should_panic"
harness = false
[[test]]
name = "stack_overflow"
harness = false

93
src/allocator.rs Normal file
View File

@ -0,0 +1,93 @@
use alloc::alloc::{GlobalAlloc, Layout};
use core::ptr::null_mut;
use linked_list_allocator::LockedHeap;
pub struct Dummy;
pub mod bump;
pub mod linked_list;
pub mod fixed_size_block;
use linked_list::LinkedListAllocator;
unsafe impl GlobalAlloc for Dummy {
unsafe fn alloc(&self, _layout: Layout) -> *mut u8 {
null_mut()
}
unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {
panic!("dealloc should be never called")
}
}
use bump::BumpAllocator;
use fixed_size_block::FixedSizeBlockAllocator;
#[global_allocator]
static ALLOCATOR: Locked<FixedSizeBlockAllocator> = Locked::new(
FixedSizeBlockAllocator::new());
pub const HEAP_START: usize = 0x_4444_4444_0000;
pub const HEAP_SIZE: usize = 100 * 1024;
use x86_64::{
structures::paging::{
mapper::MapToError, FrameAllocator, Mapper, Page, PageTableFlags, Size4KiB,
},
VirtAddr,
};
pub fn init_heap(
mapper: &mut impl Mapper<Size4KiB>,
frame_allocator: &mut impl FrameAllocator<Size4KiB>,
) -> Result<(), MapToError<Size4KiB>> {
let page_range = {
let heap_start = VirtAddr::new(HEAP_START as u64);
let heap_end = heap_start + HEAP_SIZE - 1u64;
let heap_start_page = Page::containing_address(heap_start);
let heap_end_page = Page::containing_address(heap_end);
Page::range_inclusive(heap_start_page, heap_end_page)
};
for page in page_range {
let frame = frame_allocator
.allocate_frame()
.ok_or(MapToError::FrameAllocationFailed)?;
let flags = PageTableFlags::PRESENT | PageTableFlags::WRITABLE;
unsafe {
mapper.map_to(page, frame, flags, frame_allocator)?.flush()
};
}
unsafe {
ALLOCATOR.lock().init(HEAP_START, HEAP_SIZE);
}
Ok(())
}
/// A wrapper around spin::Mutex to permit trait implementations.
pub struct Locked<A> {
inner: spin::Mutex<A>,
}
impl<A> Locked<A> {
pub const fn new(inner: A) -> Self {
Locked {
inner: spin::Mutex::new(inner),
}
}
pub fn lock(&self) -> spin::MutexGuard<A> {
self.inner.lock()
}
}
/// Align the given address `addr` upwards to alignment `align`.
fn align_up(addr: usize, align: usize) -> usize {
let remainder = addr % align;
if remainder == 0 {
addr // addr already aligned
} else {
addr - remainder + align
}
}

61
src/allocator/bump.rs Normal file
View File

@ -0,0 +1,61 @@
pub struct BumpAllocator {
heap_start: usize,
heap_end: usize,
next: usize,
allocations: usize,
}
impl BumpAllocator {
/// Creates a new empty bump allocator.
pub const fn new() -> Self {
BumpAllocator {
heap_start: 0,
heap_end: 0,
next: 0,
allocations: 0,
}
}
/// Initializes the bump allocator with the given heap bounds.
///
/// This method is unsafe because the caller must ensure that the given
/// memory range is unused. Also, this method must be called only once.
pub unsafe fn init(&mut self, heap_start: usize, heap_size: usize) {
self.heap_start = heap_start;
self.heap_end = heap_start + heap_size;
self.next = heap_start;
}
}
use alloc::alloc::{GlobalAlloc, Layout};
use super::{align_up, Locked};
use core::ptr;
unsafe impl GlobalAlloc for Locked<BumpAllocator> {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
let mut bump = self.lock(); // get a mutable reference
let alloc_start = align_up(bump.next, layout.align());
let alloc_end = match alloc_start.checked_add(layout.size()) {
Some(end) => end,
None => return ptr::null_mut(),
};
if alloc_end > bump.heap_end {
ptr::null_mut() // out of memory
} else {
bump.next = alloc_end;
bump.allocations += 1;
alloc_start as *mut u8
}
}
unsafe fn dealloc(&self, _ptr: *mut u8, _layout: Layout) {
let mut bump = self.lock(); // get a mutable reference
bump.allocations -= 1;
if bump.allocations == 0 {
bump.next = bump.heap_start;
}
}
}

View File

@ -0,0 +1,103 @@
use super::Locked;
use alloc::alloc::{GlobalAlloc, Layout};
use core::{
mem,
ptr::{self, NonNull},
};
/// The block sizes to use.
///
/// The sizes must each be power of 2 because they are also used as
/// the block alignment (alignments must be always powers of 2).
const BLOCK_SIZES: &[usize] = &[8, 16, 32, 64, 128, 256, 512, 1024, 2048];
/// Choose an appropriate block size for the given layout.
///
/// Returns an index into the `BLOCK_SIZES` array.
fn list_index(layout: &Layout) -> Option<usize> {
let required_block_size = layout.size().max(layout.align());
BLOCK_SIZES.iter().position(|&s| s >= required_block_size)
}
struct ListNode {
next: Option<&'static mut ListNode>,
}
pub struct FixedSizeBlockAllocator {
list_heads: [Option<&'static mut ListNode>; BLOCK_SIZES.len()],
fallback_allocator: linked_list_allocator::Heap,
}
impl FixedSizeBlockAllocator {
/// Creates an empty FixedSizeBlockAllocator.
pub const fn new() -> Self {
const EMPTY: Option<&'static mut ListNode> = None;
FixedSizeBlockAllocator {
list_heads: [EMPTY; BLOCK_SIZES.len()],
fallback_allocator: linked_list_allocator::Heap::empty(),
}
}
/// Initialize the allocator with the given heap bounds.
///
/// This function is unsafe because the caller must guarantee that the given
/// heap bounds are valid and that the heap is unused. This method must be
/// called only once.
pub unsafe fn init(&mut self, heap_start: usize, heap_size: usize) {
self.fallback_allocator.init(heap_start, heap_size);
}
/// Allocates using the fallback allocator.
fn fallback_alloc(&mut self, layout: Layout) -> *mut u8 {
match self.fallback_allocator.allocate_first_fit(layout) {
Ok(ptr) => ptr.as_ptr(),
Err(_) => ptr::null_mut(),
}
}
}
unsafe impl GlobalAlloc for Locked<FixedSizeBlockAllocator> {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
let mut allocator = self.lock();
match list_index(&layout) {
Some(index) => {
match allocator.list_heads[index].take() {
Some(node) => {
allocator.list_heads[index] = node.next.take();
node as *mut ListNode as *mut u8
}
None => {
// no block exists in list => allocate new block
let block_size = BLOCK_SIZES[index];
// only works if all block sizes are a power of 2
let block_align = block_size;
let layout = Layout::from_size_align(block_size, block_align).unwrap();
allocator.fallback_alloc(layout)
}
}
}
None => allocator.fallback_alloc(layout),
}
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
let mut allocator = self.lock();
match list_index(&layout) {
Some(index) => {
let new_node = ListNode {
next: allocator.list_heads[index].take(),
};
// verify that block has size and alignment required for storing node
assert!(mem::size_of::<ListNode>() <= BLOCK_SIZES[index]);
assert!(mem::align_of::<ListNode>() <= BLOCK_SIZES[index]);
let new_node_ptr = ptr as *mut ListNode;
new_node_ptr.write(new_node);
allocator.list_heads[index] = Some(&mut *new_node_ptr);
}
None => {
let ptr = NonNull::new(ptr).unwrap();
allocator.fallback_allocator.deallocate(ptr, layout);
}
}
}
}

View File

@ -0,0 +1,153 @@
use super::align_up;
use core::mem;
struct ListNode {
size: usize,
next: Option<&'static mut ListNode>,
}
impl ListNode {
const fn new(size: usize) -> Self {
ListNode { size, next: None }
}
fn start_addr(&self) -> usize {
self as *const Self as usize
}
fn end_addr(&self) -> usize {
self.start_addr() + self.size
}
}
pub struct LinkedListAllocator {
head: ListNode,
}
impl LinkedListAllocator {
/// Creates an empty LinkedListAllocator.
pub const fn new() -> Self {
Self {
head: ListNode::new(0),
}
}
/// Initialize the allocator with the given heap bounds.
///
/// This function is unsafe because the caller must guarantee that the given
/// heap bounds are valid and that the heap is unused. This method must be
/// called only once.
pub unsafe fn init(&mut self, heap_start: usize, heap_size: usize) {
self.add_free_region(heap_start, heap_size);
}
/// Adds the given memory region to the front of the list.
unsafe fn add_free_region(&mut self, addr: usize, size: usize) {
// ensure that the freed region is capable of holding ListNode
assert_eq!(align_up(addr, mem::align_of::<ListNode>()), addr);
assert!(size >= mem::size_of::<ListNode>());
// create a new list node and append it at the start of the list
let mut node = ListNode::new(size);
node.next = self.head.next.take();
let node_ptr = addr as *mut ListNode;
node_ptr.write(node);
self.head.next = Some(&mut *node_ptr)
}
/// Looks for a free region with the given size and alignment and removes
/// it from the list.
///
/// Returns a tuple of the list node and the start address of the allocation.
fn find_region(&mut self, size: usize, align: usize)
-> Option<(&'static mut ListNode, usize)>
{
// reference to current list node, updated for each iteration
let mut current = &mut self.head;
// look for a large enough memory region in linked list
while let Some(ref mut region) = current.next {
if let Ok(alloc_start) = Self::alloc_from_region(&region, size, align) {
// region suitable for allocation -> remove node from list
let next = region.next.take();
let ret = Some((current.next.take().unwrap(), alloc_start));
current.next = next;
return ret;
} else {
// region not suitable -> continue with next region
current = current.next.as_mut().unwrap();
}
}
// no suitable region found
None
}
/// Try to use the given region for an allocation with given size and
/// alignment.
///
/// Returns the allocation start address on success.
fn alloc_from_region(region: &ListNode, size: usize, align: usize)
-> Result<usize, ()>
{
let alloc_start = align_up(region.start_addr(), align);
let alloc_end = alloc_start.checked_add(size).ok_or(())?;
if alloc_end > region.end_addr() {
// region too small
return Err(());
}
let excess_size = region.end_addr() - alloc_end;
if excess_size > 0 && excess_size < mem::size_of::<ListNode>() {
// rest of region too small to hold a ListNode (required because the
// allocation splits the region in a used and a free part)
return Err(());
}
// region suitable for allocation
Ok(alloc_start)
}
}
use super::Locked;
use alloc::alloc::{GlobalAlloc, Layout};
use core::ptr;
unsafe impl GlobalAlloc for Locked<LinkedListAllocator> {
unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
// perform layout adjustments
let (size, align) = LinkedListAllocator::size_align(layout);
let mut allocator = self.lock();
if let Some((region, alloc_start)) = allocator.find_region(size, align) {
let alloc_end = alloc_start.checked_add(size).expect("overflow");
let excess_size = region.end_addr() - alloc_end;
if excess_size > 0 {
allocator.add_free_region(alloc_end, excess_size);
}
alloc_start as *mut u8
} else {
ptr::null_mut()
}
}
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {
// perform layout adjustments
let (size, _) = LinkedListAllocator::size_align(layout);
self.lock().add_free_region(ptr as usize, size)
}
}
impl LinkedListAllocator {
/// Adjust the given layout so that the resulting allocated memory
/// region is also capable of storing a `ListNode`.
///
/// Returns the adjusted size and alignment as a (size, align) tuple.
fn size_align(layout: Layout) -> (usize, usize) {
let layout = layout
.align_to(mem::align_of::<ListNode>())
.expect("adjusting alignment failed")
.pad_to_align();
let size = layout.size().max(mem::size_of::<ListNode>());
(size, layout.align())
}
}

47
src/gdt.rs Normal file
View File

@ -0,0 +1,47 @@
use x86_64::VirtAddr;
use x86_64::structures::tss::TaskStateSegment;
use x86_64::structures::gdt::{GlobalDescriptorTable, Descriptor};
use x86_64::structures::gdt::SegmentSelector;
use lazy_static::lazy_static;
pub const DOUBLE_FAULT_IST_INDEX: u16 = 0;
lazy_static! {
static ref TSS: TaskStateSegment = {
let mut tss = TaskStateSegment::new();
tss.interrupt_stack_table[DOUBLE_FAULT_IST_INDEX as usize] = {
const STACK_SIZE: usize = 4096 * 5;
static mut STACK: [u8; STACK_SIZE] = [0; STACK_SIZE];
let stack_start = VirtAddr::from_ptr(unsafe { &STACK });
let stack_end = stack_start + STACK_SIZE;
stack_end
};
tss
};
}
lazy_static! {
static ref GDT: (GlobalDescriptorTable, Selectors) = {
let mut gdt = GlobalDescriptorTable::new();
let code_selector = gdt.add_entry(Descriptor::kernel_code_segment());
let tss_selector = gdt.add_entry(Descriptor::tss_segment(&TSS));
(gdt, Selectors { code_selector, tss_selector })
};
}
struct Selectors {
code_selector: SegmentSelector,
tss_selector: SegmentSelector,
}
pub fn init() {
use x86_64::instructions::segmentation::set_cs;
use x86_64::instructions::tables::load_tss;
GDT.0.load();
unsafe {
set_cs(GDT.1.code_selector);
load_tss(GDT.1.tss_selector);
}
}

126
src/interrupts.rs Normal file
View File

@ -0,0 +1,126 @@
use x86_64::structures::idt::{InterruptDescriptorTable, InterruptStackFrame, PageFaultErrorCode};
use crate::println;
use crate::print;
use crate::gdt;
use crate::hlt_loop;
use lazy_static::lazy_static;
use pic8259::ChainedPics;
use spin;
lazy_static! {
static ref IDT: InterruptDescriptorTable = {
let mut idt = InterruptDescriptorTable::new();
idt.breakpoint.set_handler_fn(breakpoint_handler);
unsafe {
idt.double_fault.set_handler_fn(double_fault_handler)
.set_stack_index(gdt::DOUBLE_FAULT_IST_INDEX);
}
idt.page_fault.set_handler_fn(page_fault_handler);
idt[InterruptIndex::Timer.as_usize()]
.set_handler_fn(timer_interrupt_handler);
idt[InterruptIndex::Keyboard.as_usize()]
.set_handler_fn(keyboard_interrupt_handler);
idt
};
}
extern "x86-interrupt" fn breakpoint_handler(
stack_frame: InterruptStackFrame)
{
println!("EXCEPTION: BREAKPOINT\n{:#?}", stack_frame);
}
extern "x86-interrupt" fn double_fault_handler(
stack_frame: InterruptStackFrame, _error_code: u64) -> !
{
panic!("EXCEPTION: DOUBLE FAULT\n{:#?}", stack_frame);
}
extern "x86-interrupt" fn timer_interrupt_handler(
_stack_frame: InterruptStackFrame)
{
print!(".");
unsafe {
PICS.lock()
.notify_end_of_interrupt(InterruptIndex::Timer.as_u8());
}
}
pub fn init_idt() {
IDT.load();
}
#[test_case]
fn test_breakpoint_exception() {
// invoke a breakpoint exception
x86_64::instructions::interrupts::int3();
}
pub const PIC_1_OFFSET: u8 = 32;
pub const PIC_2_OFFSET: u8 = PIC_1_OFFSET + 8;
pub static PICS: spin::Mutex<ChainedPics> =
spin::Mutex::new(unsafe { ChainedPics::new(PIC_1_OFFSET, PIC_2_OFFSET) });
#[derive(Debug, Clone, Copy)]
#[repr(u8)]
pub enum InterruptIndex {
Timer = PIC_1_OFFSET,
Keyboard,
}
impl InterruptIndex {
fn as_u8(self) -> u8 {
self as u8
}
fn as_usize(self) -> usize {
usize::from(self.as_u8())
}
}
extern "x86-interrupt" fn keyboard_interrupt_handler(
_stack_frame: InterruptStackFrame)
{
use pc_keyboard::{layouts, DecodedKey, HandleControl, Keyboard, ScancodeSet1};
use spin::Mutex;
use x86_64::instructions::port::Port;
lazy_static! {
static ref KEYBOARD: Mutex<Keyboard<layouts::Us104Key, ScancodeSet1>> =
Mutex::new(Keyboard::new(layouts::Us104Key, ScancodeSet1,
HandleControl::Ignore)
);
}
let mut keyboard = KEYBOARD.lock();
let mut port = Port::new(0x60);
let scancode: u8 = unsafe { port.read() };
crate::task::keyboard::add_scancode(scancode);
unsafe {
PICS.lock()
.notify_end_of_interrupt(InterruptIndex::Keyboard.as_u8());
}
}
extern "x86-interrupt" fn page_fault_handler(
stack_frame: InterruptStackFrame,
error_code: PageFaultErrorCode,
) {
use x86_64::registers::control::Cr2;
println!("EXCEPTION: PAGE FAULT");
println!("Accessed Address: {:?}", Cr2::read());
println!("Error Code: {:?}", error_code);
println!("{:#?}", stack_frame);
hlt_loop();
}

104
src/lib.rs Normal file
View File

@ -0,0 +1,104 @@
#![no_std]
#![cfg_attr(test, no_main)]
#![feature(custom_test_frameworks)]
#![test_runner(crate::test_runner)]
#![reexport_test_harness_main = "test_main"]
#![feature(abi_x86_interrupt)]
#![feature(alloc_error_handler)]
#![feature(const_mut_refs)]
use core::panic::PanicInfo;
extern crate alloc;
pub mod serial;
pub mod vga_buffer;
pub mod interrupts;
pub mod gdt;
pub mod memory;
pub mod task;
pub mod allocator;
#[cfg(test)]
use bootloader::{entry_point, BootInfo};
#[cfg(test)]
entry_point!(test_kernel_main);
pub trait Testable {
fn run(&self) -> ();
}
impl<T> Testable for T
where
T: Fn(),
{
fn run(&self) {
serial_print!("{}...\t", core::any::type_name::<T>());
self();
serial_println!("[ok]");
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u32)]
pub enum QemuExitCode {
Success = 0x10,
Failed = 0x11,
}
pub fn exit_qemu(exit_code: QemuExitCode) {
use x86_64::instructions::port::Port;
unsafe {
let mut port = Port::new(0xf4);
port.write(exit_code as u32);
}
}
pub fn test_runner(tests: &[&dyn Testable]) {
serial_println!("Running {} tests", tests.len());
for test in tests {
test.run();
}
exit_qemu(QemuExitCode::Success);
}
pub fn test_panic_handler(info: &PanicInfo) -> ! {
serial_println!("[failed]\n");
serial_println!("Error: {}\n", info);
exit_qemu(QemuExitCode::Failed);
hlt_loop();
}
/// Entry point for `cargo test`
#[cfg(test)]
fn test_kernel_main(_boot_info: &'static BootInfo) -> ! {
init();
test_main();
hlt_loop();
}
#[cfg(test)]
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
test_panic_handler(info)
}
pub fn init() {
gdt::init();
interrupts::init_idt();
unsafe { interrupts::PICS.lock().initialize() };
x86_64::instructions::interrupts::enable();
}
pub fn hlt_loop() -> ! {
loop {
x86_64::instructions::hlt();
}
}
#[alloc_error_handler]
fn alloc_error_handler(layout: alloc::alloc::Layout) -> ! {
panic!("allocation error: {:?}", layout)
}

79
src/main.rs Normal file
View File

@ -0,0 +1,79 @@
#![no_std]
#![no_main]
#![feature(custom_test_frameworks)]
#![test_runner(gros::test_runner)]
#![reexport_test_harness_main = "test_main"]
use core::panic::PanicInfo;
use gros::println;
use bootloader::{BootInfo, entry_point};
use gros::memory::BootInfoFrameAllocator;
use gros::task::{Task, simple_executor::SimpleExecutor};
use gros::task::keyboard;
use gros::task::executor::Executor;
extern crate alloc;
use alloc::{boxed::Box, vec, vec::Vec, rc::Rc};
entry_point!(kernel_main);
fn kernel_main(boot_info: &'static BootInfo) -> ! {
use gros::allocator;
use gros::memory;
use x86_64::{structures::paging::Page, VirtAddr};
println!("Hi from GROS{}", "!");
println!("{}", " __ _ _ __ ___ ___");
println!("{}", " / _` | '__/ _ \\/ __|");
println!("{}", " | (_| | | | (_) \\__ \\");
println!("{}", " \\__, |_| \\___/|___/");
println!("{}", " |___/");
gros::init();
let phys_mem_offset = VirtAddr::new(boot_info.physical_memory_offset);
let mut mapper = unsafe { memory::init(phys_mem_offset) };
let mut frame_allocator = unsafe {
BootInfoFrameAllocator::init(&boot_info.memory_map)
};
allocator::init_heap(&mut mapper, &mut frame_allocator)
.expect("heap initialization failed");
let mut executor = Executor::new();
executor.spawn(Task::new(example_task()));
executor.spawn(Task::new(keyboard::print_keypresses()));
executor.run();
#[cfg(test)]
test_main();
println!("It did not crash!");
gros::hlt_loop();
}
async fn async_number() -> u32 {
42
}
async fn example_task() {
let number = async_number().await;
println!("async number: {}", number);
}
/// This function is called on panic.
#[cfg(not(test))]
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
println!("{}", info);
gros::hlt_loop();
}
#[cfg(test)]
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
gros::test_panic_handler(info)
}

171
src/memory.rs Normal file
View File

@ -0,0 +1,171 @@
use x86_64::{
structures::paging::PageTable,
VirtAddr,
};
use x86_64::structures::paging::OffsetPageTable;
/// Initialize a new OffsetPageTable.
///
/// This function is unsafe because the caller must guarantee that the
/// complete physical memory is mapped to virtual memory at the passed
/// `physical_memory_offset`. Also, this function must be only called once
/// to avoid aliasing `&mut` references (which is undefined behavior).
pub unsafe fn init(physical_memory_offset: VirtAddr) -> OffsetPageTable<'static> {
let level_4_table = active_level_4_table(physical_memory_offset);
OffsetPageTable::new(level_4_table, physical_memory_offset)
}
/// Returns a mutable reference to the active level 4 table.
///
/// This function is unsafe because the caller must guarantee that the
/// complete physical memory is mapped to virtual memory at the passed
/// `physical_memory_offset`. Also, this function must be only called once
/// to avoid aliasing `&mut` references (which is undefined behavior).
unsafe fn active_level_4_table(physical_memory_offset: VirtAddr)
-> &'static mut PageTable
{
use x86_64::registers::control::Cr3;
let (level_4_table_frame, _) = Cr3::read();
let phys = level_4_table_frame.start_address();
let virt = physical_memory_offset + phys.as_u64();
let page_table_ptr: *mut PageTable = virt.as_mut_ptr();
&mut *page_table_ptr // unsafe
}
use x86_64::PhysAddr;
/// Translates the given virtual address to the mapped physical address, or
/// `None` if the address is not mapped.
///
/// This function is unsafe because the caller must guarantee that the
/// complete physical memory is mapped to virtual memory at the passed
/// `physical_memory_offset`.
pub unsafe fn translate_addr(addr: VirtAddr, physical_memory_offset: VirtAddr)
-> Option<PhysAddr>
{
translate_addr_inner(addr, physical_memory_offset)
}
/// Private function that is called by `translate_addr`.
///
/// This function is safe to limit the scope of `unsafe` because Rust treats
/// the whole body of unsafe functions as an unsafe block. This function must
/// only be reachable through `unsafe fn` from outside of this module.
fn translate_addr_inner(addr: VirtAddr, physical_memory_offset: VirtAddr)
-> Option<PhysAddr>
{
use x86_64::structures::paging::page_table::FrameError;
use x86_64::registers::control::Cr3;
// read the active level 4 frame from the CR3 register
let (level_4_table_frame, _) = Cr3::read();
let table_indexes = [
addr.p4_index(), addr.p3_index(), addr.p2_index(), addr.p1_index()
];
let mut frame = level_4_table_frame;
// traverse the multi-level page table
for &index in &table_indexes {
// convert the frame into a page table reference
let virt = physical_memory_offset + frame.start_address().as_u64();
let table_ptr: *const PageTable = virt.as_ptr();
let table = unsafe {&*table_ptr};
// read the page table entry and update `frame`
let entry = &table[index];
frame = match entry.frame() {
Ok(frame) => frame,
Err(FrameError::FrameNotPresent) => return None,
Err(FrameError::HugeFrame) => panic!("huge pages not supported"),
};
}
// calculate the physical address by adding the page offset
Some(frame.start_address() + u64::from(addr.page_offset()))
}
use x86_64::{
structures::paging::{Page, PhysFrame, Mapper, Size4KiB, FrameAllocator}
};
/// Creates an example mapping for the given page to frame `0xb8000`.
pub fn create_example_mapping(
page: Page,
mapper: &mut OffsetPageTable,
frame_allocator: &mut impl FrameAllocator<Size4KiB>,
) {
use x86_64::structures::paging::PageTableFlags as Flags;
let frame = PhysFrame::containing_address(PhysAddr::new(0xb8000));
let flags = Flags::PRESENT | Flags::WRITABLE;
let map_to_result = unsafe {
// FIXME: this is not safe, we do it only for testing
mapper.map_to(page, frame, flags, frame_allocator)
};
map_to_result.expect("map_to failed").flush();
}
/// A FrameAllocator that always returns `None`.
pub struct EmptyFrameAllocator;
unsafe impl FrameAllocator<Size4KiB> for EmptyFrameAllocator {
fn allocate_frame(&mut self) -> Option<PhysFrame> {
None
}
}
use bootloader::bootinfo::MemoryMap;
/// A FrameAllocator that returns usable frames from the bootloader's memory map.
pub struct BootInfoFrameAllocator {
memory_map: &'static MemoryMap,
next: usize,
}
impl BootInfoFrameAllocator {
/// Create a FrameAllocator from the passed memory map.
///
/// This function is unsafe because the caller must guarantee that the passed
/// memory map is valid. The main requirement is that all frames that are marked
/// as `USABLE` in it are really unused.
pub unsafe fn init(memory_map: &'static MemoryMap) -> Self {
BootInfoFrameAllocator {
memory_map,
next: 0,
}
}
}
use bootloader::bootinfo::MemoryRegionType;
impl BootInfoFrameAllocator {
/// Returns an iterator over the usable frames specified in the memory map.
fn usable_frames(&self) -> impl Iterator<Item = PhysFrame> {
// get usable regions from memory map
let regions = self.memory_map.iter();
let usable_regions = regions
.filter(|r| r.region_type == MemoryRegionType::Usable);
// map each region to its address range
let addr_ranges = usable_regions
.map(|r| r.range.start_addr()..r.range.end_addr());
// transform to an iterator of frame start addresses
let frame_addresses = addr_ranges.flat_map(|r| r.step_by(4096));
// create `PhysFrame` types from the start addresses
frame_addresses.map(|addr| PhysFrame::containing_address(PhysAddr::new(addr)))
}
}
unsafe impl FrameAllocator<Size4KiB> for BootInfoFrameAllocator {
fn allocate_frame(&mut self) -> Option<PhysFrame> {
let frame = self.usable_frames().nth(self.next);
self.next += 1;
frame
}
}

41
src/serial.rs Normal file
View File

@ -0,0 +1,41 @@
use uart_16550::SerialPort;
use spin::Mutex;
use lazy_static::lazy_static;
lazy_static! {
pub static ref SERIAL1: Mutex<SerialPort> = {
let mut serial_port = unsafe { SerialPort::new(0x3F8) };
serial_port.init();
Mutex::new(serial_port)
};
}
#[doc(hidden)]
pub fn _print(args: ::core::fmt::Arguments) {
use core::fmt::Write;
use x86_64::instructions::interrupts; // new
interrupts::without_interrupts(|| { // new
SERIAL1
.lock()
.write_fmt(args)
.expect("Printing to serial failed");
});
}
/// Prints to the host through the serial interface.
#[macro_export]
macro_rules! serial_print {
($($arg:tt)*) => {
$crate::serial::_print(format_args!($($arg)*));
};
}
/// Prints to the host through the serial interface, appending a newline.
#[macro_export]
macro_rules! serial_println {
() => ($crate::serial_print!("\n"));
($fmt:expr) => ($crate::serial_print!(concat!($fmt, "\n")));
($fmt:expr, $($arg:tt)*) => ($crate::serial_print!(
concat!($fmt, "\n"), $($arg)*));
}

99
src/task/executor.rs Normal file
View File

@ -0,0 +1,99 @@
use super::{Task, TaskId};
use alloc::{collections::BTreeMap, sync::Arc};
use core::task::{Context, Poll, Waker};
use crossbeam_queue::ArrayQueue;
pub struct Executor {
tasks: BTreeMap<TaskId, Task>,
task_queue: Arc<ArrayQueue<TaskId>>,
waker_cache: BTreeMap<TaskId, Waker>,
}
impl Executor {
pub fn run(&mut self) -> ! {
loop {
self.run_ready_tasks();
self.sleep_if_idle();
}
}
fn sleep_if_idle(&self) {
use x86_64::instructions::interrupts::{self, enable_and_hlt};
interrupts::disable();
if self.task_queue.is_empty() {
enable_and_hlt();
} else {
interrupts::enable();
}
}
pub fn new() -> Self {
Executor {
tasks: BTreeMap::new(),
task_queue: Arc::new(ArrayQueue::new(100)),
waker_cache: BTreeMap::new(),
}
}
pub fn spawn(&mut self, task: Task) {
let task_id = task.id;
if self.tasks.insert(task.id, task).is_some() {
panic!("task with same ID already in tasks");
}
self.task_queue.push(task_id).expect("queue full");
}
fn run_ready_tasks(&mut self) {
// destructure `self` to avoid borrow checker errors
let Self {
tasks,
task_queue,
waker_cache,
} = self;
while let Ok(task_id) = task_queue.pop() {
let task = match tasks.get_mut(&task_id) {
Some(task) => task,
None => continue, // task no longer exists
};
let waker = waker_cache
.entry(task_id)
.or_insert_with(|| TaskWaker::new(task_id, task_queue.clone()));
let mut context = Context::from_waker(waker);
match task.poll(&mut context) {
Poll::Ready(()) => {
// task done -> remove it and its cached waker
tasks.remove(&task_id);
waker_cache.remove(&task_id);
}
Poll::Pending => {}
}
}
}
}
struct TaskWaker {
task_id: TaskId,
task_queue: Arc<ArrayQueue<TaskId>>,
}
impl TaskWaker {
fn new(task_id: TaskId, task_queue: Arc<ArrayQueue<TaskId>>) -> Waker {
Waker::from(Arc::new(TaskWaker {
task_id,
task_queue,
}))
}
fn wake_task(&self) {
self.task_queue.push(self.task_id).expect("task_queue full");
}
}
use alloc::task::Wake;
impl Wake for TaskWaker {
fn wake(self: Arc<Self>) {
self.wake_task();
}
fn wake_by_ref(self: &Arc<Self>) {
self.wake_task();
}
}

81
src/task/keyboard.rs Normal file
View File

@ -0,0 +1,81 @@
use conquer_once::spin::OnceCell;
use crossbeam_queue::ArrayQueue;
use crate::println;
static SCANCODE_QUEUE: OnceCell<ArrayQueue<u8>> = OnceCell::uninit();
pub struct ScancodeStream {
_private: (),
}
impl ScancodeStream {
pub fn new() -> Self {
SCANCODE_QUEUE.try_init_once(|| ArrayQueue::new(100))
.expect("ScancodeStream::new should only be called once");
ScancodeStream { _private: () }
}
}
use core::{pin::Pin, task::{Poll, Context}};
use futures_util::stream::Stream;
impl Stream for ScancodeStream {
type Item = u8;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<u8>> {
let queue = SCANCODE_QUEUE
.try_get()
.expect("scancode queue not initialized");
// fast path
if let Ok(scancode) = queue.pop() {
return Poll::Ready(Some(scancode));
}
WAKER.register(&cx.waker());
match queue.pop() {
Ok(scancode) => {
WAKER.take();
Poll::Ready(Some(scancode))
}
Err(crossbeam_queue::PopError) => Poll::Pending,
}
}
}
use futures_util::task::AtomicWaker;
static WAKER: AtomicWaker = AtomicWaker::new();
pub(crate) fn add_scancode(scancode: u8) {
if let Ok(queue) = SCANCODE_QUEUE.try_get() {
if let Err(_) = queue.push(scancode) {
println!("WARNING: scancode queue full; dropping keyboard input");
} else {
WAKER.wake(); // new
}
} else {
println!("WARNING: scancode queue uninitialized");
}
}
use futures_util::stream::StreamExt;
use pc_keyboard::{layouts, DecodedKey, HandleControl, Keyboard, ScancodeSet1};
use crate::print;
pub async fn print_keypresses() {
let mut scancodes = ScancodeStream::new();
let mut keyboard = Keyboard::new(layouts::Us104Key, ScancodeSet1,
HandleControl::Ignore);
while let Some(scancode) = scancodes.next().await {
if let Ok(Some(key_event)) = keyboard.add_byte(scancode) {
if let Some(key) = keyboard.process_keyevent(key_event) {
match key {
DecodedKey::Unicode(character) => print!("{}", character),
DecodedKey::RawKey(key) => print!("{:?}", key),
}
}
}
}
}

39
src/task/mod.rs Normal file
View File

@ -0,0 +1,39 @@
use alloc::boxed::Box;
use core::{
future::Future,
pin::Pin,
sync::atomic::{AtomicU64, Ordering},
task::{Context, Poll},
};
pub mod executor;
pub mod keyboard;
pub mod simple_executor;
pub struct Task {
id: TaskId,
future: Pin<Box<dyn Future<Output = ()>>>,
}
impl Task {
pub fn new(future: impl Future<Output = ()> + 'static) -> Task {
Task {
id: TaskId::new(),
future: Box::pin(future),
}
}
fn poll(&mut self, context: &mut Context) -> Poll<()> {
self.future.as_mut().poll(context)
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
struct TaskId(u64);
impl TaskId {
fn new() -> Self {
static NEXT_ID: AtomicU64 = AtomicU64::new(0);
TaskId(NEXT_ID.fetch_add(1, Ordering::Relaxed))
}
}

View File

@ -0,0 +1,44 @@
use super::Task;
use alloc::collections::VecDeque;
use core::task::{Context, Poll, RawWaker, RawWakerVTable, Waker};
pub struct SimpleExecutor {
task_queue: VecDeque<Task>,
}
impl SimpleExecutor {
pub fn new() -> SimpleExecutor {
SimpleExecutor {
task_queue: VecDeque::new(),
}
}
pub fn spawn(&mut self, task: Task) {
self.task_queue.push_back(task)
}
pub fn run(&mut self) {
while let Some(mut task) = self.task_queue.pop_front() {
let waker = dummy_waker();
let mut context = Context::from_waker(&waker);
match task.poll(&mut context) {
Poll::Ready(()) => {} // task done
Poll::Pending => self.task_queue.push_back(task),
}
}
}
}
fn dummy_raw_waker() -> RawWaker {
fn no_op(_: *const ()) {}
fn clone(_: *const ()) -> RawWaker {
dummy_raw_waker()
}
let vtable = &RawWakerVTable::new(clone, no_op, no_op, no_op);
RawWaker::new(0 as *const (), vtable)
}
fn dummy_waker() -> Waker {
unsafe { Waker::from_raw(dummy_raw_waker()) }
}

177
src/vga_buffer.rs Normal file
View File

@ -0,0 +1,177 @@
use volatile::Volatile;
use core::fmt;
use lazy_static::lazy_static;
use spin::Mutex;
#[allow(dead_code)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum Color {
Black = 0,
Blue = 1,
Green = 2,
Cyan = 3,
Red = 4,
Magenta = 5,
Brown = 6,
LightGray = 7,
DarkGray = 8,
LightBlue = 9,
LightGreen = 10,
LightCyan = 11,
LightRed = 12,
Pink = 13,
Yellow = 14,
White = 15,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(transparent)]
struct ColorCode(u8);
impl ColorCode {
fn new(foreground: Color, background: Color) -> ColorCode {
ColorCode((background as u8) << 4 | (foreground as u8))
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(C)]
struct ScreenChar {
ascii_character: u8,
color_code: ColorCode,
}
const BUFFER_HEIGHT: usize = 25;
const BUFFER_WIDTH: usize = 80;
#[repr(transparent)]
struct Buffer {
chars: [[Volatile<ScreenChar>; BUFFER_WIDTH]; BUFFER_HEIGHT],
}
pub struct Writer {
column_position: usize,
color_code: ColorCode,
buffer: &'static mut Buffer,
}
impl Writer {
pub fn write_byte(&mut self, byte: u8) {
match byte {
b'\n' => self.new_line(),
byte => {
if self.column_position >= BUFFER_WIDTH {
self.new_line();
}
let row = BUFFER_HEIGHT - 1;
let col = self.column_position;
let color_code = self.color_code;
self.buffer.chars[row][col].write(ScreenChar {
ascii_character: byte,
color_code,
});
self.column_position += 1;
}
}
}
fn new_line(&mut self) {
for row in 1..BUFFER_HEIGHT {
for col in 0..BUFFER_WIDTH {
let character = self.buffer.chars[row][col].read();
self.buffer.chars[row - 1][col].write(character);
}
}
self.clear_row(BUFFER_HEIGHT - 1);
self.column_position = 0;
}
fn clear_row(&mut self, row: usize) {
let blank = ScreenChar {
ascii_character: b' ',
color_code: self.color_code,
};
for col in 0..BUFFER_WIDTH {
self.buffer.chars[row][col].write(blank);
}
}
pub fn write_string(&mut self, s: &str) {
for byte in s.bytes() {
match byte {
// printable ASCII byte or newline
0x20..=0x7e | b'\n' => self.write_byte(byte),
// not part of printable ASCII range
_ => self.write_byte(0xfe),
}
}
}
}
impl fmt::Write for Writer {
fn write_str(&mut self, s: &str) -> fmt::Result {
self.write_string(s);
Ok(())
}
}
lazy_static! {
pub static ref WRITER: Mutex<Writer> = Mutex::new(Writer {
column_position: 0,
color_code: ColorCode::new(Color::Yellow, Color::Black),
buffer: unsafe { &mut *(0xb8000 as *mut Buffer) },
});
}
#[macro_export]
macro_rules! print {
($($arg:tt)*) => ($crate::vga_buffer::_print(format_args!($($arg)*)));
}
#[macro_export]
macro_rules! println {
() => ($crate::print!("\n"));
($($arg:tt)*) => ($crate::print!("{}\n", format_args!($($arg)*)));
}
#[doc(hidden)]
pub fn _print(args: fmt::Arguments) {
use core::fmt::Write;
use x86_64::instructions::interrupts;
interrupts::without_interrupts(|| {
WRITER.lock().write_fmt(args).unwrap();
});
}
#[test_case]
fn test_println_simple() {
println!("test_println_simple output");
}
#[test_case]
fn test_println_many() {
for _ in 0..200 {
println!("test_println_many output");
}
}
#[test_case]
fn test_println_output() {
use core::fmt::Write;
use x86_64::instructions::interrupts;
let s = "Some test string that fits on a single line";
interrupts::without_interrupts(|| {
let mut writer = WRITER.lock();
writeln!(writer, "\n{}", s).expect("writeln failed");
for (i, c) in s.chars().enumerate() {
let screen_char = writer.buffer.chars[BUFFER_HEIGHT - 2][i].read();
assert_eq!(char::from(screen_char.ascii_character), c);
}
});
}

27
tests/basic_boot.rs Normal file
View File

@ -0,0 +1,27 @@
#![no_std]
#![no_main]
#![feature(custom_test_frameworks)]
#![reexport_test_harness_main = "test_main"]
#![test_runner(gros::test_runner)]
use core::panic::PanicInfo;
#[no_mangle] // don't mangle the name of this function
pub extern "C" fn _start() -> ! {
test_main();
loop {}
}
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
gros::test_panic_handler(info)
}
use gros::println;
#[test_case]
fn test_println() {
println!("test_println output");
}

69
tests/heap_allocation.rs Normal file
View File

@ -0,0 +1,69 @@
#![no_std]
#![no_main]
#![feature(custom_test_frameworks)]
#![test_runner(gros::test_runner)]
#![reexport_test_harness_main = "test_main"]
extern crate alloc;
use bootloader::{entry_point, BootInfo};
use core::panic::PanicInfo;
entry_point!(main);
fn main(boot_info: &'static BootInfo) -> ! {
use gros::allocator;
use gros::memory::{self, BootInfoFrameAllocator};
use x86_64::VirtAddr;
gros::init();
let phys_mem_offset = VirtAddr::new(boot_info.physical_memory_offset);
let mut mapper = unsafe { memory::init(phys_mem_offset) };
let mut frame_allocator = unsafe {
BootInfoFrameAllocator::init(&boot_info.memory_map)
};
allocator::init_heap(&mut mapper, &mut frame_allocator)
.expect("heap initialization failed");
test_main();
loop {}
}
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
gros::test_panic_handler(info)
}
use alloc::boxed::Box;
#[test_case]
fn simple_allocation() {
let heap_value_1 = Box::new(41);
let heap_value_2 = Box::new(13);
assert_eq!(*heap_value_1, 41);
assert_eq!(*heap_value_2, 13);
}
use alloc::vec::Vec;
#[test_case]
fn large_vec() {
let n = 1000;
let mut vec = Vec::new();
for i in 0..n {
vec.push(i);
}
assert_eq!(vec.iter().sum::<u64>(), (n - 1) * n / 2);
}
use gros::allocator::HEAP_SIZE;
#[test_case]
fn many_boxes() {
let long_lived = Box::new(1);
for i in 0..HEAP_SIZE {
let x = Box::new(i);
assert_eq!(*x, i);
}
assert_eq!(*long_lived, 1);
}

28
tests/should_panic.rs Normal file
View File

@ -0,0 +1,28 @@
#![no_std]
#![no_main]
use core::panic::PanicInfo;
use gros::{QemuExitCode, exit_qemu, serial_println, serial_print};
#[no_mangle]
pub extern "C" fn _start() -> ! {
should_fail();
serial_println!("[test did not panic]");
exit_qemu(QemuExitCode::Failed);
loop {}
}
fn should_fail() {
serial_print!("should_panic::should_fail...\t");
assert_eq!(0, 1);
}
#[panic_handler]
fn panic(_info: &PanicInfo) -> ! {
serial_println!("[ok]");
exit_qemu(QemuExitCode::Success);
loop {}
}

62
tests/stack_overflow.rs Normal file
View File

@ -0,0 +1,62 @@
#![no_std]
#![no_main]
#![feature(abi_x86_interrupt)]
use core::panic::PanicInfo;
use gros::serial_print;
use lazy_static::lazy_static;
use x86_64::structures::idt::InterruptDescriptorTable;
use gros::{exit_qemu, QemuExitCode, serial_println};
use x86_64::structures::idt::InterruptStackFrame;
#[no_mangle]
pub extern "C" fn _start() -> ! {
serial_print!("stack_overflow::stack_overflow...\t");
gros::gdt::init();
init_test_idt();
// trigger a stack overflow
stack_overflow();
panic!("Execution continued after stack overflow");
}
#[allow(unconditional_recursion)]
fn stack_overflow() {
stack_overflow(); // for each recursion, the return address is pushed
volatile::Volatile::new(0).read(); // prevent tail recursion optimizations
}
#[panic_handler]
fn panic(info: &PanicInfo) -> ! {
gros::test_panic_handler(info)
}
lazy_static! {
static ref TEST_IDT: InterruptDescriptorTable = {
let mut idt = InterruptDescriptorTable::new();
unsafe {
idt.double_fault
.set_handler_fn(test_double_fault_handler)
.set_stack_index(gros::gdt::DOUBLE_FAULT_IST_INDEX);
}
idt
};
}
pub fn init_test_idt() {
TEST_IDT.load();
}
extern "x86-interrupt" fn test_double_fault_handler(
_stack_frame: InterruptStackFrame,
_error_code: u64,
) -> ! {
serial_println!("[ok]");
exit_qemu(QemuExitCode::Success);
loop {}
}

15
x86_64-gros.json Normal file
View File

@ -0,0 +1,15 @@
{
"llvm-target": "x86_64-unknown-none",
"data-layout": "e-m:e-i64:64-f80:128-n8:16:32:64-S128",
"arch": "x86_64",
"target-endian": "little",
"target-pointer-width": "64",
"target-c-int-width": "32",
"os": "none",
"executables": true,
"linker-flavor": "ld.lld",
"linker": "rust-lld",
"panic-strategy": "abort",
"disable-redzone": true,
"features": "-mmx,-sse,+soft-float"
}