mu/subx/011add.cc

50 lines
1.6 KiB
C++
Raw Normal View History

:(scenario add_r32_to_rm32)
% Reg[3].i = 0x10;
% Reg[0].i = 0x60;
# word in addresses 0x60-0x63 has value 1
% Mem[0x60] = 1;
# op ModR/M SIB displacement immediate
2017-10-13 00:57:59 +00:00
01 18 # add EBX (reg 3) to *EAX (reg 0)
+run: add reg 3 to effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x11
:(before "End Single-Byte Opcodes")
case 0x01: { // add r32 to r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
2017-10-13 04:20:31 +00:00
trace(2, "run") << "add reg " << NUM(arg2) << " to effective address" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i);
break;
}
:(code)
// Implement tables 2-2 and 2-3 in the Intel manual, Volume 2.
// We return a pointer so that instructions can write to multiple bytes in
// 'Mem' at once.
int32_t* effective_address(uint8_t modrm) {
uint8_t mod = (modrm>>6);
2017-10-13 00:57:59 +00:00
// ignore middle 3 'reg opcode' bits
uint8_t rm = modrm & 0x7;
int32_t* result = 0;
switch (mod) {
case 0:
// mod 0 is usually indirect addressing
switch (rm) {
default:
2017-10-13 04:35:02 +00:00
trace(2, "run") << "effective address is mem at address 0x" << std::hex << Reg[rm].u << " (reg " << NUM(rm) << ")" << end();
assert(Reg[rm].u + sizeof(int32_t) <= Mem.size());
result = reinterpret_cast<int32_t*>(&Mem.at(Reg[rm].u)); // rely on the host itself being in little-endian order
break;
2017-10-13 04:35:02 +00:00
// End Mod 0 Special-cases
}
break;
2017-10-13 04:35:02 +00:00
// End Mod Special-cases
default:
2017-10-13 04:20:31 +00:00
cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
exit(1);
}
return result;
}