audacia/src/AudioIO.cpp

4819 lines
167 KiB
C++
Raw Normal View History

/**********************************************************************
Audacity: A Digital Audio Editor
AudioIO.cpp
Copyright 2000-2004:
Dominic Mazzoni
Joshua Haberman
Markus Meyer
Matt Brubeck
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
********************************************************************//**
\class AudioIO
\brief AudioIO uses the PortAudio library to play and record sound.
Great care and attention to detail are necessary for understanding and
modifying this system. The code in this file is run from three
different thread contexts: the UI thread, the disk thread (which
2014-06-03 20:30:19 +00:00
this file creates and maintains; in the code, this is called the
Audio Thread), and the PortAudio callback thread.
To highlight this deliniation, the file is divided into three parts
based on what thread context each function is intended to run in.
\par EXPERIMENTAL_MIDI_OUT
If EXPERIMENTAL_MIDI_OUT is defined, this class also manages
MIDI playback. The reason for putting MIDI here rather than in, say,
class MidiIO, is that there is no high-level synchronization and
2014-06-03 20:30:19 +00:00
transport architecture, so Audio and MIDI must be coupled in order
to start/stop/pause and synchronize them.
\par MIDI With Audio
When Audio and MIDI play simultaneously, MIDI synchronizes to Audio.
This is necessary because the Audio sample clock is not the same
hardware as the system time used to schedule MIDI messages. MIDI
is synchronized to Audio because it is simple to pause or rush
the dispatch of MIDI messages, but generally impossible to pause
or rush synchronous audio samples (without distortion).
\par
MIDI output is driven by yet another thread. In principle, we could
output timestamped MIDI data at the same time we fill audio buffers
from disk, but audio buffers are filled far in advance of playback
time, and there is a lower latency thread (PortAudio's callback) that
actually sends samples to the output device. The relatively low
latency to the output device allows Audacity to stop audio output
quickly. We want the same behavior for MIDI, but there is not
2014-06-03 20:30:19 +00:00
periodic callback from PortMidi (because MIDI is asynchronous), so
this function is performed by the MidiThread class.
\par
When Audio is running, MIDI is synchronized to Audio. Globals are set
2014-06-03 20:30:19 +00:00
in the Audio callback (audacityAudioCallback) for use by a time
function that reports milliseconds to PortMidi. (Details below.)
\par MIDI Without Audio
When Audio is not running, PortMidi uses its own millisecond timer
since there is no audio to synchronize to. (Details below.)
\par Implementation Notes and Details for MIDI
When opening devices, successAudio and successMidi indicate errors
2014-06-03 20:30:19 +00:00
if false, so normally both are true. Use playbackChannels,
captureChannels and mMidiPlaybackTracks.IsEmpty() to determine if
Audio or MIDI is actually in use.
\par Audio Time
Normally, the current time during playback is given by the variable
mTime. mTime normally advances by frames / samplerate each time an
audio buffer is output by the audio callback. However, Audacity has
2014-06-03 20:30:19 +00:00
a speed control that can perform continuously variable time stretching
on audio. This is achieved in two places: the playback "mixer" that
2014-06-03 20:30:19 +00:00
generates the samples for output processes the audio according to
the speed control. In a separate algorithm, the audio callback updates
mTime by (frames / samplerate) * factor, where factor reflects the
speed at mTime. This effectively integrates speed to get position.
Negative speeds are allowed too, for instance in scrubbing.
2014-06-03 20:30:19 +00:00
\par Midi Time
2014-06-03 20:30:19 +00:00
MIDI is not warped according to the speed control. This might be
something that should be changed. (Editorial note: Wouldn't it
make more sense to display audio at the correct time and allow
users to stretch audio the way they can stretch MIDI?) For now,
MIDI plays at 1 second per second, so it requires an unwarped clock.
In fact, MIDI time synchronization requires a millisecond clock that
does not pause. Note that mTime will stop progress when the Pause
2014-06-03 20:30:19 +00:00
button is pressed, even though audio samples (zeros) continue to
be output.
2014-06-03 20:30:19 +00:00
\par
Therefore, we define the following interface for MIDI timing:
\li \c AudioTime() is the time based on all samples written so far, including zeros output during pauses. AudioTime() is based on the start location mT0, not zero.
\li \c PauseTime() is the amount of time spent paused, based on a count of zero samples output.
\li \c MidiTime() is an estimate in milliseconds of the current audio output time + 1s. In other words, what audacity track time corresponds to the audio (including pause insertions) at the output?
\par AudioTime() and PauseTime() computation
2014-06-03 20:30:19 +00:00
AudioTime() is simply mT0 + mNumFrames / mRate.
mNumFrames is incremented in each audio callback. Similarly, PauseTime()
is mNumPauseFrames / mRate. mNumPauseFrames is also incremented in
each audio callback when a pause is in effect.
\par MidiTime() computation
MidiTime() is computed based on information from PortAudio's callback,
which estimates the system time at which the current audio buffer will
be output. Consider the (unimplemented) function RealToTrack() that
2014-06-03 20:30:19 +00:00
maps real time to track time. If outputTime is PortAudio's time
estimate for the most recent output buffer, then \n
RealToTrack(outputTime) = AudioTime() - PauseTime() - bufferDuration \n
2014-06-03 20:30:19 +00:00
We want to know RealToTrack of the current time, so we use this
approximation for small d: \n
RealToTrack(t + d) = RealToTrack(t) + d \n
Letting t = outputTime and d = (systemTime - outputTime), we can
substitute to get:\n
RealToTrack(systemTime) = AudioTime() - PauseTime() - bufferduration + (systemTime - outputTime) \n
MidiTime() should include pause time, so add PauseTime() to both sides of
the equation. Also MidiTime() is offset by 1 second to avoid negative
time at startup, so add 1 to both sides:
MidiTime() in seconds = RealToTrack(systemTime) + PauseTime() + 1 = \n
AudioTime() - bufferduration + (systemTime - outputTime) + 1
2014-06-03 20:30:19 +00:00
\par
2014-06-03 20:30:19 +00:00
The difference AudioTime() - PauseTime() is the time "cursor" for
MIDI. When the speed control is used, MIDI and Audio will become
unsynchronized. In particular, MIDI will not be synchronized with
the visual cursor, which moves with scaled time reported in mTime.
2014-06-03 20:30:19 +00:00
\par Midi Synchronization
The goal of MIDI playback is to deliver MIDI messages synchronized to
audio (assuming no speed variation for now). If a midi event has time
tmidi, then the timestamp for that message should be \n
timestamp (in seconds) = tmidi + PauseTime() + 1.0 - latency.\n
2014-06-03 20:30:19 +00:00
(This is actually off by 1ms; see "PortMidi Latency Parameter" below for
more detail.)
Notice the extra 1.0, added because MidiTime() is offset by 1s to avoid
starting at a negative value. Also notice that we subtract latency.
The user must set device latency using preferences. Some software
synthesizers have very high latency (on the order of 100ms), so unless
we lower timestamps and send messages early, the final output will not
be synchronized.
This timestamp is interpreted by PortMidi relative to MidiTime(), which
is synchronized to audio output. So the only thing we need to do is
output Midi messages shortly before they will be played with the correct
timestamp. We will take "shortly before" to mean "at about the same time
2014-06-03 20:30:19 +00:00
as corresponding audio". Based on this, output the event when
AudioTime() - PauseTime() > mtime - latency,
2014-06-03 20:30:19 +00:00
adjusting the event time by adding PauseTime() + 1 - latency.
This gives at least mAudioOutputLatency for
the MIDI output to be generated (we want to generate MIDI output before
2014-06-03 20:30:19 +00:00
the actual output time because events generated early are accurately timed
according to their timestamp). However, the MIDI thread sleeps for
MIDI_SLEEP in its polling loop, so the worst case is really
mAudioOutputLatency + MIDI_SLEEP. In case the audio output latency is
very low, we will output events when
AudioTime() + MIDI_SLEEP - PauseTime() > mtime - latency.
\par Interaction between MIDI, Audio, and Pause
When Pause is used, PauseTime() will increase at the same rate as
2014-06-03 20:30:19 +00:00
AudioTime(), and no more events will be output. Because of the
time advance of mAudioOutputLatency + MIDI_SLEEP + latency and the
fact that
2014-06-03 20:30:19 +00:00
AudioTime() advances stepwise by mAudioBufferDuration, some extra MIDI
might be output, but the same is true of audio: something like
mAudioOutputLatency audio samples will be in the output buffer
2014-06-03 20:30:19 +00:00
(with up to mAudioBufferDuration additional samples, depending on
when the Pause takes effect). When playback is resumed, there will
be a slight delay corresponding to the extra data previously sent.
Again, the same is true of audio. Audio and MIDI will not pause and
2014-06-03 20:30:19 +00:00
resume at exactly the same times, but their pause and resume times
will be within the low tens of milliseconds, and the streams will
be synchronized in any case. I.e. if audio pauses 10ms earlier than
MIDI, it will resume 10ms earlier as well.
\par PortMidi Latency Parameter
PortMidi has a "latency" parameter that is added to all timestamps.
This value must be greater than zero to enable timestamp-based timing,
but serves no other function, so we will set it to 1. All timestamps
must then be adjusted down by 1 before messages are sent. This
adjustment is on top of all the calculations described above. It just
seem too complicated to describe everything in complete detail in one
place.
\par Midi with a time track
When a variable-speed time track is present, MIDI events are output
with the times used by the time track (rather than the raw times).
This ensures MIDI is synchronized with audio.
\par Midi While Recording Only or Without Audio Playback
To reduce duplicate code and to ensure recording is synchronised with
MIDI, a portaudio stream will always be used, even when there is no
actual audio output. For recording, this ensures that the recorded
audio will by synchronized with the MIDI (otherwise, it gets out-of-
sync if played back with correct timing).
\par NoteTrack PlayLooped
When mPlayLooped is true, output is supposed to loop from mT0 to mT1.
For NoteTracks, we interpret this to mean that any note-on or control
change in the range mT0 <= t < mT1 is sent (notes that start before
mT0 are not played even if they extend beyond mT0). Then, all notes
2014-06-03 20:30:19 +00:00
are turned off. Events in the range mT0 <= t < mT1 are then repeated,
offset by (mT1 - mT0), etc. We do NOT go back to the beginning and
play all control changes (update events) up to mT0, nor do we "undo"
any state changes between mT0 and mT1.
\par NoteTrack PlayLooped Implementation
The mIterator object (an Alg_iterator) returns NULL when there are
2014-06-03 20:30:19 +00:00
no more events scheduled before mT1. At mT1, we want to output
all notes off messages, but the FillMidiBuffers() loop will exit
if mNextEvent is NULL, so we create a "fake" mNextEvent for this
2014-06-03 20:30:19 +00:00
special "event" of sending all notes off. After that, we destroy
the iterator and use PrepareMidiIterator() to set up a NEW one.
At each iteration, time must advance by (mT1 - mT0), so the
accumulated time is held in mMidiLoopOffset.
\todo run through all functions called from audio and portaudio threads
to verify they are thread-safe. Note that synchronization of the style:
"A sets flag to signal B, B clears flag to acknowledge completion"
is not thread safe in a general multiple-CPU context. For example,
B can write to a buffer and set a completion flag. The flag write can
occur before the buffer write due to out-of-order execution. Then A
can see the flag and read the buffer before buffer writes complete.
*//****************************************************************//**
\class AudioThread
\brief Defined different on Mac and other platforms (on Mac it does not
2014-06-03 20:30:19 +00:00
use wxWidgets wxThread), this class sits in a thread loop reading and
writing audio.
*//*******************************************************************/
#include "Audacity.h"
#include "Experimental.h"
2015-07-03 04:20:21 +00:00
#include "AudioIO.h"
#include "float_cast.h"
#include <cfloat>
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#ifdef __WXMSW__
#include <malloc.h>
#endif
#ifdef HAVE_ALLOCA_H
#include <alloca.h>
#endif
#if USE_PORTMIXER
#include "portmixer.h"
#endif
#include <wx/log.h>
#include <wx/textctrl.h>
#include <wx/msgdlg.h>
#include <wx/timer.h>
#include <wx/intl.h>
#include <wx/debug.h>
#include <wx/sstream.h>
#include <wx/txtstrm.h>
#include "AudacityApp.h"
#include "AudacityException.h"
#include "Mix.h"
#include "MixerBoard.h"
#include "Resample.h"
#include "RingBuffer.h"
#include "prefs/GUISettings.h"
#include "Prefs.h"
#include "Project.h"
#include "TimeTrack.h"
#include "WaveTrack.h"
2015-04-17 22:37:28 +00:00
#include "AutoRecovery.h"
#include "toolbars/ControlToolBar.h"
#include "widgets/Meter.h"
#ifdef EXPERIMENTAL_MIDI_OUT
#define MIDI_SLEEP 10 /* milliseconds */
#define ROUND(x) (int) ((x)+0.5)
//#include <string.h>
#include "../lib-src/portmidi/pm_common/portmidi.h"
#include "../lib-src/portaudio-v19/src/common/pa_util.h"
#include "NoteTrack.h"
#endif
#ifdef EXPERIMENTAL_AUTOMATED_INPUT_LEVEL_ADJUSTMENT
#define LOWER_BOUND 0.0
#define UPPER_BOUND 1.0
#endif
using std::max;
using std::min;
std::unique_ptr<AudioIO> ugAudioIO;
AudioIO *gAudioIO{};
DEFINE_EVENT_TYPE(EVT_AUDIOIO_PLAYBACK);
DEFINE_EVENT_TYPE(EVT_AUDIOIO_CAPTURE);
DEFINE_EVENT_TYPE(EVT_AUDIOIO_MONITOR);
// static
int AudioIO::mNextStreamToken = 0;
int AudioIO::mCachedPlaybackIndex = -1;
wxArrayLong AudioIO::mCachedPlaybackRates;
int AudioIO::mCachedCaptureIndex = -1;
wxArrayLong AudioIO::mCachedCaptureRates;
wxArrayLong AudioIO::mCachedSampleRates;
double AudioIO::mCachedBestRateIn = 0.0;
double AudioIO::mCachedBestRateOut;
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
#include "tracks/ui/Scrubbing.h"
/*
This work queue class, with the aid of the playback ring
buffers, coordinates three threads during scrub play:
The UI thread which specifies scrubbing intervals to play,
The Audio thread which consumes those specifications a first time
and fills the ring buffers with samples for play,
The PortAudio thread which consumes from the ring buffers, then
also consumes a second time from this queue,
to figure out how to update mTime
-- which the UI thread, in turn, uses to redraw the play head indicator
in the right place.
Audio produces samples for PortAudio, which consumes them, both in
approximate real time. The UI thread might go idle and so the others
might catch up, emptying the queue and causing scrub to go silent.
The UI thread will not normally outrun the others -- because InitEntry()
limits the real time duration over which each enqueued interval will play.
So a small, fixed queue size should be adequate.
*/
struct AudioIO::ScrubQueue
{
ScrubQueue(double t0, double t1, wxLongLong startClockMillis,
2016-05-28 14:42:00 +00:00
double rate, long maxDebt,
const ScrubbingOptions &options)
: mTrailingIdx(0)
, mMiddleIdx(1)
, mLeadingIdx(1)
, mRate(rate)
, mLastScrubTimeMillis(startClockMillis)
, mUpdating()
, mMaxDebt { maxDebt }
{
const auto s0 = std::max(options.minSample, std::min(options.maxSample,
sampleCount(lrint(t0 * mRate))
));
const auto s1 = sampleCount(lrint(t1 * mRate));
Duration dd { *this };
auto actualDuration = std::max(sampleCount{1}, dd.duration);
auto success = mEntries[mMiddleIdx].Init(nullptr,
2016-05-28 14:42:00 +00:00
s0, s1, actualDuration, options);
if (success)
++mLeadingIdx;
else {
// If not, we can wait to enqueue again later
dd.Cancel();
}
// So the play indicator starts out unconfused:
{
Entry &entry = mEntries[mTrailingIdx];
entry.mS0 = entry.mS1 = s0;
entry.mPlayed = entry.mDuration = 1;
}
}
~ScrubQueue() {}
double LastTimeInQueue() const
{
// Needed by the main thread sometimes
wxMutexLocker locker(mUpdating);
const Entry &previous = mEntries[(mLeadingIdx + Size - 1) % Size];
return previous.mS1.as_double() / mRate;
}
// This is for avoiding deadlocks while starting a scrub:
// Audio stream needs to be unblocked
void Nudge()
{
wxMutexLocker locker(mUpdating);
mNudged = true;
mAvailable.Signal();
}
2016-05-28 14:42:00 +00:00
bool Producer(double end, const ScrubbingOptions &options)
{
// Main thread indicates a scrubbing interval
// MAY ADVANCE mLeadingIdx, BUT IT NEVER CATCHES UP TO mTrailingIdx.
wxMutexLocker locker(mUpdating);
bool result = true;
unsigned next = (mLeadingIdx + 1) % Size;
if (next != mTrailingIdx)
{
auto current = &mEntries[mLeadingIdx];
auto previous = &mEntries[(mLeadingIdx + Size - 1) % Size];
// Use the previous end as NEW start.
const auto s0 = previous->mS1;
Duration dd { *this };
const auto &origDuration = dd.duration;
if (origDuration <= 0)
return false;
auto actualDuration = origDuration;
const sampleCount s1 ( options.enqueueBySpeed
? s0.as_double() +
lrint(origDuration.as_double() * end) // end is a speed
: lrint(end * mRate) // end is a time
);
auto success =
2016-05-28 14:42:00 +00:00
current->Init(previous, s0, s1, actualDuration, options);
if (success)
mLeadingIdx = next;
else {
dd.Cancel();
return false;
}
// Fill up the queue with some silence if there was trimming
wxASSERT(actualDuration <= origDuration);
if (actualDuration < origDuration) {
next = (mLeadingIdx + 1) % Size;
if (next != mTrailingIdx) {
previous = &mEntries[(mLeadingIdx + Size - 1) % Size];
current = &mEntries[mLeadingIdx];
current->InitSilent(*previous, origDuration - actualDuration);
mLeadingIdx = next;
}
else
// Oops, can't enqueue the silence -- so do what?
;
}
mAvailable.Signal();
return result;
}
else
{
// ??
// Queue wasn't long enough. Write side (UI thread)
// has overtaken the trailing read side (PortAudio thread), despite
// my comments above! We lose some work requests then.
// wxASSERT(false);
return false;
}
}
void Transformer(sampleCount &startSample, sampleCount &endSample,
sampleCount &duration,
Maybe<wxMutexLocker> &cleanup)
{
// Audio thread is ready for the next interval.
// MAY ADVANCE mMiddleIdx, WHICH MAY EQUAL mLeadingIdx, BUT DOES NOT PASS IT.
bool checkDebt = false;
if (!cleanup) {
cleanup.create(mUpdating);
// Check for cancellation of work only when re-enetering the cricial section
checkDebt = true;
}
while(!mNudged && mMiddleIdx == mLeadingIdx)
mAvailable.Wait();
mNudged = false;
auto now = ::wxGetLocalTimeMillis();
if (checkDebt &&
mLastTransformerTimeMillis >= 0 && // Not the first time for this scrub
mMiddleIdx != mLeadingIdx) {
// There is work in the queue, but if Producer is outrunning us, discard some,
// which may make a skip yet keep playback better synchronized with user gestures.
const auto interval = (now - mLastTransformerTimeMillis).ToDouble() / 1000.0;
//const Entry &previous = mEntries[(mMiddleIdx + Size - 1) % Size];
const auto deficit =
static_cast<long>(interval * mRate) - // Samples needed in the last time interval
mCredit; // Samples done in the last time interval
mCredit = 0;
mDebt += deficit;
auto toDiscard = mDebt - mMaxDebt;
while (toDiscard > 0 && mMiddleIdx != mLeadingIdx) {
// Cancel some debt (discard some NEW work)
auto &entry = mEntries[mMiddleIdx];
auto &dur = entry.mDuration;
if (toDiscard >= dur) {
// Discard entire queue entry
mDebt -= dur;
toDiscard -= dur;
dur = 0; // So Consumer() will handle abandoned entry correctly
mMiddleIdx = (mMiddleIdx + 1) % Size;
}
else {
// Adjust the start time
auto &start = entry.mS0;
const auto end = entry.mS1;
const auto ratio = toDiscard.as_double() / dur.as_double();
const sampleCount adjustment(
std::abs((end - start).as_long_long()) * ratio
);
if (start <= end)
start += adjustment;
else
start -= adjustment;
mDebt -= toDiscard;
dur -= toDiscard;
toDiscard = 0;
}
}
}
if (mMiddleIdx != mLeadingIdx) {
// There is still work in the queue, after cancelling debt
Entry &entry = mEntries[mMiddleIdx];
startSample = entry.mS0;
endSample = entry.mS1;
duration = entry.mDuration;
mMiddleIdx = (mMiddleIdx + 1) % Size;
mCredit += duration;
}
else {
// We got the shut-down signal, or we got nudged, or we discarded all the work.
startSample = endSample = duration = -1L;
}
if (checkDebt)
mLastTransformerTimeMillis = now;
}
double Consumer(unsigned long frames)
{
// Portaudio thread consumes samples and must update
// the time for the indicator. This finds the time value.
// MAY ADVANCE mTrailingIdx, BUT IT NEVER CATCHES UP TO mMiddleIdx.
wxMutexLocker locker(mUpdating);
// Mark entries as partly or fully "consumed" for
// purposes of mTime update. It should not happen that
// frames exceed the total of samples to be consumed,
// but in that case we just use the t1 of the latest entry.
while (1)
{
Entry *pEntry = &mEntries[mTrailingIdx];
auto remaining = pEntry->mDuration - pEntry->mPlayed;
if (frames >= remaining)
{
// remaining is not more than frames
frames -= remaining.as_size_t();
pEntry->mPlayed = pEntry->mDuration;
}
else
{
pEntry->mPlayed += frames;
break;
}
const unsigned next = (mTrailingIdx + 1) % Size;
if (next == mMiddleIdx)
break;
mTrailingIdx = next;
}
return mEntries[mTrailingIdx].GetTime(mRate);
}
private:
struct Entry
{
Entry()
: mS0(0)
, mS1(0)
, mGoal(0)
, mDuration(0)
, mPlayed(0)
{}
bool Init(Entry *previous, sampleCount s0, sampleCount s1,
sampleCount &duration /* in/out */,
2016-05-28 14:42:00 +00:00
const ScrubbingOptions &options)
{
const bool &adjustStart = options.adjustStart;
wxASSERT(duration > 0);
double speed =
(std::abs((s1 - s0).as_long_long())) / duration.as_double();
bool adjustedSpeed = false;
auto minSpeed = std::min(options.minSpeed, options.maxSpeed);
wxASSERT(minSpeed == options.minSpeed);
// May change the requested speed and duration
2016-05-28 14:42:00 +00:00
if (!adjustStart && speed > options.maxSpeed)
{
// Reduce speed to the maximum selected in the user interface.
2016-05-28 14:42:00 +00:00
speed = options.maxSpeed;
mGoal = s1;
adjustedSpeed = true;
}
else if (!adjustStart &&
previous &&
previous->mGoal >= 0 &&
previous->mGoal == s1)
{
// In case the mouse has not moved, and playback
// is catching up to the mouse at maximum speed,
// continue at no less than maximum. (Without this
// the final catch-up can make a slow scrub interval
// that drops the pitch and sounds wrong.)
minSpeed = options.maxSpeed;
mGoal = s1;
adjustedSpeed = true;
}
else
mGoal = -1;
if (speed < minSpeed) {
// Trim the duration.
duration = std::max(0L, lrint(speed * duration.as_double() / minSpeed));
speed = minSpeed;
adjustedSpeed = true;
}
if (speed < ScrubbingOptions::MinAllowedScrubSpeed()) {
// Mixers were set up to go only so slowly, not slower.
// This will put a request for some silence in the work queue.
adjustedSpeed = true;
speed = 0.0;
}
// May change s1 or s0 to match speed change or stay in bounds of the project
if (adjustedSpeed && !adjustStart)
{
// adjust s1
const sampleCount diff = lrint(speed * duration.as_double());
if (s0 < s1)
s1 = s0 + diff;
else
s1 = s0 - diff;
}
bool silent = false;
// Adjust s1 (again), and duration, if s1 is out of bounds,
// or abandon if a stutter is too short.
// (Assume s0 is in bounds, because it equals the last scrub's s1 which was checked.)
if (s1 != s0)
{
auto newDuration = duration;
const auto newS1 = std::max(options.minSample, std::min(options.maxSample, s1));
if(s1 != newS1)
newDuration = std::max( sampleCount{ 0 },
sampleCount(
duration.as_double() * (newS1 - s0).as_double() /
(s1 - s0).as_double()
)
);
// When playback follows a fast mouse movement by "stuttering"
// at maximum playback, don't make stutters too short to be useful.
if (options.adjustStart && newDuration < options.minStutter)
return false;
else if (newDuration == 0) {
// Enqueue a silent scrub with s0 == s1
silent = true;
s1 = s0;
}
else if (s1 != newS1) {
// Shorten
duration = newDuration;
s1 = newS1;
}
}
if (adjustStart && !silent)
{
// Limit diff because this is seeking.
const sampleCount diff =
lrint(std::min(options.maxSpeed, speed) * duration.as_double());
if (s0 < s1)
s0 = s1 - diff;
else
s0 = s1 + diff;
}
mS0 = s0;
mS1 = s1;
mPlayed = 0;
mDuration = duration;
return true;
}
void InitSilent(const Entry &previous, sampleCount duration)
{
mGoal = previous.mGoal;
mS0 = mS1 = previous.mS1;
mPlayed = 0;
mDuration = duration;
}
double GetTime(double rate) const
{
return
(mS0.as_double() +
(mS1 - mS0).as_double() * mPlayed.as_double() / mDuration.as_double())
/ rate;
}
// These sample counts are initialized in the UI, producer, thread:
sampleCount mS0;
sampleCount mS1;
sampleCount mGoal;
// This field is initialized in the UI thread too, and
// this work queue item corresponds to exactly this many samples of
// playback output:
sampleCount mDuration;
// The middleman Audio thread does not change these entries, but only
// changes indices in the queue structure.
// This increases from 0 to mDuration as the PortAudio, consumer,
// thread catches up. When they are equal, this entry can be discarded:
sampleCount mPlayed;
};
struct Duration {
Duration (ScrubQueue &queue_) : queue(queue_) {}
~Duration ()
{
if(!cancelled)
queue.mLastScrubTimeMillis = clockTime;
}
void Cancel() { cancelled = true; }
ScrubQueue &queue;
const wxLongLong clockTime { ::wxGetLocalTimeMillis() };
const sampleCount duration { static_cast<long long>
(queue.mRate * (clockTime - queue.mLastScrubTimeMillis).ToDouble() / 1000.0)
};
bool cancelled { false };
};
enum { Size = 10 };
Entry mEntries[Size];
unsigned mTrailingIdx;
unsigned mMiddleIdx;
unsigned mLeadingIdx;
const double mRate;
wxLongLong mLastScrubTimeMillis;
wxLongLong mLastTransformerTimeMillis { -1LL };
sampleCount mCredit { 0 };
sampleCount mDebt { 0 };
const long mMaxDebt;
mutable wxMutex mUpdating;
mutable wxCondition mAvailable { mUpdating };
bool mNudged { false };
};
#endif
const int AudioIO::StandardRates[] = {
8000,
11025,
16000,
22050,
32000,
44100,
48000,
88200,
96000,
176400,
192000,
352800,
384000
};
const int AudioIO::NumStandardRates = sizeof(AudioIO::StandardRates) /
sizeof(AudioIO::StandardRates[0]);
const int AudioIO::RatesToTry[] = {
8000,
9600,
11025,
12000,
15000,
16000,
22050,
24000,
32000,
44100,
48000,
88200,
96000,
176400,
192000,
352800,
384000
};
const int AudioIO::NumRatesToTry = sizeof(AudioIO::RatesToTry) /
sizeof(AudioIO::RatesToTry[0]);
int audacityAudioCallback(const void *inputBuffer, void *outputBuffer,
unsigned long framesPerBuffer,
const PaStreamCallbackTimeInfo *timeInfo,
PaStreamCallbackFlags statusFlags, void *userData );
//////////////////////////////////////////////////////////////////////
//
// class AudioThread - declaration and glue code
//
//////////////////////////////////////////////////////////////////////
#ifdef __WXMAC__
// On Mac OS X, it's better not to use the wxThread class.
// We use our own implementation based on pthreads instead.
#include <pthread.h>
#include <time.h>
class AudioThread {
public:
typedef int ExitCode;
AudioThread() { mDestroy = false; mThread = NULL; }
virtual ExitCode Entry();
void Create() {}
void Delete() {
mDestroy = true;
pthread_join(mThread, NULL);
}
bool TestDestroy() { return mDestroy; }
void Sleep(int ms) {
struct timespec spec;
spec.tv_sec = 0;
spec.tv_nsec = ms * 1000 * 1000;
nanosleep(&spec, NULL);
}
static void *callback(void *p) {
AudioThread *th = (AudioThread *)p;
return (void *)th->Entry();
}
void Run() {
pthread_create(&mThread, NULL, callback, this);
}
private:
bool mDestroy;
pthread_t mThread;
};
#else
// The normal wxThread-derived AudioThread class for all other
// platforms:
class AudioThread /* not final */ : public wxThread {
public:
AudioThread():wxThread(wxTHREAD_JOINABLE) {}
ExitCode Entry() override;
};
#endif
#ifdef EXPERIMENTAL_MIDI_OUT
class MidiThread final : public AudioThread {
public:
ExitCode Entry() override;
};
#endif
//////////////////////////////////////////////////////////////////////
//
// UI Thread Context
//
//////////////////////////////////////////////////////////////////////
void InitAudioIO()
{
ugAudioIO.reset(safenew AudioIO());
gAudioIO = ugAudioIO.get();
gAudioIO->mThread->Run();
#ifdef EXPERIMENTAL_MIDI_OUT
gAudioIO->mMidiThread->Run();
#endif
// Make sure device prefs are initialized
if (gPrefs->Read(wxT("AudioIO/RecordingDevice"), wxT("")) == wxT("")) {
int i = AudioIO::getRecordDevIndex();
const PaDeviceInfo *info = Pa_GetDeviceInfo(i);
if (info) {
gPrefs->Write(wxT("/AudioIO/RecordingDevice"), DeviceName(info));
gPrefs->Write(wxT("/AudioIO/Host"), HostName(info));
}
}
if (gPrefs->Read(wxT("AudioIO/PlaybackDevice"), wxT("")) == wxT("")) {
int i = AudioIO::getPlayDevIndex();
const PaDeviceInfo *info = Pa_GetDeviceInfo(i);
if (info) {
gPrefs->Write(wxT("/AudioIO/PlaybackDevice"), DeviceName(info));
gPrefs->Write(wxT("/AudioIO/Host"), HostName(info));
}
}
gPrefs->Flush();
}
void DeinitAudioIO()
{
ugAudioIO.reset();
}
wxString DeviceName(const PaDeviceInfo* info)
{
wxString infoName = wxSafeConvertMB2WX(info->name);
return infoName;
}
wxString HostName(const PaDeviceInfo* info)
{
wxString hostapiName = wxSafeConvertMB2WX(Pa_GetHostApiInfo(info->hostApi)->name);
return hostapiName;
}
bool AudioIO::ValidateDeviceNames(const wxString &play, const wxString &rec)
{
const PaDeviceInfo *pInfo = Pa_GetDeviceInfo(AudioIO::getPlayDevIndex(play));
const PaDeviceInfo *rInfo = Pa_GetDeviceInfo(AudioIO::getRecordDevIndex(rec));
if (!pInfo || !rInfo || pInfo->hostApi != rInfo->hostApi) {
return false;
}
return true;
}
AudioIO::AudioIO()
{
mAudioThreadShouldCallFillBuffersOnce = false;
mAudioThreadFillBuffersLoopRunning = false;
mAudioThreadFillBuffersLoopActive = false;
mPortStreamV19 = NULL;
#ifdef EXPERIMENTAL_MIDI_OUT
mMidiStream = NULL;
mMidiThreadFillBuffersLoopRunning = false;
mMidiThreadFillBuffersLoopActive = false;
mMidiStreamActive = false;
mSendMidiState = false;
mIterator = NULL;
mNumFrames = 0;
mNumPauseFrames = 0;
#endif
#ifdef EXPERIMENTAL_AUTOMATED_INPUT_LEVEL_ADJUSTMENT
mAILAActive = false;
#endif
mStreamToken = 0;
mLastPaError = paNoError;
mLastRecordingOffset = 0.0;
mNumCaptureChannels = 0;
mPaused = false;
mPlayMode = PLAY_STRAIGHT;
mListener = NULL;
mUpdateMeters = false;
mUpdatingMeters = false;
mOwningProject = NULL;
mInputMeter = NULL;
mOutputMeter = NULL;
PaError err = Pa_Initialize();
if (err != paNoError) {
wxString errStr = _("Could not find any audio devices.\n");
errStr += _("You will not be able to play or record audio.\n\n");
wxString paErrStr = LAT1CTOWX(Pa_GetErrorText(err));
if (!paErrStr.IsEmpty())
errStr += _("Error: ")+paErrStr;
// XXX: we are in libaudacity, popping up dialogs not allowed! A
// long-term solution will probably involve exceptions
wxMessageBox(errStr, _("Error Initializing Audio"), wxICON_ERROR|wxOK);
// Since PortAudio is not initialized, all calls to PortAudio
// functions will fail. This will give reasonable behavior, since
// the user will be able to do things not relating to audio i/o,
// but any attempt to play or record will simply fail.
}
#ifdef EXPERIMENTAL_MIDI_OUT
PmError pmErr = Pm_Initialize();
if (pmErr != pmNoError) {
2014-06-03 20:30:19 +00:00
wxString errStr =
_("There was an error initializing the midi i/o layer.\n");
errStr += _("You will not be able to play midi.\n\n");
wxString pmErrStr = LAT1CTOWX(Pm_GetErrorText(pmErr));
if (!pmErrStr.empty())
errStr += _("Error: ") + pmErrStr;
// XXX: we are in libaudacity, popping up dialogs not allowed! A
// long-term solution will probably involve exceptions
wxMessageBox(errStr, _("Error Initializing Midi"), wxICON_ERROR|wxOK);
// Same logic for PortMidi as described above for PortAudio
}
mMidiThread = std::make_unique<MidiThread>();
mMidiThread->Create();
#endif
// Start thread
mThread = std::make_unique<AudioThread>();
mThread->Create();
#if defined(USE_PORTMIXER)
mPortMixer = NULL;
mPreviousHWPlaythrough = -1.0;
HandleDeviceChange();
#else
mEmulateMixerOutputVol = true;
mMixerOutputVol = 1.0;
mInputMixerWorks = false;
#endif
mLastPlaybackTimeMillis = 0;
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
mScrubQueue = NULL;
mScrubDuration = 0;
mSilentScrub = false;
#endif
}
AudioIO::~AudioIO()
{
#if defined(USE_PORTMIXER)
if (mPortMixer) {
#if __WXMAC__
if (Px_SupportsPlaythrough(mPortMixer) && mPreviousHWPlaythrough >= 0.0)
Px_SetPlaythrough(mPortMixer, mPreviousHWPlaythrough);
mPreviousHWPlaythrough = -1.0;
#endif
Px_CloseMixer(mPortMixer);
mPortMixer = NULL;
}
#endif
// FIXME: ? TRAP_ERR. Pa_Terminate probably OK if err without reporting.
Pa_Terminate();
#ifdef EXPERIMENTAL_MIDI_OUT
Pm_Terminate();
/* Delete is a "graceful" way to stop the thread.
(Kill is the not-graceful way.) */
mMidiThread->Delete();
mMidiThread.reset();
#endif
/* Delete is a "graceful" way to stop the thread.
(Kill is the not-graceful way.) */
2015-09-04 06:07:16 +00:00
// This causes reentrancy issues during application shutdown
// wxTheApp->Yield();
mThread->Delete();
mThread.reset();
2014-06-03 20:30:19 +00:00
gAudioIO = nullptr;
}
void AudioIO::SetMixer(int inputSource)
{
#if defined(USE_PORTMIXER)
int oldRecordSource = Px_GetCurrentInputSource(mPortMixer);
if ( inputSource != oldRecordSource )
Px_SetCurrentInputSource(mPortMixer, inputSource);
#endif
}
void AudioIO::SetMixer(int inputSource, float recordVolume,
float playbackVolume)
{
mMixerOutputVol = playbackVolume;
#if defined(USE_PORTMIXER)
PxMixer *mixer = mPortMixer;
if( mixer )
{
float oldRecordVolume = Px_GetInputVolume(mixer);
float oldPlaybackVolume = Px_GetPCMOutputVolume(mixer);
SetMixer(inputSource);
if( oldRecordVolume != recordVolume )
Px_SetInputVolume(mixer, recordVolume);
if( oldPlaybackVolume != playbackVolume )
Px_SetPCMOutputVolume(mixer, playbackVolume);
return;
}
#endif
}
void AudioIO::GetMixer(int *recordDevice, float *recordVolume,
float *playbackVolume)
{
#if defined(USE_PORTMIXER)
PxMixer *mixer = mPortMixer;
if( mixer )
{
*recordDevice = Px_GetCurrentInputSource(mixer);
if (mInputMixerWorks)
*recordVolume = Px_GetInputVolume(mixer);
else
*recordVolume = 1.0f;
if (mEmulateMixerOutputVol)
*playbackVolume = mMixerOutputVol;
else
*playbackVolume = Px_GetPCMOutputVolume(mixer);
return;
}
#endif
*recordDevice = 0;
*recordVolume = 1.0f;
*playbackVolume = mMixerOutputVol;
}
bool AudioIO::InputMixerWorks()
{
return mInputMixerWorks;
}
bool AudioIO::OutputMixerEmulated()
{
return mEmulateMixerOutputVol;
}
wxArrayString AudioIO::GetInputSourceNames()
{
#if defined(USE_PORTMIXER)
wxArrayString deviceNames;
if( mPortMixer )
{
int numSources = Px_GetNumInputSources(mPortMixer);
for( int source = 0; source < numSources; source++ )
deviceNames.Add(wxString(wxSafeConvertMB2WX(Px_GetInputSourceName(mPortMixer, source))));
}
else
{
wxLogDebug(wxT("AudioIO::GetInputSourceNames(): PortMixer not initialised!"));
}
return deviceNames;
#else
wxArrayString blank;
return blank;
#endif
}
void AudioIO::HandleDeviceChange()
{
// This should not happen, but it would screw things up if it did.
2014-06-03 20:30:19 +00:00
// Vaughan, 2010-10-08: But it *did* happen, due to a bug, and nobody
// caught it because this method just returned. Added wxASSERT().
2014-06-03 20:30:19 +00:00
wxASSERT(!IsStreamActive());
if (IsStreamActive())
return;
// get the selected record and playback devices
const int playDeviceNum = getPlayDevIndex();
const int recDeviceNum = getRecordDevIndex();
// If no change needed, return
if (mCachedPlaybackIndex == playDeviceNum &&
mCachedCaptureIndex == recDeviceNum)
return;
// cache playback/capture rates
mCachedPlaybackRates = GetSupportedPlaybackRates(playDeviceNum);
mCachedCaptureRates = GetSupportedCaptureRates(recDeviceNum);
mCachedSampleRates = GetSupportedSampleRates(playDeviceNum, recDeviceNum);
mCachedPlaybackIndex = playDeviceNum;
mCachedCaptureIndex = recDeviceNum;
mCachedBestRateIn = 0.0;
#if defined(USE_PORTMIXER)
// if we have a PortMixer object, close it down
if (mPortMixer) {
#if __WXMAC__
// on the Mac we must make sure that we restore the hardware playthrough
// state of the sound device to what it was before, because there isn't
// a UI for this (!)
if (Px_SupportsPlaythrough(mPortMixer) && mPreviousHWPlaythrough >= 0.0)
Px_SetPlaythrough(mPortMixer, mPreviousHWPlaythrough);
mPreviousHWPlaythrough = -1.0;
#endif
Px_CloseMixer(mPortMixer);
mPortMixer = NULL;
}
// that might have given us no rates whatsoever, so we have to guess an
// answer to do the next bit
int numrates = mCachedSampleRates.GetCount();
int highestSampleRate;
if (numrates > 0)
{
highestSampleRate = mCachedSampleRates[numrates - 1];
}
else
{ // we don't actually have any rates that work for Rec and Play. Guess one
// to use for messing with the mixer, which doesn't actually do either
highestSampleRate = 44100;
// mCachedSampleRates is still empty, but it's not used again, so
// can ignore
}
mInputMixerWorks = false;
mEmulateMixerOutputVol = true;
mMixerOutputVol = 1.0;
int error;
// This tries to open the device with the samplerate worked out above, which
// will be the highest available for play and record on the device, or
// 44.1kHz if the info cannot be fetched.
PaStream *stream;
PaStreamParameters playbackParameters;
playbackParameters.device = playDeviceNum;
playbackParameters.sampleFormat = paFloat32;
playbackParameters.hostApiSpecificStreamInfo = NULL;
playbackParameters.channelCount = 1;
if (Pa_GetDeviceInfo(playDeviceNum))
playbackParameters.suggestedLatency =
Pa_GetDeviceInfo(playDeviceNum)->defaultLowOutputLatency;
else
2014-06-03 20:30:19 +00:00
playbackParameters.suggestedLatency = DEFAULT_LATENCY_CORRECTION/1000.0;
PaStreamParameters captureParameters;
2014-06-03 20:30:19 +00:00
captureParameters.device = recDeviceNum;
captureParameters.sampleFormat = paFloat32;;
captureParameters.hostApiSpecificStreamInfo = NULL;
captureParameters.channelCount = 1;
if (Pa_GetDeviceInfo(recDeviceNum))
captureParameters.suggestedLatency =
Pa_GetDeviceInfo(recDeviceNum)->defaultLowInputLatency;
else
2014-06-03 20:30:19 +00:00
captureParameters.suggestedLatency = DEFAULT_LATENCY_CORRECTION/1000.0;
// try opening for record and playback
error = Pa_OpenStream(&stream,
&captureParameters, &playbackParameters,
highestSampleRate, paFramesPerBufferUnspecified,
paClipOff | paDitherOff,
audacityAudioCallback, NULL);
2014-06-03 20:30:19 +00:00
if (!error) {
// Try portmixer for this stream
mPortMixer = Px_OpenMixer(stream, 0);
if (!mPortMixer) {
Pa_CloseStream(stream);
error = true;
}
}
// if that failed, try just for record
if( error ) {
error = Pa_OpenStream(&stream,
&captureParameters, NULL,
highestSampleRate, paFramesPerBufferUnspecified,
paClipOff | paDitherOff,
audacityAudioCallback, NULL);
if (!error) {
mPortMixer = Px_OpenMixer(stream, 0);
if (!mPortMixer) {
Pa_CloseStream(stream);
error = true;
}
}
}
// finally, try just for playback
if ( error ) {
error = Pa_OpenStream(&stream,
NULL, &playbackParameters,
highestSampleRate, paFramesPerBufferUnspecified,
paClipOff | paDitherOff,
audacityAudioCallback, NULL);
2014-06-03 20:30:19 +00:00
if (!error) {
mPortMixer = Px_OpenMixer(stream, 0);
if (!mPortMixer) {
Pa_CloseStream(stream);
error = true;
}
}
}
// FIXME: TRAP_ERR errors in HandleDeviceChange not reported.
// if it's still not working, give up
if( error )
return;
// Set input source
#if USE_PORTMIXER
int sourceIndex;
if (gPrefs->Read(wxT("/AudioIO/RecordingSourceIndex"), &sourceIndex)) {
if (sourceIndex >= 0) {
//the current index of our source may be different because the stream
//is a combination of two devices, so update it.
sourceIndex = getRecordSourceIndex(mPortMixer);
if (sourceIndex >= 0)
SetMixer(sourceIndex);
}
}
#endif
// Determine mixer capabilities - if it doesn't support control of output
// signal level, we emulate it (by multiplying this value by all outgoing
// samples)
mMixerOutputVol = Px_GetPCMOutputVolume(mPortMixer);
mEmulateMixerOutputVol = false;
Px_SetPCMOutputVolume(mPortMixer, 0.0);
if (Px_GetPCMOutputVolume(mPortMixer) > 0.1)
mEmulateMixerOutputVol = true;
Px_SetPCMOutputVolume(mPortMixer, 0.2f);
if (Px_GetPCMOutputVolume(mPortMixer) < 0.1 ||
Px_GetPCMOutputVolume(mPortMixer) > 0.3)
mEmulateMixerOutputVol = true;
Px_SetPCMOutputVolume(mPortMixer, mMixerOutputVol);
float inputVol = Px_GetInputVolume(mPortMixer);
mInputMixerWorks = true; // assume it works unless proved wrong
Px_SetInputVolume(mPortMixer, 0.0);
if (Px_GetInputVolume(mPortMixer) > 0.1)
mInputMixerWorks = false; // can't set to zero
Px_SetInputVolume(mPortMixer, 0.2f);
if (Px_GetInputVolume(mPortMixer) < 0.1 ||
Px_GetInputVolume(mPortMixer) > 0.3)
mInputMixerWorks = false; // can't set level accurately
Px_SetInputVolume(mPortMixer, inputVol);
Pa_CloseStream(stream);
2014-06-03 20:30:19 +00:00
#if 0
printf("PortMixer: Playback: %s Recording: %s\n",
mEmulateMixerOutputVol? "emulated": "native",
mInputMixerWorks? "hardware": "no control");
#endif
mMixerOutputVol = 1.0;
#endif // USE_PORTMIXER
}
static PaSampleFormat AudacityToPortAudioSampleFormat(sampleFormat format)
{
switch(format) {
case int16Sample:
return paInt16;
case int24Sample:
return paInt24;
case floatSample:
default:
return paFloat32;
}
}
bool AudioIO::StartPortAudioStream(double sampleRate,
unsigned int numPlaybackChannels,
unsigned int numCaptureChannels,
sampleFormat captureFormat)
{
#ifdef EXPERIMENTAL_MIDI_OUT
mNumFrames = 0;
mNumPauseFrames = 0;
#endif
mOwningProject = GetActiveProject();
mInputMeter = NULL;
mOutputMeter = NULL;
mLastPaError = paNoError;
// pick a rate to do the audio I/O at, from those available. The project
// rate is suggested, but we may get something else if it isn't supported
mRate = GetBestRate(numCaptureChannels > 0, numPlaybackChannels > 0, sampleRate);
2014-06-03 20:30:19 +00:00
// July 2016 (Carsten and Uwe)
// BUG 193: Tell PortAudio sound card will handle 24 bit (under DirectSound) using
// userData.
int captureFormat_saved = captureFormat;
// Special case: Our 24-bit sample format is different from PortAudio's
// 3-byte packed format. So just make PortAudio return float samples,
// since we need float values anyway to apply the gain.
// ANSWER-ME: So we *never* actually handle 24-bit?! This causes mCapture to
// be set to floatSample below.
// JKC: YES that's right. Internally Audacity uses float, and float has space for
// 24 bits as well as exponent. Actual 24 bit would require packing and
// unpacking unaligned bytes and would be inefficient.
// ANSWER ME: is floatSample 64 bit on 64 bit machines?
if (captureFormat == int24Sample)
captureFormat = floatSample;
mNumPlaybackChannels = numPlaybackChannels;
mNumCaptureChannels = numCaptureChannels;
2016-02-18 17:43:02 +00:00
bool usePlayback = false, useCapture = false;
PaStreamParameters playbackParameters{};
PaStreamParameters captureParameters{};
2014-06-03 20:30:19 +00:00
double latencyDuration = DEFAULT_LATENCY_DURATION;
gPrefs->Read(wxT("/AudioIO/LatencyDuration"), &latencyDuration);
if( numPlaybackChannels > 0)
{
2016-02-18 17:43:02 +00:00
usePlayback = true;
// this sets the device index to whatever is "right" based on preferences,
// then defaults
2016-02-18 17:43:02 +00:00
playbackParameters.device = getPlayDevIndex();
2014-06-03 20:30:19 +00:00
const PaDeviceInfo *playbackDeviceInfo;
2016-02-18 17:43:02 +00:00
playbackDeviceInfo = Pa_GetDeviceInfo( playbackParameters.device );
2014-06-03 20:30:19 +00:00
if( playbackDeviceInfo == NULL )
return false;
2014-06-03 20:30:19 +00:00
// regardless of source formats, we always mix to float
2016-02-18 17:43:02 +00:00
playbackParameters.sampleFormat = paFloat32;
playbackParameters.hostApiSpecificStreamInfo = NULL;
playbackParameters.channelCount = mNumPlaybackChannels;
if (mSoftwarePlaythrough)
2016-02-18 17:43:02 +00:00
playbackParameters.suggestedLatency =
playbackDeviceInfo->defaultLowOutputLatency;
else
2016-02-18 17:43:02 +00:00
playbackParameters.suggestedLatency = latencyDuration/1000.0;
mOutputMeter = mOwningProject->GetPlaybackMeter();
}
if( numCaptureChannels > 0)
{
2016-02-18 17:43:02 +00:00
useCapture = true;
mCaptureFormat = captureFormat;
2014-06-03 20:30:19 +00:00
const PaDeviceInfo *captureDeviceInfo;
// retrieve the index of the device set in the prefs, or a sensible
// default if it isn't set/valid
2016-02-18 17:43:02 +00:00
captureParameters.device = getRecordDevIndex();
2016-02-18 17:43:02 +00:00
captureDeviceInfo = Pa_GetDeviceInfo( captureParameters.device );
if( captureDeviceInfo == NULL )
return false;
2016-02-18 17:43:02 +00:00
captureParameters.sampleFormat =
AudacityToPortAudioSampleFormat(mCaptureFormat);
2016-02-18 17:43:02 +00:00
captureParameters.hostApiSpecificStreamInfo = NULL;
captureParameters.channelCount = mNumCaptureChannels;
if (mSoftwarePlaythrough)
2016-02-18 17:43:02 +00:00
captureParameters.suggestedLatency =
captureDeviceInfo->defaultHighInputLatency;
else
2016-02-18 17:43:02 +00:00
captureParameters.suggestedLatency = latencyDuration/1000.0;
mInputMeter = mOwningProject->GetCaptureMeter();
}
SetMeters();
#ifdef USE_PORTMIXER
#ifdef __WXMSW__
//mchinen nov 30 2010. For some reason Pa_OpenStream resets the input volume on windows.
//so cache and restore after it.
//The actual problem is likely in portaudio's pa_win_wmme.c OpenStream().
float oldRecordVolume = Px_GetInputVolume(mPortMixer);
#endif
#endif
// July 2016 (Carsten and Uwe)
// BUG 193: Possibly tell portAudio to use 24 bit with DirectSound.
int userData = 24;
int* lpUserData = (captureFormat_saved == int24Sample) ? &userData : NULL;
mLastPaError = Pa_OpenStream( &mPortStreamV19,
2016-02-18 17:43:02 +00:00
useCapture ? &captureParameters : NULL,
usePlayback ? &playbackParameters : NULL,
mRate, paFramesPerBufferUnspecified,
paNoFlag,
audacityAudioCallback, lpUserData );
#if USE_PORTMIXER
#ifdef __WXMSW__
Px_SetInputVolume(mPortMixer, oldRecordVolume);
#endif
if (mPortStreamV19 != NULL && mLastPaError == paNoError) {
#ifdef __WXMAC__
if (mPortMixer) {
if (Px_SupportsPlaythrough(mPortMixer)) {
bool playthrough;
mPreviousHWPlaythrough = Px_GetPlaythrough(mPortMixer);
gPrefs->Read(wxT("/AudioIO/Playthrough"), &playthrough, false);
if (playthrough)
Px_SetPlaythrough(mPortMixer, 1.0);
else
Px_SetPlaythrough(mPortMixer, 0.0);
}
}
#endif
}
#endif
return (mLastPaError == paNoError);
}
void AudioIO::StartMonitoring(double sampleRate)
{
if ( mPortStreamV19 || mStreamToken )
return;
bool success;
long captureChannels;
sampleFormat captureFormat = (sampleFormat)
gPrefs->Read(wxT("/SamplingRate/DefaultProjectSampleFormat"), floatSample);
gPrefs->Read(wxT("/AudioIO/RecordChannels"), &captureChannels, 2L);
gPrefs->Read(wxT("/AudioIO/SWPlaythrough"), &mSoftwarePlaythrough, false);
int playbackChannels = 0;
if (mSoftwarePlaythrough)
playbackChannels = 2;
// FIXME: TRAP_ERR StartPortAudioStream (a PaError may be present)
// but StartPortAudioStream function only returns true or false.
success = StartPortAudioStream(sampleRate, (unsigned int)playbackChannels,
(unsigned int)captureChannels,
captureFormat);
// TODO: Check return value of success.
(void)success;
wxCommandEvent e(EVT_AUDIOIO_MONITOR);
e.SetEventObject(mOwningProject);
e.SetInt(true);
wxTheApp->ProcessEvent(e);
// FIXME: TRAP_ERR PaErrorCode 'noted' but not reported in StartMonitoring.
// Now start the PortAudio stream!
// TODO: ? Factor out and reuse error reporting code from end of
// AudioIO::StartStream?
mLastPaError = Pa_StartStream( mPortStreamV19 );
// Update UI display only now, after all possibilities for error are past.
if ((mLastPaError == paNoError) && mListener) {
// advertise the chosen I/O sample rate to the UI
mListener->OnAudioIORate((int)mRate);
}
}
int AudioIO::StartStream(const ConstWaveTrackArray &playbackTracks,
const WaveTrackArray &captureTracks,
#ifdef EXPERIMENTAL_MIDI_OUT
const NoteTrackArray &midiPlaybackTracks,
#endif
double t0, double t1,
const AudioIOStartStreamOptions &options)
{
auto cleanup = finally ( [this] { ClearRecordingException(); } );
if( IsBusy() )
return 0;
const auto &sampleRate = options.rate;
// We just want to set mStreamToken to -1 - this way avoids
// an extremely rare but possible race condition, if two functions
// somehow called StartStream at the same time...
mStreamToken--;
if (mStreamToken != -1)
return 0;
// TODO: we don't really need to close and reopen stream if the
// format matches; however it's kind of tricky to keep it open...
//
// if (sampleRate == mRate &&
// playbackChannels == mNumPlaybackChannels &&
// captureChannels == mNumCaptureChannels &&
// captureFormat == mCaptureFormat) {
if (mPortStreamV19) {
StopStream();
while(mPortStreamV19)
2014-06-03 20:30:19 +00:00
wxMilliSleep( 50 );
}
gPrefs->Read(wxT("/AudioIO/SWPlaythrough"), &mSoftwarePlaythrough, false);
gPrefs->Read(wxT("/AudioIO/SoundActivatedRecord"), &mPauseRec, false);
int silenceLevelDB;
gPrefs->Read(wxT("/AudioIO/SilenceLevel"), &silenceLevelDB, -50);
int dBRange;
dBRange = gPrefs->Read(ENV_DB_KEY, ENV_DB_RANGE);
if(silenceLevelDB < -dBRange)
{
silenceLevelDB = -dBRange + 3; // meter range was made smaller than SilenceLevel
gPrefs->Write(ENV_DB_KEY, dBRange); // so set SilenceLevel reasonable
gPrefs->Flush();
}
mSilenceLevel = (silenceLevelDB + dBRange)/(double)dBRange; // meter goes -dBRange dB -> 0dB
mTimeTrack = options.timeTrack;
mListener = options.listener;
mRate = sampleRate;
mT0 = t0;
mT1 = t1;
mTime = t0;
mSeek = 0;
mLastRecordingOffset = 0;
mCaptureTracks = captureTracks;
mPlaybackTracks = playbackTracks;
#ifdef EXPERIMENTAL_MIDI_OUT
mMidiPlaybackTracks = midiPlaybackTracks;
#endif
mPlayMode = options.playLooped ? PLAY_LOOPED : PLAY_STRAIGHT;
mCutPreviewGapStart = options.cutPreviewGapStart;
mCutPreviewGapLen = options.cutPreviewGapLen;
2016-04-14 16:08:36 +00:00
mPlaybackBuffers.reset();
mPlaybackMixers.reset();
mCaptureBuffers.reset();
mResample.reset();
2016-05-20 04:03:16 +00:00
double playbackTime = 4.0;
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
bool scrubbing = (options.pScrubbingOptions != nullptr);
// Scrubbing is not compatible with looping or recording or a time track!
if (scrubbing)
{
2016-05-20 04:03:16 +00:00
const auto &scrubOptions = *options.pScrubbingOptions;
if (mCaptureTracks.size() > 0 ||
mPlayMode == PLAY_LOOPED ||
mTimeTrack != NULL ||
2016-05-20 04:03:16 +00:00
scrubOptions.maxSpeed < ScrubbingOptions::MinAllowedScrubSpeed()) {
wxASSERT(false);
scrubbing = false;
}
2016-05-20 04:03:16 +00:00
else {
playbackTime = lrint(scrubOptions.delay * sampleRate) / sampleRate;
mPlayMode = PLAY_SCRUB;
}
}
#endif
// mWarpedTime and mWarpedLength are irrelevant when scrubbing,
// else they are used in updating mTime,
// and when not scrubbing or playing looped, mTime is also used
// in the test for termination of playback.
// with ComputeWarpedLength, it is now possible the calculate the warped length with 100% accuracy
// (ignoring accumulated rounding errors during playback) which fixes the 'missing sound at the end' bug
mWarpedTime = 0.0;
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
if (scrubbing)
mWarpedLength = 0.0;
else
#endif
{
if (mTimeTrack)
// Following gives negative when mT0 > mT1
mWarpedLength = mTimeTrack->ComputeWarpedLength(mT0, mT1);
else
mWarpedLength = mT1 - mT0;
// PRL allow backwards play
mWarpedLength = fabs(mWarpedLength);
}
//
// The RingBuffer sizes, and the max amount of the buffer to
// fill at a time, both grow linearly with the number of
// tracks. This allows us to scale up to many tracks without
// killing performance.
//
// (warped) playback time to produce with each filling of the buffers
// by the Audio thread (except at the end of playback):
// usually, make fillings fewer and longer for less CPU usage.
// But for useful scrubbing, we can't run too far ahead without checking
// mouse input, so make fillings more and shorter.
// What Audio thread produces for playback is then consumed by the PortAudio
// thread, in many smaller pieces.
wxASSERT( playbackTime >= 0 );
mPlaybackSamplesToCopy = playbackTime * mRate;
// Capacity of the playback buffer.
mPlaybackRingBufferSecs = 10.0;
mCaptureRingBufferSecs = 4.5 + 0.5 * std::min(size_t(16), mCaptureTracks.size());
mMinCaptureSecsToCopy = 0.2 + 0.2 * std::min(size_t(16), mCaptureTracks.size());
unsigned int playbackChannels = 0;
unsigned int captureChannels = 0;
sampleFormat captureFormat = floatSample;
if (playbackTracks.size() > 0
#ifdef EXPERIMENTAL_MIDI_OUT
|| midiPlaybackTracks.size() > 0
#endif
)
playbackChannels = 2;
if (mSoftwarePlaythrough)
playbackChannels = 2;
if( captureTracks.size() > 0 )
{
// For capture, every input channel gets its own track
captureChannels = mCaptureTracks.size();
// I don't deal with the possibility of the capture tracks
// having different sample formats, since it will never happen
// with the current code. This code wouldn't *break* if this
// assumption was false, but it would be sub-optimal. For example,
// if the first track was 16-bit and the second track was 24-bit,
// we would set the sound card to capture in 16 bits and the second
// track wouldn't get the benefit of all 24 bits the card is capable
// of.
captureFormat = mCaptureTracks[0]->GetSampleFormat();
2014-06-03 20:30:19 +00:00
// Tell project that we are about to start recording
if (mListener)
mListener->OnAudioIOStartRecording();
}
bool successAudio;
successAudio = StartPortAudioStream(sampleRate, playbackChannels,
captureChannels, captureFormat);
#ifdef EXPERIMENTAL_MIDI_OUT
// TODO: it may be that midi out will not work unless audio in or out is
2014-06-03 20:30:19 +00:00
// active -- this would be a bug and may require a change in the
// logic here.
bool successMidi = true;
if(!mMidiPlaybackTracks.empty()){
successMidi = StartPortMidiStream();
}
// On the other hand, if MIDI cannot be opened, we will not complain
#endif
if (!successAudio) {
if (mListener && captureChannels > 0)
mListener->OnAudioIOStopRecording();
mStreamToken = 0;
// Don't cause a busy wait in the audio thread after stopping scrubbing
mPlayMode = PLAY_STRAIGHT;
return 0;
}
//
// The (audio) stream has been opened successfully (assuming we tried
2014-06-03 20:30:19 +00:00
// to open it). We now proceed to
// allocate the memory structures the stream will need.
//
bool bDone;
do
{
bDone = true; // assume success
try
{
if( mNumPlaybackChannels > 0 ) {
// Allocate output buffers. For every output track we allocate
// a ring buffer of five seconds
auto playbackBufferSize =
(size_t)lrint(mRate * mPlaybackRingBufferSecs);
auto playbackMixBufferSize =
mPlaybackSamplesToCopy;
2016-04-14 16:08:36 +00:00
mPlaybackBuffers.reinit(mPlaybackTracks.size());
mPlaybackMixers.reinit(mPlaybackTracks.size());
const Mixer::WarpOptions &warpOptions =
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
scrubbing
? Mixer::WarpOptions
(ScrubbingOptions::MinAllowedScrubSpeed(),
ScrubbingOptions::MaxAllowedScrubSpeed())
:
#endif
Mixer::WarpOptions(mTimeTrack);
for (unsigned int i = 0; i < mPlaybackTracks.size(); i++)
{
2016-04-14 16:08:36 +00:00
mPlaybackBuffers[i] = std::make_unique<RingBuffer>(floatSample, playbackBufferSize);
// MB: use normal time for the end time, not warped time!
2016-04-14 16:08:36 +00:00
mPlaybackMixers[i] = std::make_unique<Mixer>
(WaveTrackConstArray{ mPlaybackTracks[i] },
// Don't throw for read errors, just play silence:
false,
warpOptions,
mT0, mT1, 1,
playbackMixBufferSize, false,
mRate, floatSample, false);
mPlaybackMixers[i]->ApplyTrackGains(false);
}
}
if( mNumCaptureChannels > 0 )
{
// Allocate input buffers. For every input track we allocate
// a ring buffer of five seconds
auto captureBufferSize = (size_t)(mRate * mCaptureRingBufferSecs + 0.5);
// In the extraordinarily rare case that we can't even afford 100 samples, just give up.
if(captureBufferSize < 100)
{
StartStreamCleanup();
wxMessageBox(_("Out of memory!"));
return 0;
}
2016-04-14 16:08:36 +00:00
mCaptureBuffers.reinit(mCaptureTracks.size());
mResample.reinit(mCaptureTracks.size());
mFactor = sampleRate / mRate;
for( unsigned int i = 0; i < mCaptureTracks.size(); i++ )
{
2016-04-14 16:08:36 +00:00
mCaptureBuffers[i] = std::make_unique<RingBuffer>
( mCaptureTracks[i]->GetSampleFormat(),
captureBufferSize );
2016-04-14 16:08:36 +00:00
mResample[i] = std::make_unique<Resample>(true, mFactor, mFactor); // constant rate resampling
}
}
}
catch(std::bad_alloc&)
{
// Oops! Ran out of memory. This is pretty rare, so we'll just
// try deleting everything, halving our buffer size, and try again.
StartStreamCleanup(true);
mPlaybackRingBufferSecs *= 0.5;
mPlaybackSamplesToCopy /= 2;
mCaptureRingBufferSecs *= 0.5;
mMinCaptureSecsToCopy *= 0.5;
bDone = false;
// In the extraordinarily rare case that we can't even afford 100 samples, just give up.
auto playbackBufferSize = (size_t)lrint(mRate * mPlaybackRingBufferSecs);
auto playbackMixBufferSize = mPlaybackSamplesToCopy;
if(playbackBufferSize < 100 || playbackMixBufferSize < 100)
{
StartStreamCleanup();
wxMessageBox(_("Out of memory!"));
return 0;
}
}
} while(!bDone);
if (mNumPlaybackChannels > 0)
{
EffectManager & em = EffectManager::Get();
em.RealtimeInitialize();
// The following adds a NEW effect processor for each logical track and the
// group determination should mimic what is done in audacityAudioCallback()
// when calling RealtimeProcess().
int group = 0;
for (size_t i = 0, cnt = mPlaybackTracks.size(); i < cnt; i++)
{
const WaveTrack *vt = gAudioIO->mPlaybackTracks[i];
unsigned chanCnt = 1;
if (vt->GetLinked())
{
i++;
chanCnt++;
}
em.RealtimeAddProcessor(group++, chanCnt, vt->GetRate());
}
}
#ifdef EXPERIMENTAL_AUTOMATED_INPUT_LEVEL_ADJUSTMENT
AILASetStartTime();
#endif
if (options.pStartTime)
{
// Calculate the NEW time position
mTime = std::max(mT0, std::min(mT1, *options.pStartTime));
// Reset mixer positions for all playback tracks
unsigned numMixers = mPlaybackTracks.size();
for (unsigned ii = 0; ii < numMixers; ++ii)
mPlaybackMixers[ii]->Reposition(mTime);
if(mTimeTrack)
mWarpedTime = mTimeTrack->ComputeWarpedLength(mT0, mTime);
else
mWarpedTime = mTime - mT0;
}
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
if (scrubbing)
{
2016-05-20 04:03:16 +00:00
const auto &scrubOptions = *options.pScrubbingOptions;
mScrubQueue =
std::make_unique<ScrubQueue>(mT0, mT1, scrubOptions.startClockTimeMillis,
2016-05-28 14:42:00 +00:00
sampleRate, 2 * scrubOptions.minStutter,
scrubOptions);
mScrubDuration = 0;
mSilentScrub = false;
}
else
mScrubQueue.reset();
#endif
// We signal the audio thread to call FillBuffers, to prime the RingBuffers
// so that they will have data in them when the stream starts. Having the
// audio thread call FillBuffers here makes the code more predictable, since
// FillBuffers will ALWAYS get called from the Audio thread.
mAudioThreadShouldCallFillBuffersOnce = true;
while( mAudioThreadShouldCallFillBuffersOnce == true ) {
if (mScrubQueue)
mScrubQueue->Nudge();
wxMilliSleep( 50 );
}
if(mNumPlaybackChannels > 0 || mNumCaptureChannels > 0) {
// Now start the PortAudio stream!
PaError err;
err = Pa_StartStream( mPortStreamV19 );
if( err != paNoError )
{
if (mListener && mNumCaptureChannels > 0)
mListener->OnAudioIOStopRecording();
StartStreamCleanup();
wxMessageBox(LAT1CTOWX(Pa_GetErrorText(err)));
return 0;
}
}
// Update UI display only now, after all possibilities for error are past.
if (mListener) {
// advertise the chosen I/O sample rate to the UI
mListener->OnAudioIORate((int)mRate);
}
if (mNumPlaybackChannels > 0)
{
wxCommandEvent e(EVT_AUDIOIO_PLAYBACK);
e.SetEventObject(mOwningProject);
e.SetInt(true);
wxTheApp->ProcessEvent(e);
}
if (mNumCaptureChannels > 0)
{
wxCommandEvent e(EVT_AUDIOIO_CAPTURE);
e.SetEventObject(mOwningProject);
e.SetInt(true);
wxTheApp->ProcessEvent(e);
}
mAudioThreadFillBuffersLoopRunning = true;
// Enable warning popups for unfound aliased blockfiles.
wxGetApp().SetMissingAliasedFileWarningShouldShow(true);
//
// Generate an unique value each time, to be returned to
// clients accessing the AudioIO API, so they can query if
// are the ones who have reserved AudioIO or not.
//
mStreamToken = (++mNextStreamToken);
return mStreamToken;
}
void AudioIO::StartStreamCleanup(bool bOnlyBuffers)
{
if (mNumPlaybackChannels > 0)
{
EffectManager::Get().RealtimeFinalize();
}
2016-04-14 16:08:36 +00:00
mPlaybackBuffers.reset();
mPlaybackMixers.reset();
mCaptureBuffers.reset();
mResample.reset();
if(!bOnlyBuffers)
{
Pa_AbortStream( mPortStreamV19 );
Pa_CloseStream( mPortStreamV19 );
mPortStreamV19 = NULL;
mStreamToken = 0;
}
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
mScrubQueue.reset();
#endif
// Don't cause a busy wait in the audio thread after stopping scrubbing
mPlayMode = PLAY_STRAIGHT;
}
#ifdef EXPERIMENTAL_MIDI_OUT
PmTimestamp MidiTime(void *info)
{
return gAudioIO->MidiTime();
}
// Set up state to iterate NoteTrack events in sequence.
// Sends MIDI control changes up to the starting point mT0
// if send is true. Output is delayed by offset to facilitate
// looping (each iteration is delayed more).
void AudioIO::PrepareMidiIterator(bool send, double offset)
{
int i;
int nTracks = mMidiPlaybackTracks.size();
// instead of initializing with an Alg_seq, we use begin_seq()
// below to add ALL Alg_seq's.
mIterator = std::make_unique<Alg_iterator>(nullptr, false);
// Iterator not yet intialized, must add each track...
for (i = 0; i < nTracks; i++) {
NoteTrack *t = mMidiPlaybackTracks[i];
Alg_seq_ptr seq = &t->GetSeq();
// mark sequence tracks as "in use" since we're handing this
// off to another thread and want to make sure nothing happens
// to the data until playback finishes. This is just a sanity check.
seq->set_in_use(true);
mIterator->begin_seq(seq, t, t->GetOffset() + offset);
}
GetNextEvent(); // prime the pump for FillMidiBuffers
// Start MIDI from current cursor position
mSendMidiState = true;
2014-06-03 20:30:19 +00:00
while (mNextEvent &&
mNextEventTime < mT0 + offset) {
if (send) OutputEvent();
GetNextEvent();
}
mSendMidiState = false;
}
2014-06-03 20:30:19 +00:00
bool AudioIO::StartPortMidiStream()
{
2014-06-03 20:30:19 +00:00
int i;
int nTracks = mMidiPlaybackTracks.size();
// Only start MIDI stream if there is an open track
if (nTracks == 0)
return false;
mMidiLatency = 1; // arbitrary, but small
2014-06-03 20:30:19 +00:00
//printf("StartPortMidiStream: mT0 %g mTime %g\n",
// gAudioIO->mT0, gAudioIO->mTime);
/* get midi playback device */
PmDeviceID playbackDevice = Pm_GetDefaultOutputDeviceID();
2014-06-03 20:30:19 +00:00
wxString playbackDeviceName = gPrefs->Read(wxT("/MidiIO/PlaybackDevice"),
wxT(""));
2014-06-03 20:30:19 +00:00
mSynthLatency = gPrefs->Read(wxT("/MidiIO/SynthLatency"),
DEFAULT_SYNTH_LATENCY);
if (wxStrcmp(playbackDeviceName, wxT("")) != 0) {
for (i = 0; i < Pm_CountDevices(); i++) {
const PmDeviceInfo *info = Pm_GetDeviceInfo(i);
if (!info) continue;
if (!info->output) continue;
2015-04-22 12:53:01 +00:00
wxString interf = wxSafeConvertMB2WX(info->interf);
wxString name = wxSafeConvertMB2WX(info->name);
interf.Append(wxT(": ")).Append(name);
if (wxStrcmp(interf, playbackDeviceName) == 0) {
playbackDevice = i;
}
}
} // (else playback device has Pm_GetDefaultOuputDeviceID())
/* open output device */
2014-06-03 20:30:19 +00:00
mLastPmError = Pm_OpenOutput(&mMidiStream,
playbackDevice,
NULL,
2014-06-03 20:30:19 +00:00
0,
&::MidiTime,
2014-06-03 20:30:19 +00:00
NULL,
mMidiLatency);
if (mLastPmError == pmNoError) {
mMidiStreamActive = true;
mMidiPaused = false;
mMidiLoopOffset = 0;
mMidiOutputComplete = false;
PrepareMidiIterator();
// It is ok to call this now, but do not send timestamped midi
// until after the first audio callback, which provides necessary
// data for MidiTime().
Pm_Synchronize(mMidiStream); // start using timestamps
// start midi output flowing (pending first audio callback)
mMidiThreadFillBuffersLoopRunning = true;
}
2014-06-03 20:30:19 +00:00
return (mLastPmError == pmNoError);
}
#endif
bool AudioIO::IsAvailable(AudacityProject *project)
{
return mOwningProject == NULL || mOwningProject == project;
}
void AudioIO::SetCaptureMeter(AudacityProject *project, Meter *meter)
{
if (!mOwningProject || mOwningProject == project)
{
mInputMeter = meter;
if (mInputMeter)
{
mInputMeter->Reset(mRate, true);
}
}
}
void AudioIO::SetPlaybackMeter(AudacityProject *project, Meter *meter)
{
if (!mOwningProject || mOwningProject == project)
{
mOutputMeter = meter;
if (mOutputMeter)
{
mOutputMeter->Reset(mRate, true);
}
}
}
Meter * AudioIO::GetCaptureMeter(){
return mInputMeter;
}
void AudioIO::SetMeters()
{
if (mInputMeter)
mInputMeter->Reset(mRate, true);
if (mOutputMeter)
mOutputMeter->Reset(mRate, true);
AudacityProject* pProj = GetActiveProject();
MixerBoard* pMixerBoard = pProj->GetMixerBoard();
if (pMixerBoard)
pMixerBoard->ResetMeters(true);
mUpdateMeters = true;
}
void AudioIO::StopStream()
{
auto cleanup = finally ( [this] { ClearRecordingException(); } );
2014-06-03 20:30:19 +00:00
if( mPortStreamV19 == NULL
#ifdef EXPERIMENTAL_MIDI_OUT
2014-06-03 20:30:19 +00:00
&& mMidiStream == NULL
#endif
)
return;
2014-06-03 20:30:19 +00:00
if( Pa_IsStreamStopped( mPortStreamV19 )
#ifdef EXPERIMENTAL_MIDI_OUT
2014-06-03 20:30:19 +00:00
&& !mMidiStreamActive
#endif
)
return;
wxMutexLocker locker(mSuspendAudioThread);
// No longer need effects processing
if (mNumPlaybackChannels > 0)
{
EffectManager::Get().RealtimeFinalize();
}
//
// We got here in one of two ways:
//
// 1. The user clicked the stop button and we therefore want to stop
// as quickly as possible. So we use AbortStream(). If this is
// the case the portaudio stream is still in the Running state
// (see PortAudio state machine docs).
//
// 2. The callback told PortAudio to stop the stream since it had
// reached the end of the selection. The UI thread discovered
// this by noticing that AudioIO::IsActive() returned false.
// IsActive() (which calls Pa_GetStreamActive()) will not return
// false until all buffers have finished playing, so we can call
// AbortStream without losing any samples. If this is the case
// we are in the "callback finished state" (see PortAudio state
// machine docs).
//
// The moral of the story: We can call AbortStream safely, without
// losing samples.
//
// DMM: This doesn't seem to be true; it seems to be necessary to
// call StopStream if the callback brought us here, and AbortStream
// if the user brought us here.
//
mAudioThreadFillBuffersLoopRunning = false;
if (mScrubQueue)
mScrubQueue->Nudge();
// Audacity can deadlock if it tries to update meters while
// we're stopping PortAudio (because the meter updating code
// tries to grab a UI mutex while PortAudio tries to join a
// pthread). So we tell the callback to stop updating meters,
// and wait until the callback has left this part of the code
// if it was already there.
mUpdateMeters = false;
while(mUpdatingMeters) {
::wxSafeYield();
wxMilliSleep( 50 );
}
// Turn off HW playthrough if PortMixer is being used
#if defined(USE_PORTMIXER)
if( mPortMixer ) {
#if __WXMAC__
if (Px_SupportsPlaythrough(mPortMixer) && mPreviousHWPlaythrough >= 0.0)
Px_SetPlaythrough(mPortMixer, mPreviousHWPlaythrough);
mPreviousHWPlaythrough = -1.0;
#endif
}
#endif
if (mPortStreamV19) {
Pa_AbortStream( mPortStreamV19 );
Pa_CloseStream( mPortStreamV19 );
mPortStreamV19 = NULL;
}
if (mNumPlaybackChannels > 0)
{
wxCommandEvent e(EVT_AUDIOIO_PLAYBACK);
e.SetEventObject(mOwningProject);
e.SetInt(false);
wxTheApp->ProcessEvent(e);
}
if (mNumCaptureChannels > 0)
{
wxCommandEvent e(mStreamToken == 0 ? EVT_AUDIOIO_MONITOR : EVT_AUDIOIO_CAPTURE);
e.SetEventObject(mOwningProject);
e.SetInt(false);
wxTheApp->ProcessEvent(e);
}
#ifdef EXPERIMENTAL_MIDI_OUT
/* Stop Midi playback */
if ( mMidiStream ) {
mMidiStreamActive = false;
mMidiThreadFillBuffersLoopRunning = false; // stop output to stream
// but output is in another thread. Wait for output to stop...
while (mMidiThreadFillBuffersLoopActive) {
wxMilliSleep(1);
}
// now we can assume "ownership" of the mMidiStream
// if output in progress, send all off, etc.
AllNotesOff();
// AllNotesOff() should be sufficient to stop everything, but
2014-06-03 20:30:19 +00:00
// in Linux, if you Pm_Close() immediately, it looks like
// messages are dropped. ALSA then seems to send All Sound Off
// and Reset All Controllers messages, but not all synthesizers
// respond to these messages. This is probably a bug in PortMidi
// if the All Off messages do not get out, but for security,
// delay a bit so that messages can be delivered before closing
// the stream. It should take about 16ms to send All Off messages,
// so this will add 24ms latency.
wxMilliSleep(40); // deliver the all-off messages
Pm_Close(mMidiStream);
mMidiStream = NULL;
mIterator->end();
// set in_use flags to false
int nTracks = mMidiPlaybackTracks.size();
for (int i = 0; i < nTracks; i++) {
NoteTrack *t = mMidiPlaybackTracks[i];
Alg_seq_ptr seq = &t->GetSeq();
seq->set_in_use(false);
}
mIterator.reset(); // just in case someone tries to reference it
}
#endif
// If there's no token, we were just monitoring, so we can
// skip this next part...
if (mStreamToken > 0) {
// In either of the above cases, we want to make sure that any
// capture data that made it into the PortAudio callback makes it
// to the target WaveTrack. To do this, we ask the audio thread to
// call FillBuffers one last time (it normally would not do so since
// Pa_GetStreamActive() would now return false
mAudioThreadShouldCallFillBuffersOnce = true;
while( mAudioThreadShouldCallFillBuffersOnce == true )
{
// LLL: Experienced recursive yield here...once.
wxGetApp().Yield(true); // Pass true for onlyIfNeeded to avoid recursive call error.
if (mScrubQueue)
mScrubQueue->Nudge();
wxMilliSleep( 50 );
}
//
// Everything is taken care of. Now, just free all the resources
// we allocated in StartStream()
//
2014-06-03 20:30:19 +00:00
if (mPlaybackTracks.size() > 0)
{
2016-04-14 16:08:36 +00:00
mPlaybackBuffers.reset();
mPlaybackMixers.reset();
}
//
// Offset all recorded tracks to account for latency
//
if (mCaptureTracks.size() > 0)
{
2016-04-14 16:08:36 +00:00
mCaptureBuffers.reset();
mResample.reset();
//
// We only apply latency correction when we actually played back
// tracks during the recording. If we did not play back tracks,
// there's nothing we could be out of sync with. This also covers the
// case that we do not apply latency correction when recording the
// first track in a project.
//
double latencyCorrection = DEFAULT_LATENCY_CORRECTION;
gPrefs->Read(wxT("/AudioIO/LatencyCorrection"), &latencyCorrection);
2014-06-03 20:30:19 +00:00
double recordingOffset =
mLastRecordingOffset + latencyCorrection / 1000.0;
for (unsigned int i = 0; i < mCaptureTracks.size(); i++) {
// The calls to Flush, and (less likely) Clear and InsertSilence,
// may cause exceptions because of exhaustion of disk space.
// Stop those exceptions here, or else they propagate through too
// many parts of Audacity that are not effects or editing
// operations. GuardedCall ensures that the user sees a warning.
// Also be sure to Flush each track, at the top of the guarded call,
// relying on the guarantee that the track will be left in a flushed
// state, though the append buffer may be lost.
// If the other track operations fail their strong guarantees, then
// the shift for latency correction may be skipped.
GuardedCall<void>( [&] {
WaveTrack* track = mCaptureTracks[i];
// use NOFAIL-GUARANTEE that track is flushed,
// PARTIAL-GUARANTEE that some initial length of the recording
// is saved.
// See comments in FillBuffers().
track->Flush();
if (mPlaybackTracks.size() > 0)
{ // only do latency correction if some tracks are being played back
WaveTrackArray playbackTracks;
AudacityProject *p = GetActiveProject();
// we need to get this as mPlaybackTracks does not contain tracks being recorded into
playbackTracks = p->GetTracks()->GetWaveTrackArray(false);
bool appendRecord = false;
for (unsigned int j = 0; j < playbackTracks.size(); j++)
{ // find if we are recording into an existing track (append-record)
WaveTrack* trackP = playbackTracks[j];
if( track == trackP )
{
if( track->GetStartTime() != mT0 ) // in a NEW track if these are equal
{
appendRecord = true;
break;
}
}
}
if( appendRecord )
{ // append-recording
if (recordingOffset < 0)
// use STRONG-GUARANTEE
track->Clear(mT0, mT0 - recordingOffset); // cut the latency out
else
// use STRONG-GUARANTEE
track->InsertSilence(mT0, recordingOffset); // put silence in
}
else
{ // recording into a NEW track
// gives NOFAIL-GUARANTEE though we only need STRONG
track->SetOffset(track->GetStartTime() + recordingOffset);
if(track->GetEndTime() < 0.)
{
wxMessageDialog m(NULL, _(
"Latency Correction setting has caused the recorded audio to be hidden before zero.\nAudacity has brought it back to start at zero.\nYou may have to use the Time Shift Tool (<---> or F5) to drag the track to the right place."),
_("Latency problem"), wxOK);
m.ShowModal();
// gives NOFAIL-GUARANTEE though we only need STRONG
track->SetOffset(0.);
}
}
}
} );
}
}
}
if (mInputMeter)
mInputMeter->Reset(mRate, false);
if (mOutputMeter)
mOutputMeter->Reset(mRate, false);
MixerBoard* pMixerBoard = mOwningProject->GetMixerBoard();
if (pMixerBoard)
pMixerBoard->ResetMeters(false);
mInputMeter = NULL;
mOutputMeter = NULL;
mOwningProject = NULL;
if (mListener && mNumCaptureChannels > 0)
mListener->OnAudioIOStopRecording();
2014-06-03 20:30:19 +00:00
//
// Only set token to 0 after we're totally finished with everything
//
mStreamToken = 0;
mNumCaptureChannels = 0;
mNumPlaybackChannels = 0;
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
mScrubQueue.reset();
#endif
if (mListener) {
// Tell UI to hide sample rate
mListener->OnAudioIORate(0);
}
// Don't cause a busy wait in the audio thread after stopping scrubbing
mPlayMode = PLAY_STRAIGHT;
}
void AudioIO::SetPaused(bool state)
{
if (state != mPaused)
{
if (state)
{
EffectManager::Get().RealtimeSuspend();
}
else
{
EffectManager::Get().RealtimeResume();
}
}
mPaused = state;
}
bool AudioIO::IsPaused()
{
return mPaused;
}
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
bool AudioIO::EnqueueScrub
2016-05-28 14:42:00 +00:00
(double endTimeOrSpeed, const ScrubbingOptions &options)
{
if (mScrubQueue)
2016-05-28 14:42:00 +00:00
return mScrubQueue->Producer(endTimeOrSpeed, options);
else
return false;
}
double AudioIO::GetLastTimeInScrubQueue() const
{
if (mScrubQueue)
return mScrubQueue->LastTimeInQueue();
else
return -1.0;
}
#endif
bool AudioIO::IsBusy()
{
if (mStreamToken != 0)
return true;
return false;
}
bool AudioIO::IsStreamActive()
{
bool isActive = false;
// JKC: Not reporting any Pa error, but that looks OK.
if( mPortStreamV19 )
isActive = (Pa_IsStreamActive( mPortStreamV19 ) > 0);
#ifdef EXPERIMENTAL_MIDI_OUT
if( mMidiStreamActive && !mMidiOutputComplete )
isActive = true;
#endif
return isActive;
}
bool AudioIO::IsStreamActive(int token)
{
return (this->IsStreamActive() && this->IsAudioTokenActive(token));
}
bool AudioIO::IsAudioTokenActive(int token)
{
return ( token > 0 && token == mStreamToken );
}
bool AudioIO::IsMonitoring()
{
return ( mPortStreamV19 && mStreamToken==0 );
}
double AudioIO::LimitStreamTime(double absoluteTime) const
{
// Allows for forward or backward play
if (ReversedTime())
return std::max(mT1, std::min(mT0, absoluteTime));
else
return std::max(mT0, std::min(mT1, absoluteTime));
}
double AudioIO::NormalizeStreamTime(double absoluteTime) const
{
// dmazzoni: This function is needed for two reasons:
// One is for looped-play mode - this function makes sure that the
// position indicator keeps wrapping around. The other reason is
// more subtle - it's because PortAudio can query the hardware for
// the current stream time, and this query is not always accurate.
// Sometimes it's a little behind or ahead, and so this function
// makes sure that at least we clip it to the selection.
//
// msmeyer: There is also the possibility that we are using "cut preview"
// mode. In this case, we should jump over a defined "gap" in the
// audio.
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
// Limit the time between t0 and t1 if not scrubbing.
// Should the limiting be necessary in any play mode if there are no bugs?
if (mPlayMode != PLAY_SCRUB)
#endif
absoluteTime = LimitStreamTime(absoluteTime);
2014-06-03 20:30:19 +00:00
if (mCutPreviewGapLen > 0)
{
// msmeyer: We're in cut preview mode, so if we are on the right
// side of the gap, we jump over it.
if (absoluteTime > mCutPreviewGapStart)
absoluteTime += mCutPreviewGapLen;
}
return absoluteTime;
}
double AudioIO::GetStreamTime()
{
if( !IsStreamActive() )
return BAD_STREAM_TIME;
return NormalizeStreamTime(mTime);
}
wxArrayLong AudioIO::GetSupportedPlaybackRates(int devIndex, double rate)
{
if (devIndex == -1)
{ // weren't given a device index, get the prefs / default one
devIndex = getPlayDevIndex();
}
// Check if we can use the cached rates
if (mCachedPlaybackIndex != -1 && devIndex == mCachedPlaybackIndex
&& (rate == 0.0 || mCachedPlaybackRates.Index(rate) != wxNOT_FOUND))
{
return mCachedPlaybackRates;
}
wxArrayLong supported;
int irate = (int)rate;
const PaDeviceInfo* devInfo = NULL;
int i;
devInfo = Pa_GetDeviceInfo(devIndex);
2014-06-03 20:30:19 +00:00
if (!devInfo)
{
wxLogDebug(wxT("GetSupportedPlaybackRates() Could not get device info!"));
return supported;
}
// LLL: Remove when a proper method of determining actual supported
// DirectSound rate is devised.
const PaHostApiInfo* hostInfo = Pa_GetHostApiInfo(devInfo->hostApi);
bool isDirectSound = (hostInfo && hostInfo->type == paDirectSound);
PaStreamParameters pars;
pars.device = devIndex;
pars.channelCount = 1;
pars.sampleFormat = paFloat32;
pars.suggestedLatency = devInfo->defaultHighOutputLatency;
pars.hostApiSpecificStreamInfo = NULL;
2014-06-03 20:30:19 +00:00
// JKC: PortAudio Errors handled OK here. No need to report them
for (i = 0; i < NumRatesToTry; i++)
{
// LLL: Remove when a proper method of determining actual supported
// DirectSound rate is devised.
if (!(isDirectSound && RatesToTry[i] > 200000))
if (Pa_IsFormatSupported(NULL, &pars, RatesToTry[i]) == 0)
supported.Add(RatesToTry[i]);
}
if (irate != 0 && supported.Index(irate) == wxNOT_FOUND)
{
// LLL: Remove when a proper method of determining actual supported
// DirectSound rate is devised.
if (!(isDirectSound && RatesToTry[i] > 200000))
if (Pa_IsFormatSupported(NULL, &pars, irate) == 0)
supported.Add(irate);
}
return supported;
}
wxArrayLong AudioIO::GetSupportedCaptureRates(int devIndex, double rate)
{
if (devIndex == -1)
{ // not given a device, look up in prefs / default
devIndex = getRecordDevIndex();
}
// Check if we can use the cached rates
if (mCachedCaptureIndex != -1 && devIndex == mCachedCaptureIndex
&& (rate == 0.0 || mCachedCaptureRates.Index(rate) != wxNOT_FOUND))
{
return mCachedCaptureRates;
}
wxArrayLong supported;
int irate = (int)rate;
const PaDeviceInfo* devInfo = NULL;
int i;
devInfo = Pa_GetDeviceInfo(devIndex);
if (!devInfo)
{
wxLogDebug(wxT("GetSupportedCaptureRates() Could not get device info!"));
return supported;
}
double latencyDuration = DEFAULT_LATENCY_DURATION;
long recordChannels = 1;
gPrefs->Read(wxT("/AudioIO/LatencyDuration"), &latencyDuration);
gPrefs->Read(wxT("/AudioIO/RecordChannels"), &recordChannels);
// LLL: Remove when a proper method of determining actual supported
// DirectSound rate is devised.
const PaHostApiInfo* hostInfo = Pa_GetHostApiInfo(devInfo->hostApi);
bool isDirectSound = (hostInfo && hostInfo->type == paDirectSound);
PaStreamParameters pars;
pars.device = devIndex;
pars.channelCount = recordChannels;
pars.sampleFormat = paFloat32;
pars.suggestedLatency = latencyDuration / 1000.0;
pars.hostApiSpecificStreamInfo = NULL;
2014-06-03 20:30:19 +00:00
for (i = 0; i < NumRatesToTry; i++)
{
// LLL: Remove when a proper method of determining actual supported
// DirectSound rate is devised.
if (!(isDirectSound && RatesToTry[i] > 200000))
if (Pa_IsFormatSupported(&pars, NULL, RatesToTry[i]) == 0)
supported.Add(RatesToTry[i]);
}
if (irate != 0 && supported.Index(irate) == wxNOT_FOUND)
{
// LLL: Remove when a proper method of determining actual supported
// DirectSound rate is devised.
if (!(isDirectSound && RatesToTry[i] > 200000))
if (Pa_IsFormatSupported(&pars, NULL, irate) == 0)
supported.Add(irate);
}
return supported;
}
wxArrayLong AudioIO::GetSupportedSampleRates(int playDevice, int recDevice, double rate)
{
// Not given device indices, look up prefs
if (playDevice == -1) {
playDevice = getPlayDevIndex();
}
if (recDevice == -1) {
recDevice = getRecordDevIndex();
}
// Check if we can use the cached rates
2014-06-03 20:30:19 +00:00
if (mCachedPlaybackIndex != -1 && mCachedCaptureIndex != -1 &&
playDevice == mCachedPlaybackIndex &&
recDevice == mCachedCaptureIndex &&
(rate == 0.0 || mCachedSampleRates.Index(rate) != wxNOT_FOUND))
{
return mCachedSampleRates;
}
wxArrayLong playback = GetSupportedPlaybackRates(playDevice, rate);
wxArrayLong capture = GetSupportedCaptureRates(recDevice, rate);
int i;
// Return only sample rates which are in both arrays
wxArrayLong result;
for (i = 0; i < (int)playback.GetCount(); i++)
if (capture.Index(playback[i]) != wxNOT_FOUND)
result.Add(playback[i]);
// If this yields no results, use the default sample rates nevertheless
/* if (result.IsEmpty())
{
for (i = 0; i < NumStandardRates; i++)
result.Add(StandardRates[i]);
}*/
return result;
}
2014-06-03 20:30:19 +00:00
/** \todo: should this take into account PortAudio's value for
* PaDeviceInfo::defaultSampleRate? In principal this should let us work out
* which rates are "real" and which resampled in the drivers, and so prefer
* the real rates. */
int AudioIO::GetOptimalSupportedSampleRate()
{
wxArrayLong rates = GetSupportedSampleRates();
if (rates.Index(44100) != wxNOT_FOUND)
return 44100;
if (rates.Index(48000) != wxNOT_FOUND)
return 48000;
// if there are no supported rates, the next bit crashes. So check first,
// and give them a "sensible" value if there are no valid values. They
// will still get an error later, but with any luck may have changed
// something by then. It's no worse than having an invalid default rate
// stored in the preferences, which we don't check for
if (rates.IsEmpty()) return 44100;
return rates[rates.GetCount() - 1];
}
double AudioIO::GetBestRate(bool capturing, bool playing, double sampleRate)
{
// Check if we can use the cached value
if (mCachedBestRateIn != 0.0 && mCachedBestRateIn == sampleRate) {
return mCachedBestRateOut;
}
// In order to cache the value, all early returns should instead set retval
// and jump to finished
double retval;
wxArrayLong rates;
if (capturing) wxLogDebug(wxT("AudioIO::GetBestRate() for capture"));
if (playing) wxLogDebug(wxT("AudioIO::GetBestRate() for playback"));
wxLogDebug(wxT("GetBestRate() suggested rate %.0lf Hz"), sampleRate);
if (capturing && !playing) {
rates = GetSupportedCaptureRates(-1, sampleRate);
}
else if (playing && !capturing) {
rates = GetSupportedPlaybackRates(-1, sampleRate);
}
2014-06-03 20:30:19 +00:00
else { // we assume capturing and playing - the alternative would be a
// bit odd
rates = GetSupportedSampleRates(-1, -1, sampleRate);
}
/* rem rates is the array of hardware-supported sample rates (in the current
* configuration), sampleRate is the Project Rate (desired sample rate) */
long rate = (long)sampleRate;
2014-06-03 20:30:19 +00:00
if (rates.Index(rate) != wxNOT_FOUND) {
wxLogDebug(wxT("GetBestRate() Returning %.0ld Hz"), rate);
retval = rate;
goto finished;
/* the easy case - the suggested rate (project rate) is in the list, and
* we can just accept that and send back to the caller. This should be
* the case for most users most of the time (all of the time on
* Win MME as the OS does resampling) */
}
/* if we get here, there is a problem - the project rate isn't supported
* on our hardware, so we can't us it. Need to come up with an alternative
* rate to use. The process goes like this:
* * If there are no rates to pick from, we're stuck and return 0 (error)
* * If there are some rates, we pick the next one higher than the requested
* rate to use.
* * If there aren't any higher, we use the highest available rate */
if (rates.IsEmpty()) {
/* we're stuck - there are no supported rates with this hardware. Error */
wxLogDebug(wxT("GetBestRate() Error - no supported sample rates"));
retval = 0.0;
goto finished;
}
int i;
for (i = 0; i < (int)rates.GetCount(); i++) // for each supported rate
{
if (rates[i] > rate) {
// supported rate is greater than requested rate
wxLogDebug(wxT("GetBestRate() Returning next higher rate - %.0ld Hz"), rates[i]);
retval = rates[i];
goto finished;
}
}
wxLogDebug(wxT("GetBestRate() Returning highest rate - %.0ld Hz"), rates[rates.GetCount() - 1]);
retval = rates[rates.GetCount() - 1]; // the highest available rate
goto finished;
finished:
mCachedBestRateIn = sampleRate;
mCachedBestRateOut = retval;
return retval;
2014-06-03 20:30:19 +00:00
}
//////////////////////////////////////////////////////////////////////
//
// Audio Thread Context
//
//////////////////////////////////////////////////////////////////////
AudioThread::ExitCode AudioThread::Entry()
{
while( !TestDestroy() )
{
2010-02-01 17:29:52 +00:00
// Set LoopActive outside the tests to avoid race condition
gAudioIO->mAudioThreadFillBuffersLoopActive = true;
if( gAudioIO->mAudioThreadShouldCallFillBuffersOnce )
{
gAudioIO->FillBuffers();
gAudioIO->mAudioThreadShouldCallFillBuffersOnce = false;
}
else if( gAudioIO->mAudioThreadFillBuffersLoopRunning )
{
gAudioIO->FillBuffers();
}
2010-02-01 17:29:52 +00:00
gAudioIO->mAudioThreadFillBuffersLoopActive = false;
if (gAudioIO->mPlayMode == AudioIO::PLAY_SCRUB) {
// Rely on the Wait() in ScrubQueue::Transformer()
// This allows the scrubbing update interval to be made very short without
// playback becoming intermittent.
}
else {
// Perhaps this too could use a condition variable, for available space in the
// ring buffer, instead of a polling loop? But no harm in doing it this way.
Sleep(10);
}
}
return 0;
}
#ifdef EXPERIMENTAL_MIDI_OUT
MidiThread::ExitCode MidiThread::Entry()
{
while( !TestDestroy() )
{
// Set LoopActive outside the tests to avoid race condition
gAudioIO->mMidiThreadFillBuffersLoopActive = true;
if( gAudioIO->mMidiThreadFillBuffersLoopRunning &&
// mNumFrames signals at least one callback, needed for MidiTime()
gAudioIO->mNumFrames > 0)
{
// Keep track of time paused. If not paused, fill buffers.
if (gAudioIO->IsPaused()) {
if (!gAudioIO->mMidiPaused) {
gAudioIO->mMidiPaused = true;
gAudioIO->AllNotesOff(); // to avoid hanging notes during pause
}
} else {
if (gAudioIO->mMidiPaused) {
gAudioIO->mMidiPaused = false;
}
gAudioIO->FillMidiBuffers();
// test for end
2014-06-03 20:30:19 +00:00
double realTime = gAudioIO->mT0 + gAudioIO->MidiTime() * 0.001 -
gAudioIO->PauseTime();
realTime -= 1; // MidiTime() runs ahead 1s
// XXX Is this still true now? It seems to break looping --Poke
//
2014-06-03 20:30:19 +00:00
// The TrackPanel::OnTimer() method updates the time position
// indicator every 200ms, so it tends to not advance the
// indicator to the end of the selection (mT1) but instead stop
// up to 200ms before the end. At this point, output is shut
// down and the indicator is removed, but for a brief time, the
// indicator is clearly stopped before reaching mT1. To avoid
// this, we do not set mMidiOutputComplete until we are actually
// 0.22s beyond mT1 (even though we stop playing at mT1). This
2014-06-03 20:30:19 +00:00
// gives OnTimer() time to wake up and draw the final time
// position at mT1 before shutting down the stream.
const double loopDelay = 0.220;
double timeAtSpeed;
if (gAudioIO->mTimeTrack)
timeAtSpeed = gAudioIO->mTimeTrack->SolveWarpedLength(gAudioIO->mT0, realTime);
else
timeAtSpeed = realTime;
2014-06-03 20:30:19 +00:00
gAudioIO->mMidiOutputComplete =
(gAudioIO->mPlayMode == gAudioIO->PLAY_STRAIGHT && // PRL: what if scrubbing?
timeAtSpeed >= gAudioIO->mT1 + loopDelay);
// !gAudioIO->mNextEvent);
}
}
gAudioIO->mMidiThreadFillBuffersLoopActive = false;
Sleep(MIDI_SLEEP);
}
return 0;
}
#endif
size_t AudioIO::GetCommonlyAvailPlayback()
{
auto commonlyAvail = mPlaybackBuffers[0]->AvailForPut();
for (unsigned i = 1; i < mPlaybackTracks.size(); ++i)
commonlyAvail = std::min(commonlyAvail,
mPlaybackBuffers[i]->AvailForPut());
return commonlyAvail;
}
size_t AudioIO::GetCommonlyAvailCapture()
{
auto commonlyAvail = mCaptureBuffers[0]->AvailForGet();
for (unsigned i = 1; i < mCaptureTracks.size(); ++i)
commonlyAvail = std::min(commonlyAvail,
mCaptureBuffers[i]->AvailForGet());
return commonlyAvail;
}
#if USE_PORTMIXER
int AudioIO::getRecordSourceIndex(PxMixer *portMixer)
{
int i;
wxString sourceName = gPrefs->Read(wxT("/AudioIO/RecordingSource"), wxT(""));
int numSources = Px_GetNumInputSources(portMixer);
for (i = 0; i < numSources; i++) {
if (sourceName == wxString(wxSafeConvertMB2WX(Px_GetInputSourceName(portMixer, i))))
return i;
}
return -1;
}
#endif
int AudioIO::getPlayDevIndex(const wxString &devNameArg)
{
wxString devName(devNameArg);
// if we don't get given a device, look up the preferences
if (devName.IsEmpty())
{
devName = gPrefs->Read(wxT("/AudioIO/PlaybackDevice"), wxT(""));
}
wxString hostName = gPrefs->Read(wxT("/AudioIO/Host"), wxT(""));
PaHostApiIndex hostCnt = Pa_GetHostApiCount();
PaHostApiIndex hostNum;
for (hostNum = 0; hostNum < hostCnt; hostNum++)
{
const PaHostApiInfo *hinfo = Pa_GetHostApiInfo(hostNum);
if (hinfo && wxString(wxSafeConvertMB2WX(hinfo->name)) == hostName)
{
for (PaDeviceIndex hostDevice = 0; hostDevice < hinfo->deviceCount; hostDevice++)
{
PaDeviceIndex deviceNum = Pa_HostApiDeviceIndexToDeviceIndex(hostNum, hostDevice);
const PaDeviceInfo *dinfo = Pa_GetDeviceInfo(deviceNum);
if (dinfo && DeviceName(dinfo) == devName && dinfo->maxOutputChannels > 0 )
{
// this device name matches the stored one, and works.
// So we say this is the answer and return it
return deviceNum;
}
}
// The device wasn't found so use the default for this host.
// LL: At this point, preferences and active no longer match.
return hinfo->defaultOutputDevice;
}
}
// The host wasn't found, so use the default output device.
// FIXME: TRAP_ERR PaErrorCode not handled well (this code is similar to input code
// and the input side has more comments.)
PaDeviceIndex deviceNum = Pa_GetDefaultOutputDevice();
// Sometimes PortAudio returns -1 if it cannot find a suitable default
// device, so we just use the first one available
//
// LL: At this point, preferences and active no longer match
//
// And I can't imagine how far we'll get specifying an "invalid" index later
// on...are we certain "0" even exists?
if (deviceNum < 0) {
wxASSERT(false);
deviceNum = 0;
}
return deviceNum;
}
int AudioIO::getRecordDevIndex(const wxString &devNameArg)
{
wxString devName(devNameArg);
// if we don't get given a device, look up the preferences
if (devName.IsEmpty())
{
devName = gPrefs->Read(wxT("/AudioIO/RecordingDevice"), wxT(""));
}
wxString hostName = gPrefs->Read(wxT("/AudioIO/Host"), wxT(""));
PaHostApiIndex hostCnt = Pa_GetHostApiCount();
PaHostApiIndex hostNum;
for (hostNum = 0; hostNum < hostCnt; hostNum++)
{
const PaHostApiInfo *hinfo = Pa_GetHostApiInfo(hostNum);
if (hinfo && wxString(wxSafeConvertMB2WX(hinfo->name)) == hostName)
{
for (PaDeviceIndex hostDevice = 0; hostDevice < hinfo->deviceCount; hostDevice++)
{
PaDeviceIndex deviceNum = Pa_HostApiDeviceIndexToDeviceIndex(hostNum, hostDevice);
const PaDeviceInfo *dinfo = Pa_GetDeviceInfo(deviceNum);
if (dinfo && DeviceName(dinfo) == devName && dinfo->maxInputChannels > 0 )
{
// this device name matches the stored one, and works.
// So we say this is the answer and return it
return deviceNum;
}
}
// The device wasn't found so use the default for this host.
// LL: At this point, preferences and active no longer match.
return hinfo->defaultInputDevice;
}
}
// The host wasn't found, so use the default input device.
// FIXME: TRAP_ERR PaErrorCode not handled well in getRecordDevIndex()
PaDeviceIndex deviceNum = Pa_GetDefaultInputDevice();
// Sometimes PortAudio returns -1 if it cannot find a suitable default
// device, so we just use the first one available
// PortAudio has an error reporting function. We should log/report the error?
//
// LL: At this point, preferences and active no longer match
//
// And I can't imagine how far we'll get specifying an "invalid" index later
// on...are we certain "0" even exists?
if (deviceNum < 0) {
// JKC: This ASSERT will happen if you run with no config file
// This happens once. Config file will exist on the next run.
// TODO: Look into this a bit more. Could be relevant to blank Device Toolbar.
wxASSERT(false);
deviceNum = 0;
}
return deviceNum;
}
wxString AudioIO::GetDeviceInfo()
{
wxStringOutputStream o;
wxTextOutputStream s(o, wxEOL_UNIX);
wxString e(wxT("\n"));
if (IsStreamActive()) {
return wxT("Stream is active ... unable to gather information.");
}
// FIXME: TRAP_ERR PaErrorCode not handled. 3 instances in GetDeviceInfo().
int recDeviceNum = Pa_GetDefaultInputDevice();
int playDeviceNum = Pa_GetDefaultOutputDevice();
int cnt = Pa_GetDeviceCount();
wxLogDebug(wxT("Portaudio reports %d audio devices"),cnt);
s << wxT("==============================") << e;
s << wxT("Default recording device number: ") << recDeviceNum << e;
s << wxT("Default playback device number: ") << playDeviceNum << e;
wxString recDevice = gPrefs->Read(wxT("/AudioIO/RecordingDevice"), wxT(""));
wxString playDevice = gPrefs->Read(wxT("/AudioIO/PlaybackDevice"), wxT(""));
int j;
// This gets info on all available audio devices (input and output)
if (cnt <= 0) {
s << wxT("No devices found\n");
return o.GetString();
}
const PaDeviceInfo* info;
2014-06-03 20:30:19 +00:00
for (j = 0; j < cnt; j++) {
s << wxT("==============================") << e;
info = Pa_GetDeviceInfo(j);
if (!info) {
s << wxT("Device info unavailable for: ") << j << wxT("\n");
continue;
}
wxString name = DeviceName(info);
s << wxT("Device ID: ") << j << e;
s << wxT("Device name: ") << name << e;
s << wxT("Host name: ") << HostName(info) << e;
s << wxT("Recording channels: ") << info->maxInputChannels << e;
s << wxT("Playback channels: ") << info->maxOutputChannels << e;
s << wxT("Low Recording Latency: ") << info->defaultLowInputLatency << e;
s << wxT("Low Playback Latency: ") << info->defaultLowOutputLatency << e;
s << wxT("High Recording Latency: ") << info->defaultHighInputLatency << e;
s << wxT("High Playback Latency: ") << info->defaultHighOutputLatency << e;
wxArrayLong rates = GetSupportedPlaybackRates(j, 0.0);
s << wxT("Supported Rates:") << e;
for (int k = 0; k < (int) rates.GetCount(); k++) {
s << wxT(" ") << (int)rates[k] << e;
}
if (name == playDevice && info->maxOutputChannels > 0)
playDeviceNum = j;
if (name == recDevice && info->maxInputChannels > 0)
recDeviceNum = j;
// Sometimes PortAudio returns -1 if it cannot find a suitable default
// device, so we just use the first one available
if (recDeviceNum < 0 && info->maxInputChannels > 0){
recDeviceNum = j;
}
if (playDeviceNum < 0 && info->maxOutputChannels > 0){
playDeviceNum = j;
}
}
bool haveRecDevice = (recDeviceNum >= 0);
bool havePlayDevice = (playDeviceNum >= 0);
s << wxT("==============================") << e;
if(haveRecDevice){
s << wxT("Selected recording device: ") << recDeviceNum << wxT(" - ") << recDevice << e;
}else{
s << wxT("No recording device found for '") << recDevice << wxT("'.") << e;
}
if(havePlayDevice){
s << wxT("Selected playback device: ") << playDeviceNum << wxT(" - ") << playDevice << e;
}else{
s << wxT("No playback device found for '") << playDevice << wxT("'.") << e;
2014-06-03 20:30:19 +00:00
}
wxArrayLong supportedSampleRates;
if(havePlayDevice && haveRecDevice){
supportedSampleRates = GetSupportedSampleRates(playDeviceNum, recDeviceNum);
s << wxT("Supported Rates:") << e;
for (int k = 0; k < (int) supportedSampleRates.GetCount(); k++) {
s << wxT(" ") << (int)supportedSampleRates[k] << e;
}
}else{
s << wxT("Cannot check mutual sample rates without both devices.") << e;
return o.GetString();
}
#if defined(USE_PORTMIXER)
if (supportedSampleRates.GetCount() > 0)
{
int highestSampleRate = supportedSampleRates[supportedSampleRates.GetCount() - 1];
bool EmulateMixerInputVol = true;
bool EmulateMixerOutputVol = true;
float MixerInputVol = 1.0;
float MixerOutputVol = 1.0;
int error;
PaStream *stream;
2014-06-03 20:30:19 +00:00
PaStreamParameters playbackParameters;
playbackParameters.device = playDeviceNum;
playbackParameters.sampleFormat = paFloat32;
playbackParameters.hostApiSpecificStreamInfo = NULL;
playbackParameters.channelCount = 1;
if (Pa_GetDeviceInfo(playDeviceNum)){
playbackParameters.suggestedLatency =
Pa_GetDeviceInfo(playDeviceNum)->defaultLowOutputLatency;
}
else{
2014-06-03 20:30:19 +00:00
playbackParameters.suggestedLatency = DEFAULT_LATENCY_CORRECTION/1000.0;
}
PaStreamParameters captureParameters;
2014-06-03 20:30:19 +00:00
captureParameters.device = recDeviceNum;
captureParameters.sampleFormat = paFloat32;;
captureParameters.hostApiSpecificStreamInfo = NULL;
captureParameters.channelCount = 1;
if (Pa_GetDeviceInfo(recDeviceNum)){
captureParameters.suggestedLatency =
Pa_GetDeviceInfo(recDeviceNum)->defaultLowInputLatency;
}else{
2014-06-03 20:30:19 +00:00
captureParameters.suggestedLatency = DEFAULT_LATENCY_CORRECTION/1000.0;
}
error = Pa_OpenStream(&stream,
&captureParameters, &playbackParameters,
highestSampleRate, paFramesPerBufferUnspecified,
paClipOff | paDitherOff,
audacityAudioCallback, NULL);
if (error) {
error = Pa_OpenStream(&stream,
&captureParameters, NULL,
highestSampleRate, paFramesPerBufferUnspecified,
paClipOff | paDitherOff,
audacityAudioCallback, NULL);
}
if (error) {
s << wxT("Received ") << error << wxT(" while opening devices") << e;
return o.GetString();
}
PxMixer *PortMixer = Px_OpenMixer(stream, 0);
if (!PortMixer) {
s << wxT("Unable to open Portmixer") << e;
Pa_CloseStream(stream);
return o.GetString();
}
s << wxT("==============================") << e;
s << wxT("Available mixers:") << e;
// FIXME: ? PortMixer errors on query not reported in GetDeviceInfo
cnt = Px_GetNumMixers(stream);
for (int i = 0; i < cnt; i++) {
wxString name = wxSafeConvertMB2WX(Px_GetMixerName(stream, i));
s << i << wxT(" - ") << name << e;
}
s << wxT("==============================") << e;
s << wxT("Available recording sources:") << e;
cnt = Px_GetNumInputSources(PortMixer);
for (int i = 0; i < cnt; i++) {
wxString name = wxSafeConvertMB2WX(Px_GetInputSourceName(PortMixer, i));
s << i << wxT(" - ") << name << e;
}
s << wxT("==============================") << e;
s << wxT("Available playback volumes:") << e;
cnt = Px_GetNumOutputVolumes(PortMixer);
for (int i = 0; i < cnt; i++) {
wxString name = wxSafeConvertMB2WX(Px_GetOutputVolumeName(PortMixer, i));
s << i << wxT(" - ") << name << e;
}
// Determine mixer capabilities - it it doesn't support either
// input or output, we emulate them (by multiplying this value
// by all incoming/outgoing samples)
MixerOutputVol = Px_GetPCMOutputVolume(PortMixer);
EmulateMixerOutputVol = false;
Px_SetPCMOutputVolume(PortMixer, 0.0);
if (Px_GetPCMOutputVolume(PortMixer) > 0.1)
EmulateMixerOutputVol = true;
Px_SetPCMOutputVolume(PortMixer, 0.2f);
if (Px_GetPCMOutputVolume(PortMixer) < 0.1 ||
Px_GetPCMOutputVolume(PortMixer) > 0.3)
EmulateMixerOutputVol = true;
Px_SetPCMOutputVolume(PortMixer, MixerOutputVol);
MixerInputVol = Px_GetInputVolume(PortMixer);
EmulateMixerInputVol = false;
Px_SetInputVolume(PortMixer, 0.0);
if (Px_GetInputVolume(PortMixer) > 0.1)
EmulateMixerInputVol = true;
Px_SetInputVolume(PortMixer, 0.2f);
if (Px_GetInputVolume(PortMixer) < 0.1 ||
Px_GetInputVolume(PortMixer) > 0.3)
EmulateMixerInputVol = true;
Px_SetInputVolume(PortMixer, MixerInputVol);
2014-06-03 20:30:19 +00:00
Pa_CloseStream(stream);
2014-06-03 20:30:19 +00:00
s << wxT("==============================") << e;
s << wxT("Recording volume is ") << (EmulateMixerInputVol? wxT("emulated"): wxT("native")) << e;
s << wxT("Playback volume is ") << (EmulateMixerOutputVol? wxT("emulated"): wxT("native")) << e;
2014-06-03 20:30:19 +00:00
Px_CloseMixer(PortMixer);
} //end of massive if statement if a valid sample rate has been found
#endif
return o.GetString();
}
#ifdef EXPERIMENTAL_MIDI_OUT
// FIXME: When EXPERIMENTAL_MIDI_IN is added (eventually) this should also be enabled -- Poke
wxString AudioIO::GetMidiDeviceInfo()
{
wxStringOutputStream o;
wxTextOutputStream s(o, wxEOL_UNIX);
wxString e(wxT("\n"));
if (IsStreamActive()) {
return wxT("Stream is active ... unable to gather information.");
}
// XXX: May need to trap errors as with the normal device info
int recDeviceNum = Pm_GetDefaultInputDeviceID();
int playDeviceNum = Pm_GetDefaultOutputDeviceID();
int cnt = Pm_CountDevices();
wxLogDebug(wxT("PortMidi reports %d MIDI devices"), cnt);
s << wxT("==============================") << e;
s << wxT("Default recording device number: ") << recDeviceNum << e;
s << wxT("Default playback device number: ") << playDeviceNum << e;
wxString recDevice = gPrefs->Read(wxT("/MidiIO/RecordingDevice"), wxT(""));
wxString playDevice = gPrefs->Read(wxT("/MidiIO/PlaybackDevice"), wxT(""));
// This gets info on all available audio devices (input and output)
if (cnt <= 0) {
s << wxT("No devices found\n");
return o.GetString();
}
for (int i = 0; i < cnt; i++) {
s << wxT("==============================") << e;
const PmDeviceInfo* info = Pm_GetDeviceInfo(i);
if (!info) {
s << wxT("Device info unavailable for: ") << i << e;
continue;
}
wxString name = wxSafeConvertMB2WX(info->name);
wxString hostName = wxSafeConvertMB2WX(info->interf);
s << wxT("Device ID: ") << i << e;
s << wxT("Device name: ") << name << e;
s << wxT("Host name: ") << hostName << e;
s << wxT("Supports output: ") << info->output << e;
s << wxT("Supports input: ") << info->input << e;
s << wxT("Opened: ") << info->opened << e;
if (name == playDevice && info->output)
playDeviceNum = i;
if (name == recDevice && info->input)
recDeviceNum = i;
// XXX: This is only done because the same was applied with PortAudio
// If PortMidi returns -1 for the default device, use the first one
if (recDeviceNum < 0 && info->input){
recDeviceNum = i;
}
if (playDeviceNum < 0 && info->output){
playDeviceNum = i;
}
}
bool haveRecDevice = (recDeviceNum >= 0);
bool havePlayDevice = (playDeviceNum >= 0);
s << wxT("==============================") << e;
if (haveRecDevice) {
s << wxT("Selected MIDI recording device: ") << recDeviceNum << wxT(" - ") << recDevice << e;
} else {
s << wxT("No MIDI recording device found for '") << recDevice << wxT("'.") << e;
}
if (havePlayDevice) {
s << wxT("Selected MIDI playback device: ") << playDeviceNum << wxT(" - ") << playDevice << e;
} else {
s << wxT("No MIDI playback device found for '") << playDevice << wxT("'.") << e;
}
#ifdef IS_ALPHA
s << wxT("==============================") << e;
#ifdef EXPERIMENTAL_MIDI_OUT
s << wxT("EXPERIMENTAL_MIDI_OUT is enabled") << e;
#else
s << wxT("EXPERIMENTAL_MIDI_OUT is NOT enabled") << e;
#endif
#ifdef EXPERIMENTAL_MIDI_IN
s << wxT("EXPERIMENTAL_MIDI_IN is enabled") << e;
#else
s << wxT("EXPERIMENTAL_MIDI_IN is NOT enabled") << e;
#endif
#endif
return o.GetString();
}
#endif
// This method is the data gateway between the audio thread (which
// communicates with the disk) and the PortAudio callback thread
2010-02-06 22:17:33 +00:00
// (which communicates with the audio device).
void AudioIO::FillBuffers()
{
unsigned int i;
auto delayedHandler = [this] ( AudacityException * pException ) {
// In the main thread, stop recording
// This is one place where the application handles disk
// exhaustion exceptions from wave track operations, without rolling
// back to the last pushed undo state. Instead, partial recording
// results are pushed as a NEW undo state. For this reason, as
// commented elsewhere, we want an exception safety guarantee for
// the output wave tracks, after the failed append operation, that
// the tracks remain as they were after the previous successful
// (block-level) appends.
// Note that the Flush in StopStream() may throw another exception,
// but StopStream() contains that exception, and the logic in
// AudacityException::DelayedHandlerAction prevents redundant message
// boxes.
StopStream();
DefaultDelayedHandlerAction{}( pException );
};
if (mPlaybackTracks.size() > 0)
{
// Though extremely unlikely, it is possible that some buffers
// will have more samples available than others. This could happen
// if we hit this code during the PortAudio callback. To keep
// things simple, we only write as much data as is vacant in
// ALL buffers, and advance the global time by that much.
// MB: subtract a few samples because the code below has rounding errors
2016-09-04 20:07:17 +00:00
auto nAvailable = (int)GetCommonlyAvailPlayback() - 10;
//
// Don't fill the buffers at all unless we can do the
// full mMaxPlaybackSecsToCopy. This improves performance
// by not always trying to process tiny chunks, eating the
// CPU unnecessarily.
//
// The exception is if we're at the end of the selected
// region - then we should just fill the buffer.
//
2016-09-04 20:07:17 +00:00
if (nAvailable >= (int)mPlaybackSamplesToCopy ||
(mPlayMode == PLAY_STRAIGHT &&
2016-09-04 20:07:17 +00:00
nAvailable > 0 &&
mWarpedTime+(nAvailable/mRate) >= mWarpedLength))
{
// Limit maximum buffer size (increases performance)
2016-09-04 20:07:17 +00:00
auto available =
std::min<size_t>( nAvailable, mPlaybackSamplesToCopy );
// msmeyer: When playing a very short selection in looped
// mode, the selection must be copied to the buffer multiple
// times, to ensure, that the buffer has a reasonable size
// This is the purpose of this loop.
// PRL: or, when scrubbing, we may get work repeatedly from the
// scrub queue.
bool done = false;
Maybe<wxMutexLocker> cleanup;
do {
// How many samples to produce for each channel.
2016-09-04 20:07:17 +00:00
auto frames = available;
bool progress = true;
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
if (mPlayMode == PLAY_SCRUB)
// scrubbing does not use warped time and length
frames = limitSampleBufferSize(frames, mScrubDuration);
else
#endif
{
double deltat = frames / mRate;
if (mWarpedTime + deltat > mWarpedLength)
{
frames = (mWarpedLength - mWarpedTime) * mRate;
// Don't fall into an infinite loop, if loop-playing a selection
// that is so short, it has no samples: detect that case
progress =
!(mPlayMode == PLAY_LOOPED &&
mWarpedTime == 0.0 && frames == 0);
mWarpedTime = mWarpedLength;
}
else
mWarpedTime += deltat;
}
2014-06-03 20:30:19 +00:00
if (!progress)
frames = available;
for (i = 0; i < mPlaybackTracks.size(); i++)
{
// The mixer here isn't actually mixing: it's just doing
// resampling, format conversion, and possibly time track
// warping
2016-08-26 16:11:46 +00:00
decltype(mPlaybackMixers[i]->Process(frames))
processed = 0;
samplePtr warpedSamples;
//don't do anything if we have no length. In particular, Process() will fail an wxAssert
//that causes a crash since this is not the GUI thread and wxASSERT is a GUI call.
// don't generate either if scrubbing at zero speed.
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
const bool silent = (mPlayMode == PLAY_SCRUB) && mSilentScrub;
#else
const bool silent = false;
#endif
if (progress && !silent && frames > 0)
{
processed = mPlaybackMixers[i]->Process(frames);
wxASSERT(processed <= frames);
warpedSamples = mPlaybackMixers[i]->GetBuffer();
const auto put = mPlaybackBuffers[i]->Put
(warpedSamples, floatSample, processed);
// wxASSERT(put == processed);
// but we can't assert in this thread
wxUnusedVar(put);
}
//if looping and processed is less than the full chunk/block/buffer that gets pulled from
//other longer tracks, then we still need to advance the ring buffers or
//we'll trip up on ourselves when we start them back up again.
//if not looping we never start them up again, so its okay to not do anything
// If scrubbing, we may be producing some silence. Otherwise this should not happen,
// but makes sure anyway that we produce equal
// numbers of samples for all channels for this pass of the do-loop.
if(processed < frames && mPlayMode != PLAY_STRAIGHT)
{
mSilentBuf.Resize(frames, floatSample);
ClearSamples(mSilentBuf.ptr(), floatSample, 0, frames);
const auto put = mPlaybackBuffers[i]->Put
(mSilentBuf.ptr(), floatSample, frames - processed);
// wxASSERT(put == frames - processed);
// but we can't assert in this thread
wxUnusedVar(put);
}
}
available -= frames;
wxASSERT(available >= 0);
switch (mPlayMode)
{
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
case PLAY_SCRUB:
{
mScrubDuration -= frames;
wxASSERT(mScrubDuration >= 0);
done = (available == 0);
if (!done && mScrubDuration <= 0)
{
sampleCount startSample, endSample;
mScrubQueue->Transformer(startSample, endSample, mScrubDuration, cleanup);
if (mScrubDuration < 0)
{
// Can't play anything
// Stop even if we don't fill up available
mScrubDuration = 0;
done = true;
}
else
{
mSilentScrub = (endSample == startSample);
if (!mSilentScrub)
{
double startTime, endTime, speed;
startTime = startSample.as_double() / mRate;
endTime = endSample.as_double() / mRate;
auto diff = (endSample - startSample).as_long_long();
speed = double(std::abs(diff)) / mScrubDuration.as_double();
for (i = 0; i < mPlaybackTracks.size(); i++)
mPlaybackMixers[i]->SetTimesAndSpeed(startTime, endTime, speed);
}
}
}
}
break;
#endif
case PLAY_LOOPED:
{
done = !progress || (available == 0);
// msmeyer: If playing looped, check if we are at the end of the buffer
// and if yes, restart from the beginning.
if (mWarpedTime >= mWarpedLength)
{
for (i = 0; i < mPlaybackTracks.size(); i++)
mPlaybackMixers[i]->Restart();
mWarpedTime = 0.0;
}
}
break;
default:
done = true;
break;
}
} while (!done);
}
2010-02-06 22:17:33 +00:00
} // end of playback buffering
if (!mRecordingException &&
mCaptureTracks.size() > 0)
GuardedCall<void>( [&] {
// start record buffering
auto commonlyAvail = GetCommonlyAvailCapture();
//
// Determine how much this will add to captured tracks
//
double deltat = commonlyAvail / mRate;
2014-06-03 20:30:19 +00:00
if (mAudioThreadShouldCallFillBuffersOnce ||
deltat >= mMinCaptureSecsToCopy)
{
// Append captured samples to the end of the WaveTracks.
// The WaveTracks have their own buffering for efficiency.
AutoSaveFile blockFileLog;
auto numChannels = mCaptureTracks.size();
for( i = 0; (int)i < numChannels; i++ )
{
auto avail = commonlyAvail;
sampleFormat trackFormat = mCaptureTracks[i]->GetSampleFormat();
AutoSaveFile appendLog;
if( mFactor == 1.0 )
{
SampleBuffer temp(avail, trackFormat);
const auto got =
mCaptureBuffers[i]->Get(temp.ptr(), trackFormat, avail);
// wxASSERT(got == avail);
// but we can't assert in this thread
wxUnusedVar(got);
// see comment in second handler about guarantee
mCaptureTracks[i]-> Append(temp.ptr(), trackFormat, avail, 1,
&appendLog);
}
else
{
size_t size = lrint(avail * mFactor);
SampleBuffer temp1(avail, floatSample);
SampleBuffer temp2(size, floatSample);
const auto got =
mCaptureBuffers[i]->Get(temp1.ptr(), floatSample, avail);
// wxASSERT(got == avail);
// but we can't assert in this thread
wxUnusedVar(got);
/* we are re-sampling on the fly. The last resampling call
* must flush any samples left in the rate conversion buffer
* so that they get recorded
*/
const auto results =
mResample[i]->Process(mFactor, (float *)temp1.ptr(), avail,
!IsStreamActive(), (float *)temp2.ptr(), size);
size = results.second;
// see comment in second handler about guarantee
mCaptureTracks[i]-> Append(temp2.ptr(), floatSample, size, 1,
&appendLog);
}
if (!appendLog.IsEmpty())
{
blockFileLog.StartTag(wxT("recordingrecovery"));
blockFileLog.WriteAttr(wxT("id"), mCaptureTracks[i]->GetAutoSaveIdent());
blockFileLog.WriteAttr(wxT("channel"), (int)i);
blockFileLog.WriteAttr(wxT("numchannels"), numChannels);
blockFileLog.WriteSubTree(appendLog);
blockFileLog.EndTag(wxT("recordingrecovery"));
}
}
2014-06-03 20:30:19 +00:00
if (mListener && !blockFileLog.IsEmpty())
mListener->OnAudioIONewBlockFiles(blockFileLog);
}
// end of record buffering
},
// handler
[this] ( AudacityException *pException ) {
if ( pException ) {
// So that we don't attempt to fill the recording buffer again
// before the main thread stops recording
SetRecordingException();
return ;
}
else
// Don't want to intercept other exceptions (?)
throw;
},
delayedHandler
);
}
void AudioIO::SetListener(AudioIOListener* listener)
{
if (IsBusy())
return;
mListener = listener;
}
#ifdef EXPERIMENTAL_MIDI_OUT
static Alg_update gAllNotesOff; // special event for loop ending
// the fields of this event are never used, only the address is important
void AudioIO::OutputEvent()
{
int channel = (mNextEvent->chan) & 0xF; // must be in [0..15]
int command = -1;
int data1 = -1;
int data2 = -1;
double eventTime;
if (mTimeTrack)
eventTime = mTimeTrack->ComputeWarpedLength(mT0, mNextEventTime) + mT0;
else
eventTime = mNextEventTime;
// 0.0005 is for rounding
2014-06-03 20:30:19 +00:00
double time = eventTime + PauseTime() + 0.0005 -
((mMidiLatency + mSynthLatency) * 0.001);
time += 1; // MidiTime() has a 1s offset
2014-06-03 20:30:19 +00:00
// state changes have to go out without delay because the
// midi stream time gets reset when playback starts, and
// we don't want to leave any control changes scheduled for later
if (time < 0 || mSendMidiState) time = 0;
PmTimestamp timestamp = (PmTimestamp) (time * 1000); /* s to ms */
// The special event gAllNotesOffEvent means "end of playback, send
// all notes off on all channels"
if (mNextEvent == &gAllNotesOff) {
AllNotesOff();
if (mPlayMode == gAudioIO->PLAY_LOOPED) {
// jump back to beginning of loop
mMidiLoopOffset += (mT1 - mT0);
PrepareMidiIterator(false, mMidiLoopOffset);
} else {
mNextEvent = NULL;
}
return;
}
// if mNextEvent's channel is visible, play it, visibility can
// be updated while playing. Be careful: if we have a note-off,
// then we must not pay attention to the channel selection
2014-06-03 20:30:19 +00:00
// or mute/solo buttons because we must turn the note off
// even if the user changed something after the note began
// Note that because multiple tracks can output to the same
// MIDI channels, it is not a good idea to send "All Notes Off"
// when the user presses the mute button. We have no easy way
// to know what notes are sounding on any given muted track, so
// we'll just wait for the note-off events to happen.
2014-06-03 20:30:19 +00:00
// Also note that note-offs are only sent when we call
// mIterator->request_note_off(), so notes that are not played
// will note generate random note-offs. There is the interesting
// case that if the playback is paused, all-notes-off WILL be sent
// and if playback resumes, the pending note-off events WILL also
// be sent (but if that is a problem, there would also be a problem
// in the non-pause case.
if (((mNextEventTrack->IsVisibleChan(channel)) &&
// only play if note is not muted:
2014-06-03 20:30:19 +00:00
!((mHasSolo || mNextEventTrack->GetMute()) &&
!mNextEventTrack->GetSolo())) ||
2014-06-03 20:30:19 +00:00
(mNextEvent->is_note() && !mNextIsNoteOn)) {
// Note event
if (mNextEvent->is_note() && !mSendMidiState) {
// Pitch and velocity
data1 = mNextEvent->get_pitch();
if (mNextIsNoteOn) {
data2 = mNextEvent->get_loud(); // get velocity
int offset = mNextEventTrack->GetVelocity();
data2 += offset; // offset comes from per-track slider
// clip velocity to insure a legal note-on value
data2 = (data2 < 1 ? 1 : (data2 > 127 ? 127 : data2));
// since we are going to play this note, we need to get a note_off
mIterator->request_note_off();
} else data2 = 0; // 0 velocity means "note off"
command = 0x90; // MIDI NOTE ON (or OFF when velocity == 0)
// Update event
} else if (mNextEvent->is_update()) {
// this code is based on allegrosmfwr.cpp -- it could be improved
// by comparing attribute pointers instead of string compares
Alg_update_ptr update = (Alg_update_ptr) mNextEvent;
const char *name = update->get_attribute();
2014-06-03 20:30:19 +00:00
if (!strcmp(name, "programi")) {
// Instrument change
data1 = update->parameter.i;
data2 = 0;
command = 0xC0; // MIDI PROGRAM CHANGE
} else if (!strncmp(name, "control", 7)) {
// Controller change
// The number of the controller being changed is embedded
// in the parameter name.
data1 = atoi(name + 7);
// Allegro normalizes controller values
data2 = ROUND(update->parameter.r * 127);
command = 0xB0;
} else if (!strcmp(name, "bendr")) {
// Bend change
// Reverse Allegro's post-processing of bend values
int temp = ROUND(0x2000 * (update->parameter.r + 1));
if (temp > 0x3fff) temp = 0x3fff; // 14 bits maximum
if (temp < 0) temp = 0;
data1 = temp & 0x7f; // low 7 bits
data2 = temp >> 7; // high 7 bits
command = 0xE0; // MIDI PITCH BEND
} else if (!strcmp(name, "pressurer")) {
// Pressure change
data1 = (int) (update->parameter.r * 127);
if (update->get_identifier() < 0) {
// Channel pressure
data2 = 0;
command = 0xD0; // MIDI CHANNEL PRESSURE
} else {
// Key pressure
data2 = data1;
data1 = update->get_identifier();
command = 0xA0; // MIDI POLY PRESSURE
}
}
}
if (command != -1) {
2014-06-03 20:30:19 +00:00
Pm_WriteShort(mMidiStream, timestamp,
Pm_Message((int) (command + channel),
(long) data1, (long) data2));
2014-06-03 20:30:19 +00:00
/* printf("Pm_WriteShort %lx (%p) @ %d, advance %d\n",
Pm_Message((int) (command + channel),
(long) data1, (long) data2),
mNextEvent, timestamp, timestamp - Pt_Time()); */
}
}
}
void AudioIO::GetNextEvent()
{
mNextEventTrack = NULL; // clear it just to be safe
// now get the next event and the track from which it came
double nextOffset;
if (!mIterator) {
mNextEvent = NULL;
return;
}
mNextEvent = mIterator->next(&mNextIsNoteOn,
(void **) &mNextEventTrack,
&nextOffset, mT1 + mMidiLoopOffset);
if (mNextEvent) {
2014-06-03 20:30:19 +00:00
mNextEventTime = (mNextIsNoteOn ? mNextEvent->time :
mNextEvent->get_end_time()) + nextOffset;;
} else { // terminate playback at mT1
mNextEvent = &gAllNotesOff;
mNextEventTime = mT1 + mMidiLoopOffset - ALG_EPS;
mNextIsNoteOn = true; // do not look at duration
mIterator->end();
mIterator.reset(); // debugging aid
}
}
bool AudioIO::SetHasSolo(bool hasSolo)
{
mHasSolo = hasSolo;
return mHasSolo;
}
void AudioIO::FillMidiBuffers()
{
bool hasSolo = false;
auto numPlaybackTracks = gAudioIO->mPlaybackTracks.size();
for(unsigned t = 0; t < numPlaybackTracks; t++ )
if( gAudioIO->mPlaybackTracks[t]->GetSolo() ) {
hasSolo = true;
break;
}
auto numMidiPlaybackTracks = gAudioIO->mMidiPlaybackTracks.size();
for(unsigned t = 0; t < numMidiPlaybackTracks; t++ )
if( gAudioIO->mMidiPlaybackTracks[t]->GetSolo() ) {
hasSolo = true;
break;
}
SetHasSolo(hasSolo);
// Compute the current track time differently depending upon
// whether audio playback is in effect:
double time = AudioTime() - PauseTime();
2014-06-03 20:30:19 +00:00
while (mNextEvent &&
(mTimeTrack ? (mTimeTrack->ComputeWarpedLength(mT0, mNextEventTime) + mT0) : mNextEventTime)
< time + ((MIDI_SLEEP + mSynthLatency) * 0.001)) {
OutputEvent();
GetNextEvent();
}
}
double AudioIO::PauseTime()
{
return mNumPauseFrames / mRate;
}
PmTimestamp AudioIO::MidiTime()
{
//printf("AudioIO:MidiTime: PaUtil_GetTime() %g mAudioCallbackOutputTime %g time - outputTime %g\n",
// PaUtil_GetTime(), mAudioCallbackOutputTime, PaUtil_GetTime() - mAudioCallbackOutputTime);
// note: the extra 0.0005 is for rounding. Round down by casting to
// unsigned long, then convert to PmTimeStamp (currently signed)
return (PmTimestamp) ((unsigned long) (1000 * (AudioTime() + 1.0005 -
mAudioFramesPerBuffer / mRate +
PaUtil_GetTime() - mAudioCallbackOutputTime)));
}
void AudioIO::AllNotesOff()
{
for (int chan = 0; chan < 16; chan++) {
Pm_WriteShort(mMidiStream, 0, Pm_Message(0xB0 + chan, 0x7B, 0));
}
}
#endif
// Automated Input Level Adjustment - Automatically tries to find an acceptable input volume
#ifdef EXPERIMENTAL_AUTOMATED_INPUT_LEVEL_ADJUSTMENT
void AudioIO::AILAInitialize() {
gPrefs->Read(wxT("/AudioIO/AutomatedInputLevelAdjustment"), &mAILAActive, false);
gPrefs->Read(wxT("/AudioIO/TargetPeak"), &mAILAGoalPoint, AILA_DEF_TARGET_PEAK);
gPrefs->Read(wxT("/AudioIO/DeltaPeakVolume"), &mAILAGoalDelta, AILA_DEF_DELTA_PEAK);
gPrefs->Read(wxT("/AudioIO/AnalysisTime"), &mAILAAnalysisTime, AILA_DEF_ANALYSIS_TIME);
gPrefs->Read(wxT("/AudioIO/NumberAnalysis"), &mAILATotalAnalysis, AILA_DEF_NUMBER_ANALYSIS);
mAILAGoalDelta /= 100.0;
2014-06-03 20:30:19 +00:00
mAILAGoalPoint /= 100.0;
mAILAAnalysisTime /= 1000.0;
mAILAMax = 0.0;
mAILALastStartTime = max(0.0, mT0);
mAILAClipped = false;
mAILAAnalysisCounter = 0;
mAILAChangeFactor = 1.0;
mAILALastChangeType = 0;
mAILATopLevel = 1.0;
mAILAAnalysisEndTime = -1.0;
}
void AudioIO::AILADisable() {
mAILAActive = false;
}
bool AudioIO::AILAIsActive() {
return mAILAActive;
}
void AudioIO::AILASetStartTime() {
mAILAAbsolutStartTime = Pa_GetStreamTime(mPortStreamV19);
printf("START TIME %f\n\n", mAILAAbsolutStartTime);
}
double AudioIO::AILAGetLastDecisionTime() {
return mAILAAnalysisEndTime;
}
void AudioIO::AILAProcess(double maxPeak) {
AudacityProject *proj = GetActiveProject();
if (proj && mAILAActive) {
if (mInputMeter->IsClipping()) {
mAILAClipped = true;
printf("clipped");
}
2014-06-03 20:30:19 +00:00
mAILAMax = max(mAILAMax, maxPeak);
2014-06-03 20:30:19 +00:00
if ((mAILATotalAnalysis == 0 || mAILAAnalysisCounter < mAILATotalAnalysis) && mTime - mAILALastStartTime >= mAILAAnalysisTime) {
putchar('\n');
mAILAMax = mInputMeter->ToLinearIfDB(mAILAMax);
double iv = (double) Px_GetInputVolume(mPortMixer);
unsigned short changetype = 0; //0 - no change, 1 - increase change, 2 - decrease change
printf("mAILAAnalysisCounter:%d\n", mAILAAnalysisCounter);
printf("\tmAILAClipped:%d\n", mAILAClipped);
printf("\tmAILAMax (linear):%f\n", mAILAMax);
printf("\tmAILAGoalPoint:%f\n", mAILAGoalPoint);
printf("\tmAILAGoalDelta:%f\n", mAILAGoalDelta);
printf("\tiv:%f\n", iv);
printf("\tmAILAChangeFactor:%f\n", mAILAChangeFactor);
if (mAILAClipped || mAILAMax > mAILAGoalPoint + mAILAGoalDelta) {
printf("too high:\n");
mAILATopLevel = min(mAILATopLevel, iv);
printf("\tmAILATopLevel:%f\n", mAILATopLevel);
//if clipped or too high
if (iv <= LOWER_BOUND) {
//we can't improve it more now
if (mAILATotalAnalysis != 0) {
mAILAActive = false;
proj->TP_DisplayStatusMessage(_("Automated Recording Level Adjustment stopped. It was not possible to optimize it more. Still too high."));
}
printf("\talready min vol:%f\n", iv);
}
else {
float vol = (float) max(LOWER_BOUND, iv+(mAILAGoalPoint-mAILAMax)*mAILAChangeFactor);
Px_SetInputVolume(mPortMixer, vol);
wxString msg;
msg.Printf(_("Automated Recording Level Adjustment decreased the volume to %f."), vol);
proj->TP_DisplayStatusMessage(msg);
changetype = 1;
printf("\tnew vol:%f\n", vol);
float check = Px_GetInputVolume(mPortMixer);
printf("\tverified %f\n", check);
}
}
else if ( mAILAMax < mAILAGoalPoint - mAILAGoalDelta ) {
//if too low
2014-06-03 20:30:19 +00:00
printf("too low:\n");
if (iv >= UPPER_BOUND || iv + 0.005 > mAILATopLevel) { //condition for too low volumes and/or variable volumes that cause mAILATopLevel to decrease too much
//we can't improve it more
if (mAILATotalAnalysis != 0) {
mAILAActive = false;
proj->TP_DisplayStatusMessage(_("Automated Recording Level Adjustment stopped. It was not possible to optimize it more. Still too low."));
}
printf("\talready max vol:%f\n", iv);
}
else {
float vol = (float) min(UPPER_BOUND, iv+(mAILAGoalPoint-mAILAMax)*mAILAChangeFactor);
if (vol > mAILATopLevel) {
vol = (iv + mAILATopLevel)/2.0;
printf("\tTruncated vol:%f\n", vol);
}
Px_SetInputVolume(mPortMixer, vol);
wxString msg;
msg.Printf(_("Automated Recording Level Adjustment increased the volume to %.2f."), vol);
proj->TP_DisplayStatusMessage(msg);
changetype = 2;
printf("\tnew vol:%f\n", vol);
float check = Px_GetInputVolume(mPortMixer);
printf("\tverified %f\n", check);
}
}
mAILAAnalysisCounter++;
//const PaStreamInfo* info = Pa_GetStreamInfo(mPortStreamV19);
//double latency = 0.0;
//if (info)
// latency = info->inputLatency;
//mAILAAnalysisEndTime = mTime+latency;
mAILAAnalysisEndTime = Pa_GetStreamTime(mPortStreamV19) - mAILAAbsolutStartTime;
mAILAMax = 0;
printf("\tA decision was made @ %f\n", mAILAAnalysisEndTime);
2014-06-03 20:30:19 +00:00
mAILAClipped = false;
mAILALastStartTime = mTime;
2014-06-03 20:30:19 +00:00
if (changetype == 0)
mAILAChangeFactor *= 0.8; //time factor
else if (mAILALastChangeType == changetype)
mAILAChangeFactor *= 1.1; //concordance factor
else
mAILAChangeFactor *= 0.7; //discordance factor
mAILALastChangeType = changetype;
putchar('\n');
}
if (mAILAActive && mAILATotalAnalysis != 0 && mAILAAnalysisCounter >= mAILATotalAnalysis) {
mAILAActive = false;
if (mAILAMax > mAILAGoalPoint + mAILAGoalDelta)
proj->TP_DisplayStatusMessage(_("Automated Recording Level Adjustment stopped. The total number of analyses has been exceeded without finding an acceptable volume. Still too high."));
else if (mAILAMax < mAILAGoalPoint - mAILAGoalDelta)
proj->TP_DisplayStatusMessage(_("Automated Recording Level Adjustment stopped. The total number of analyses has been exceeded without finding an acceptable volume. Still too low."));
else {
wxString msg;
msg.Printf(_("Automated Recording Level Adjustment stopped. %.2f seems an acceptable volume."), Px_GetInputVolume(mPortMixer));
proj->TP_DisplayStatusMessage(msg);
}
}
}
}
#endif
//////////////////////////////////////////////////////////////////////
//
// PortAudio callback thread context
//
//////////////////////////////////////////////////////////////////////
#define MAX(a,b) ((a) > (b) ? (a) : (b))
static void DoSoftwarePlaythrough(const void *inputBuffer,
sampleFormat inputFormat,
unsigned inputChannels,
float *outputBuffer,
int len)
{
for (int i=0; i < inputChannels; i++) {
samplePtr inputPtr = ((samplePtr)inputBuffer) + (i * SAMPLE_SIZE(inputFormat));
samplePtr outputPtr = ((samplePtr)outputBuffer) + (i * SAMPLE_SIZE(floatSample));
CopySamples(inputPtr, inputFormat,
(samplePtr)outputPtr, floatSample,
len, true, inputChannels, 2);
}
// One mono input channel goes to both output channels...
if (inputChannels == 1)
for (int i=0; i < len; i++)
outputBuffer[2*i + 1] = outputBuffer[2*i];
}
int audacityAudioCallback(const void *inputBuffer, void *outputBuffer,
unsigned long framesPerBuffer,
// If there were more of these conditionally used arguments, it
// could make sense to make a NEW macro that looks like this:
// USEDIF( EXPERIMENTAL_MIDI_OUT, timeInfo )
#ifdef EXPERIMENTAL_MIDI_OUT
const PaStreamCallbackTimeInfo *timeInfo,
#else
const PaStreamCallbackTimeInfo * WXUNUSED(timeInfo),
#endif
const PaStreamCallbackFlags WXUNUSED(statusFlags), void * WXUNUSED(userData) )
{
auto numPlaybackChannels = gAudioIO->mNumPlaybackChannels;
auto numPlaybackTracks = gAudioIO->mPlaybackTracks.size();
auto numCaptureChannels = gAudioIO->mNumCaptureChannels;
int callbackReturn = paContinue;
void *tempBuffer = alloca(framesPerBuffer*sizeof(float)*
MAX(numCaptureChannels,numPlaybackChannels));
float *tempFloats = (float*)tempBuffer;
// output meter may need samples untouched by volume emulation
float *outputMeterFloats;
outputMeterFloats =
(outputBuffer && gAudioIO->mEmulateMixerOutputVol &&
gAudioIO->mMixerOutputVol != 1.0) ?
(float *)alloca(framesPerBuffer*numPlaybackChannels * sizeof(float)) :
(float *)outputBuffer;
#ifdef EXPERIMENTAL_MIDI_OUT
/* GSW: Save timeInfo in case MidiPlayback needs it */
gAudioIO->mAudioCallbackOutputTime = timeInfo->outputBufferDacTime;
// printf("in callback, mAudioCallbackOutputTime %g\n", gAudioIO->mAudioCallbackOutputTime); //DBG
gAudioIO->mAudioFramesPerBuffer = framesPerBuffer;
if(gAudioIO->IsPaused())
gAudioIO->mNumPauseFrames += framesPerBuffer;
gAudioIO->mNumFrames += framesPerBuffer;
#endif
unsigned int i;
/* Send data to recording VU meter if applicable */
if (gAudioIO->mInputMeter &&
!gAudioIO->mInputMeter->IsMeterDisabled() &&
inputBuffer) {
// get here if meters are actually live , and being updated
/* It's critical that we don't update the meters while StopStream is
* trying to stop PortAudio, otherwise it can lead to a freeze. We use
* two variables to synchronize:
* mUpdatingMeters tells StopStream when the callback is about to enter
* the code where it might update the meters, and
* mUpdateMeters is how the rest of the code tells the callback when it
* is allowed to actually do the updating.
* Note that mUpdatingMeters must be set first to avoid a race condition.
*/
gAudioIO->mUpdatingMeters = true;
if (gAudioIO->mUpdateMeters) {
if (gAudioIO->mCaptureFormat == floatSample)
gAudioIO->mInputMeter->UpdateDisplay(numCaptureChannels,
framesPerBuffer,
(float *)inputBuffer);
else {
CopySamples((samplePtr)inputBuffer, gAudioIO->mCaptureFormat,
(samplePtr)tempFloats, floatSample,
framesPerBuffer * numCaptureChannels);
gAudioIO->mInputMeter->UpdateDisplay(numCaptureChannels,
framesPerBuffer,
tempFloats);
}
}
gAudioIO->mUpdatingMeters = false;
} // end recording VU meter update
// Stop recording if 'silence' is detected
2015-08-26 05:13:14 +00:00
//
// LL: We'd gotten a little "dangerous" with the control toolbar calls
// here because we are not running in the main GUI thread. Eventually
// the toolbar attempts to update the active project's status bar.
// But, since we're not in the main thread, we can get all manner of
// really weird failures. Or none at all which is even worse, since
// we don't know a problem exists.
//
// By using CallAfter(), we can schedule the call to the toolbar
// to run in the main GUI thread after the next event loop iteration.
if(gAudioIO->mPauseRec && inputBuffer && gAudioIO->mInputMeter) {
if(gAudioIO->mInputMeter->GetMaxPeak() < gAudioIO->mSilenceLevel ) {
if(!gAudioIO->IsPaused()) {
AudacityProject *p = GetActiveProject();
2015-08-26 05:13:14 +00:00
ControlToolBar *bar = p->GetControlToolBar();
bar->CallAfter(&ControlToolBar::Pause);
}
}
else {
if(gAudioIO->IsPaused()) {
AudacityProject *p = GetActiveProject();
2015-08-26 05:13:14 +00:00
ControlToolBar *bar = p->GetControlToolBar();
bar->CallAfter(&ControlToolBar::Pause);
}
}
}
if( gAudioIO->mPaused )
{
if (outputBuffer && numPlaybackChannels > 0)
{
ClearSamples((samplePtr)outputBuffer, floatSample,
0, framesPerBuffer * numPlaybackChannels);
if (inputBuffer && gAudioIO->mSoftwarePlaythrough) {
DoSoftwarePlaythrough(inputBuffer, gAudioIO->mCaptureFormat,
numCaptureChannels,
(float *)outputBuffer, (int)framesPerBuffer);
}
}
return paContinue;
}
if (gAudioIO->mStreamToken > 0)
{
//
// Mix and copy to PortAudio's output buffer
//
2014-06-03 20:30:19 +00:00
if( outputBuffer && (numPlaybackChannels > 0) )
{
bool cut = false;
bool linkFlag = false;
2014-06-03 20:30:19 +00:00
float *outputFloats = (float *)outputBuffer;
for( i = 0; i < framesPerBuffer*numPlaybackChannels; i++)
outputFloats[i] = 0.0;
if (inputBuffer && gAudioIO->mSoftwarePlaythrough) {
DoSoftwarePlaythrough(inputBuffer, gAudioIO->mCaptureFormat,
numCaptureChannels,
(float *)outputBuffer, (int)framesPerBuffer);
}
// Copy the results to outputMeterFloats if necessary
if (outputMeterFloats != outputFloats) {
for (i = 0; i < framesPerBuffer*numPlaybackChannels; ++i) {
outputMeterFloats[i] = outputFloats[i];
}
}
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
// While scrubbing, ignore seek requests
if (gAudioIO->mSeek && gAudioIO->mPlayMode == AudioIO::PLAY_SCRUB)
gAudioIO->mSeek = 0.0;
else
#endif
if (gAudioIO->mSeek)
{
int token = gAudioIO->mStreamToken;
wxMutexLocker locker(gAudioIO->mSuspendAudioThread);
if (token != gAudioIO->mStreamToken)
// This stream got destroyed while we waited for it
return paAbort;
// Pause audio thread and wait for it to finish
gAudioIO->mAudioThreadFillBuffersLoopRunning = false;
while( gAudioIO->mAudioThreadFillBuffersLoopActive == true )
{
wxMilliSleep( 50 );
}
// Calculate the NEW time position
gAudioIO->mTime += gAudioIO->mSeek;
gAudioIO->mTime = gAudioIO->LimitStreamTime(gAudioIO->mTime);
gAudioIO->mSeek = 0.0;
2014-06-03 20:30:19 +00:00
// Reset mixer positions and flush buffers for all tracks
if(gAudioIO->mTimeTrack)
// Following gives negative when mT0 > mTime
gAudioIO->mWarpedTime =
gAudioIO->mTimeTrack->ComputeWarpedLength
(gAudioIO->mT0, gAudioIO->mTime);
else
gAudioIO->mWarpedTime = gAudioIO->mTime - gAudioIO->mT0;
gAudioIO->mWarpedTime = std::abs(gAudioIO->mWarpedTime);
// Reset mixer positions and flush buffers for all tracks
for (i = 0; i < numPlaybackTracks; i++)
{
gAudioIO->mPlaybackMixers[i]->Reposition(gAudioIO->mTime);
const auto toDiscard =
gAudioIO->mPlaybackBuffers[i]->AvailForGet();
const auto discarded =
gAudioIO->mPlaybackBuffers[i]->Discard( toDiscard );
// wxASSERT( discarded == toDiscard );
// but we can't assert in this thread
wxUnusedVar(discarded);
}
// Reload the ring buffers
gAudioIO->mAudioThreadShouldCallFillBuffersOnce = true;
while( gAudioIO->mAudioThreadShouldCallFillBuffersOnce == true )
{
wxMilliSleep( 50 );
}
// Reenable the audio thread
gAudioIO->mAudioThreadFillBuffersLoopRunning = true;
2014-06-03 20:30:19 +00:00
return paContinue;
}
unsigned numSolo = 0;
for(unsigned t = 0; t < numPlaybackTracks; t++ )
if( gAudioIO->mPlaybackTracks[t]->GetSolo() )
numSolo++;
#ifdef EXPERIMENTAL_MIDI_OUT
auto numMidiPlaybackTracks = gAudioIO->mMidiPlaybackTracks.size();
for( unsigned t = 0; t < numMidiPlaybackTracks; t++ )
if( gAudioIO->mMidiPlaybackTracks[t]->GetSolo() )
numSolo++;
2014-06-03 20:30:19 +00:00
#endif
const WaveTrack **chans = (const WaveTrack **) alloca(numPlaybackChannels * sizeof(WaveTrack *));
float **tempBufs = (float **) alloca(numPlaybackChannels * sizeof(float *));
for (int c = 0; c < numPlaybackChannels; c++)
{
tempBufs[c] = (float *) alloca(framesPerBuffer * sizeof(float));
}
EffectManager & em = EffectManager::Get();
em.RealtimeProcessStart();
bool selected = false;
Round 3 of realtime changes. This gets meter type VST effects working again by extending the The master now maintains his own internal buffers and sums (mixes) all playing tracks into those buffers. The buffers are then fed into the VST effect that is presented to the user. This allows the effect to provide feedback to the user if it support it. Such effects may display meters or clipping indicators. Several issues with treading have also been corrected (hopefully ;-)). These showed up mostly on Linux, but could have happened on the others as well. The realtime support is no longer limited to 2 channels per logical track. Once support for more channels is added, this should be ready for it. The rack dialog can now be toggled via the edit toolbar button. It doesn't stay pressed because the closing of the dialog would have to be communicated back to the toolbar. As the rack is updated with new or removed effects or active state changed, all effects in the active list were shutdown and all effects in the updated list were initialized. This now shuts down only the effects no longer in the list and initializes only new ones. The rack now uses wxBitmapButton instead of Audacity's AButton. The AButton has a timing issue that prevents it from being deleted while processing the click event. I looked into it, but gave up and switched to the wxBitmapButton. Unfortunately, there's a problem with the wxBitmapButton as well...at least on my setup here. Either the bitmaps are being scaled or antialiased. Will have to get feedback on this. I finally figured out why some VSTs didn't seem to do anything in realtime, at least in my case anyway. I've installed a lot of demo VSTs and while they work in "batch/offline" mode, some of them will not work in realtime since vendors tend to remove automation as one of the demo limitations. More changes coming shortly...
2014-11-03 06:48:54 +00:00
int group = 0;
int chanCnt = 0;
2016-04-14 16:08:36 +00:00
decltype(framesPerBuffer) maxLen = 0;
for (unsigned t = 0; t < numPlaybackTracks; t++)
{
const WaveTrack *vt = gAudioIO->mPlaybackTracks[t];
2014-06-03 20:30:19 +00:00
chans[chanCnt] = vt;
if (linkFlag)
linkFlag = false;
else {
cut = false;
2014-06-03 20:30:19 +00:00
// Cut if somebody else is soloing
if (numSolo>0 && !vt->GetSolo())
cut = true;
2014-06-03 20:30:19 +00:00
// Cut if we're muted (unless we're soloing)
if (vt->GetMute() && !vt->GetSolo())
cut = true;
2014-06-03 20:30:19 +00:00
linkFlag = vt->GetLinked();
selected = vt->GetSelected();
Round 3 of realtime changes. This gets meter type VST effects working again by extending the The master now maintains his own internal buffers and sums (mixes) all playing tracks into those buffers. The buffers are then fed into the VST effect that is presented to the user. This allows the effect to provide feedback to the user if it support it. Such effects may display meters or clipping indicators. Several issues with treading have also been corrected (hopefully ;-)). These showed up mostly on Linux, but could have happened on the others as well. The realtime support is no longer limited to 2 channels per logical track. Once support for more channels is added, this should be ready for it. The rack dialog can now be toggled via the edit toolbar button. It doesn't stay pressed because the closing of the dialog would have to be communicated back to the toolbar. As the rack is updated with new or removed effects or active state changed, all effects in the active list were shutdown and all effects in the updated list were initialized. This now shuts down only the effects no longer in the list and initializes only new ones. The rack now uses wxBitmapButton instead of Audacity's AButton. The AButton has a timing issue that prevents it from being deleted while processing the click event. I looked into it, but gave up and switched to the wxBitmapButton. Unfortunately, there's a problem with the wxBitmapButton as well...at least on my setup here. Either the bitmaps are being scaled or antialiased. Will have to get feedback on this. I finally figured out why some VSTs didn't seem to do anything in realtime, at least in my case anyway. I've installed a lot of demo VSTs and while they work in "batch/offline" mode, some of them will not work in realtime since vendors tend to remove automation as one of the demo limitations. More changes coming shortly...
2014-11-03 06:48:54 +00:00
// If we have a mono track, clear the right channel
if (!linkFlag)
{
memset(tempBufs[1], 0, framesPerBuffer * sizeof(float));
}
}
2014-06-03 20:30:19 +00:00
#define ORIGINAL_DO_NOT_PLAY_ALL_MUTED_TRACKS_TO_END
#ifdef ORIGINAL_DO_NOT_PLAY_ALL_MUTED_TRACKS_TO_END
2016-04-14 16:08:36 +00:00
decltype(framesPerBuffer) len = 0;
// this is original code prior to r10680 -RBD
if (cut)
{
len = gAudioIO->mPlaybackBuffers[t]->Discard(framesPerBuffer);
// keep going here.
// we may still need to issue a paComplete.
}
else
{
len = gAudioIO->mPlaybackBuffers[t]->Get((samplePtr)tempBufs[chanCnt],
floatSample,
framesPerBuffer);
if (len < framesPerBuffer)
// Pad with zeroes to the end, in case of a short channel
memset((void*)&tempBufs[chanCnt][len], 0,
(framesPerBuffer - len) * sizeof(float));
chanCnt++;
}
// PRL: Bug1104:
// There can be a difference of len in different loop passes if one channel
// of a stereo track ends before the other! Take a max!
maxLen = std::max(maxLen, len);
if (linkFlag)
{
continue;
}
#else
// This code was reorganized so that if all audio tracks
// are muted, we still return paComplete when the end of
// a selection is reached.
2011-10-21 04:02:47 +00:00
// Vaughan, 2011-10-20: Further comments from Roger, by off-list email:
// ...something to do with what it means to mute all audio tracks. E.g. if you
// mute all and play, does the playback terminate immediately or play
// silence? If it terminates immediately, does that terminate any MIDI
// playback that might also be going on? ...Maybe muted audio tracks + MIDI,
// the playback would NEVER terminate. ...I think the #else part is probably preferable...
size_t len;
if (cut)
{
len =
gAudioIO->mPlaybackBuffers[t]->Discard(framesPerBuffer);
2014-06-03 20:30:19 +00:00
} else
{
len =
gAudioIO->mPlaybackBuffers[t]->Get((samplePtr)tempFloats,
floatSample,
framesPerBuffer);
}
#endif
// Last channel seen now
len = maxLen;
if( !cut && selected )
{
len = em.RealtimeProcess(group, chanCnt, tempBufs, len);
}
group++;
// If our buffer is empty and the time indicator is past
// the end, then we've actually finished playing the entire
// selection.
// msmeyer: We never finish if we are playing looped
// PRL: or scrubbing.
if (len == 0 &&
gAudioIO->mPlayMode == AudioIO::PLAY_STRAIGHT) {
if ((gAudioIO->ReversedTime()
? gAudioIO->mTime <= gAudioIO->mT1
: gAudioIO->mTime >= gAudioIO->mT1))
callbackReturn = paComplete;
}
if (cut) // no samples to process, they've been discarded
continue;
for (int c = 0; c < chanCnt; c++)
{
vt = chans[c];
if (vt->GetChannel() == Track::LeftChannel ||
vt->GetChannel() == Track::MonoChannel)
{
float gain = vt->GetChannelGain(0);
2014-06-03 20:30:19 +00:00
// Output volume emulation: possibly copy meter samples, then
// apply volume, then copy to the output buffer
if (outputMeterFloats != outputFloats)
for (decltype(len) i = 0; i < len; ++i)
outputMeterFloats[numPlaybackChannels*i] +=
gain*tempFloats[i];
2014-06-03 20:30:19 +00:00
if (gAudioIO->mEmulateMixerOutputVol)
gain *= gAudioIO->mMixerOutputVol;
2014-06-03 20:30:19 +00:00
for(decltype(len) i = 0; i < len; i++)
outputFloats[numPlaybackChannels*i] += gain*tempBufs[c][i];
}
if (vt->GetChannel() == Track::RightChannel ||
vt->GetChannel() == Track::MonoChannel)
{
float gain = vt->GetChannelGain(1);
2014-06-03 20:30:19 +00:00
// Output volume emulation (as above)
if (outputMeterFloats != outputFloats)
for (decltype(len) i = 0; i < len; ++i)
outputMeterFloats[numPlaybackChannels*i+1] +=
gain*tempFloats[i];
if (gAudioIO->mEmulateMixerOutputVol)
gain *= gAudioIO->mMixerOutputVol;
2014-06-03 20:30:19 +00:00
for(decltype(len) i = 0; i < len; i++)
outputFloats[numPlaybackChannels*i+1] += gain*tempBufs[c][i];
}
}
chanCnt = 0;
}
// Poke: If there are no playback tracks, then the earlier check
// about the time indicator being passed the end won't happen;
// do it here instead (but not if looping or scrubbing)
if (numPlaybackTracks == 0
&& gAudioIO->mPlayMode == AudioIO::PLAY_STRAIGHT)
{
if ((gAudioIO->ReversedTime()
? gAudioIO->mTime <= gAudioIO->mT1
: gAudioIO->mTime >= gAudioIO->mT1)) {
callbackReturn = paComplete;
}
}
2014-06-03 20:30:19 +00:00
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
// Update the current time position, for scrubbing
// "Consume" only as much as the ring buffers produced, which may
// be less than framesPerBuffer (during "stutter")
if (gAudioIO->mPlayMode == AudioIO::PLAY_SCRUB)
gAudioIO->mTime = gAudioIO->mScrubQueue->Consumer(maxLen);
#endif
em.RealtimeProcessEnd();
gAudioIO->mLastPlaybackTimeMillis = ::wxGetLocalTimeMillis();
//
// Clip output to [-1.0,+1.0] range (msmeyer)
//
for( i = 0; i < framesPerBuffer*numPlaybackChannels; i++)
{
float f = outputFloats[i];
if (f > 1.0)
outputFloats[i] = 1.0;
else if (f < -1.0)
outputFloats[i] = -1.0;
}
// Same for meter output
if (outputMeterFloats != outputFloats)
{
for (i = 0; i < framesPerBuffer*numPlaybackChannels; ++i)
{
float f = outputMeterFloats[i];
if (f > 1.0)
outputMeterFloats[i] = 1.0;
else if (f < -1.0)
outputMeterFloats[i] = -1.0;
}
}
}
//
// Copy from PortAudio to our input buffers.
//
2014-06-03 20:30:19 +00:00
if( inputBuffer && (numCaptureChannels > 0) )
{
size_t len = framesPerBuffer;
for(unsigned t = 0; t < numCaptureChannels; t++) {
len = std::min( len,
gAudioIO->mCaptureBuffers[t]->AvailForPut());
}
2014-06-03 20:30:19 +00:00
if (len < framesPerBuffer)
{
gAudioIO->mLostSamples += (framesPerBuffer - len);
wxPrintf(wxT("lost %d samples\n"), (int)(framesPerBuffer - len));
}
if (len > 0) {
for(unsigned t = 0; t < numCaptureChannels; t++) {
2014-06-03 20:30:19 +00:00
// dmazzoni:
// Un-interleave. Ugly special-case code required because the
// capture channels could be in three different sample formats;
// it'd be nice to be able to call CopySamples, but it can't
// handle multiplying by the gain and then clipping. Bummer.
switch(gAudioIO->mCaptureFormat) {
case floatSample: {
float *inputFloats = (float *)inputBuffer;
for( i = 0; i < len; i++)
tempFloats[i] =
inputFloats[numCaptureChannels*i+t];
} break;
case int24Sample:
// We should never get here. Audacity's int24Sample format
// is different from PortAudio's sample format and so we
// make PortAudio return float samples when recording in
// 24-bit samples.
wxASSERT(false);
break;
case int16Sample: {
short *inputShorts = (short *)inputBuffer;
short *tempShorts = (short *)tempBuffer;
for( i = 0; i < len; i++) {
float tmp = inputShorts[numCaptureChannels*i+t];
if (tmp > 32767)
tmp = 32767;
if (tmp < -32768)
tmp = -32768;
tempShorts[i] = (short)(tmp);
}
} break;
} // switch
2014-06-03 20:30:19 +00:00
const auto put =
gAudioIO->mCaptureBuffers[t]->Put(
(samplePtr)tempBuffer, gAudioIO->mCaptureFormat, len);
// wxASSERT(put == len);
// but we can't assert in this thread
wxUnusedVar(put);
}
}
}
// Update the current time position if not scrubbing
// (Already did it above, for scrubbing)
#ifdef EXPERIMENTAL_SCRUBBING_SUPPORT
if (gAudioIO->mPlayMode != AudioIO::PLAY_SCRUB)
#endif
{
double delta = framesPerBuffer / gAudioIO->mRate;
if (gAudioIO->ReversedTime())
delta *= -1.0;
if (gAudioIO->mTimeTrack)
// MB: this is why SolveWarpedLength is needed :)
gAudioIO->mTime =
gAudioIO->mTimeTrack->SolveWarpedLength(gAudioIO->mTime, delta);
else
gAudioIO->mTime += delta;
}
// Wrap to start if looping
if (gAudioIO->mPlayMode == AudioIO::PLAY_LOOPED)
{
while (gAudioIO->ReversedTime()
? gAudioIO->mTime <= gAudioIO->mT1
: gAudioIO->mTime >= gAudioIO->mT1)
{
// LL: This is not exactly right, but I'm at my wits end trying to
// figure it out. Feel free to fix it. :-)
// MB: it's much easier than you think, mTime isn't warped at all!
gAudioIO->mTime -= gAudioIO->mT1 - gAudioIO->mT0;
}
}
// Record the reported latency from PortAudio.
// TODO: Don't recalculate this with every callback?
// 01/21/2009: Disabled until a better solution presents itself.
#if 0
// As of 06/17/2006, portaudio v19 returns inputBufferAdcTime set to
// zero. It is being worked on, but for now we just can't do much
// but follow the leader.
//
// 08/27/2006: too inconsistent for now...just leave it a zero.
//
// 04/16/2008: Looks like si->inputLatency comes back with something useful though.
2014-06-03 20:30:19 +00:00
// This rearranged logic uses si->inputLatency, but if PortAudio fixes inputBufferAdcTime,
// this code won't have to be modified to use it.
// Also avoids setting mLastRecordingOffset except when simultaneously playing and recording.
//
if (numCaptureChannels > 0 && numPlaybackChannels > 0) // simultaneously playing and recording
{
if (timeInfo->inputBufferAdcTime > 0)
gAudioIO->mLastRecordingOffset = timeInfo->inputBufferAdcTime - timeInfo->outputBufferDacTime;
2014-06-03 20:30:19 +00:00
else if (gAudioIO->mLastRecordingOffset == 0.0)
{
const PaStreamInfo* si = Pa_GetStreamInfo( gAudioIO->mPortStreamV19 );
gAudioIO->mLastRecordingOffset = -si->inputLatency;
}
}
#endif
} // if mStreamToken > 0
else {
// No tracks to play, but we should clear the output, and
// possibly do software playthrough...
2014-06-03 20:30:19 +00:00
if( outputBuffer && (numPlaybackChannels > 0) ) {
float *outputFloats = (float *)outputBuffer;
for( i = 0; i < framesPerBuffer*numPlaybackChannels; i++)
outputFloats[i] = 0.0;
2014-06-03 20:30:19 +00:00
if (inputBuffer && gAudioIO->mSoftwarePlaythrough) {
DoSoftwarePlaythrough(inputBuffer, gAudioIO->mCaptureFormat,
numCaptureChannels,
(float *)outputBuffer, (int)framesPerBuffer);
}
// Copy the results to outputMeterFloats if necessary
if (outputMeterFloats != outputFloats) {
for (i = 0; i < framesPerBuffer*numPlaybackChannels; ++i) {
outputMeterFloats[i] = outputFloats[i];
}
}
}
}
/* Send data to playback VU meter if applicable */
2014-06-03 20:30:19 +00:00
if (gAudioIO->mOutputMeter &&
!gAudioIO->mOutputMeter->IsMeterDisabled() &&
outputMeterFloats) {
2014-06-03 20:30:19 +00:00
// Get here if playback meter is live
/* It's critical that we don't update the meters while StopStream is
* trying to stop PortAudio, otherwise it can lead to a freeze. We use
* two variables to synchronize:
* mUpdatingMeters tells StopStream when the callback is about to enter
2014-06-03 20:30:19 +00:00
* the code where it might update the meters, and
* mUpdateMeters is how the rest of the code tells the callback when it
* is allowed to actually do the updating.
* Note that mUpdatingMeters must be set first to avoid a race condition.
*/
gAudioIO->mUpdatingMeters = true;
if (gAudioIO->mUpdateMeters) {
gAudioIO->mOutputMeter->UpdateDisplay(numPlaybackChannels,
framesPerBuffer,
outputMeterFloats);
2014-06-03 20:30:19 +00:00
//v Vaughan, 2011-02-25: Moved this update back to TrackPanel::OnTimer()
// as it helps with playback issues reported by Bill and noted on Bug 258.
2014-06-03 20:30:19 +00:00
// The problem there occurs if Software Playthrough is on.
// Could conditionally do the update here if Software Playthrough is off,
// and in TrackPanel::OnTimer() if Software Playthrough is on, but not now.
// PRL 12 Jul 2015: and what was in TrackPanel::OnTimer is now handled by means of event
// type EVT_TRACK_PANEL_TIMER
//AudacityProject* pProj = GetActiveProject();
//MixerBoard* pMixerBoard = pProj->GetMixerBoard();
//if (pMixerBoard)
2014-06-03 20:30:19 +00:00
// pMixerBoard->UpdateMeters(gAudioIO->GetStreamTime(),
// (pProj->mLastPlayMode == loopedPlay));
}
gAudioIO->mUpdatingMeters = false;
} // end playback VU meter update
return callbackReturn;
}