i3status/src/print_battery_info.c

726 lines
26 KiB
C
Raw Normal View History

// vim:ts=4:sw=4:expandtab
2019-01-23 07:56:40 +00:00
#include <config.h>
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
2012-03-25 18:55:55 +00:00
#include <yajl/yajl_gen.h>
2012-04-08 12:05:47 +00:00
#include <yajl/yajl_version.h>
#include "i3status.h"
2020-02-10 17:52:04 +00:00
#define STRING_SIZE 10
2019-01-23 07:56:40 +00:00
#if defined(__linux__)
#include <errno.h>
2016-10-23 19:20:31 +00:00
#include <glob.h>
#include <sys/types.h>
#endif
2012-11-14 01:29:55 +00:00
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
#include <dev/acpica/acpiio.h>
#include <sys/sysctl.h>
#include <sys/types.h>
#endif
#if defined(__DragonFly__)
#include <sys/fcntl.h>
#endif
#if defined(__OpenBSD__)
#include <machine/apmvar.h>
#include <sys/fcntl.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/sensors.h>
#include <sys/sysctl.h>
#endif
#if defined(__NetBSD__)
#include <fcntl.h>
#include <prop/proplib.h>
#include <sys/envsys.h>
#endif
typedef enum {
CS_UNKNOWN,
CS_DISCHARGING,
CS_CHARGING,
CS_FULL,
} charging_status_t;
/* A description of the state of one or more batteries. */
struct battery_info {
/* measured properties */
int full_design; /* in uAh */
int full_last; /* in uAh */
int remaining; /* in uAh */
int present_rate; /* in uA, always non-negative */
/* derived properties */
int seconds_remaining;
float percentage_remaining;
charging_status_t status;
};
#if defined(__DragonFly__)
#define ACPIDEV "/dev/acpi"
static int acpifd;
static bool acpi_init(void) {
if (acpifd == 0) {
acpifd = open(ACPIDEV, O_RDWR);
if (acpifd == -1)
acpifd = open(ACPIDEV, O_RDONLY);
if (acpifd == -1)
return false;
}
return true;
}
#endif
2019-01-23 07:56:40 +00:00
#if defined(__linux__) || defined(__NetBSD__)
/*
* Add batt_info data to acc.
*/
static void add_battery_info(struct battery_info *acc, const struct battery_info *batt_info) {
if (acc->remaining < 0) {
/* initialize accumulator so we can add to it */
acc->full_design = 0;
acc->full_last = 0;
acc->remaining = 0;
acc->present_rate = 0;
}
acc->full_design += batt_info->full_design;
acc->full_last += batt_info->full_last;
acc->remaining += batt_info->remaining;
/* make present_rate negative for discharging and positive for charging */
int present_rate = (acc->status == CS_DISCHARGING ? -1 : 1) * acc->present_rate;
present_rate += (batt_info->status == CS_DISCHARGING ? -1 : 1) * batt_info->present_rate;
/* merge status */
switch (acc->status) {
case CS_UNKNOWN:
acc->status = batt_info->status;
break;
case CS_DISCHARGING:
if (present_rate > 0)
acc->status = CS_CHARGING;
/* else if batt_info is DISCHARGING: no conflict
* else if batt_info is CHARGING: present_rate should indicate that
* else if batt_info is FULL: but something else is discharging */
break;
case CS_CHARGING:
if (present_rate < 0)
acc->status = CS_DISCHARGING;
/* else if batt_info is DISCHARGING: present_rate should indicate that
* else if batt_info is CHARGING: no conflict
* else if batt_info is FULL: but something else is charging */
break;
case CS_FULL:
if (batt_info->status != CS_UNKNOWN)
acc->status = batt_info->status;
/* else: retain FULL, since it is more specific than UNKNOWN */
break;
}
acc->present_rate = abs(present_rate);
}
#endif
static bool slurp_battery_info(struct battery_info *batt_info, yajl_gen json_gen, char *buffer, int number, const char *path, const char *format_down) {
char *outwalk = buffer;
2019-01-23 07:56:40 +00:00
#if defined(__linux__)
char buf[1024];
const char *walk, *last;
bool watt_as_unit = false;
int voltage = -1;
char batpath[512];
sprintf(batpath, path, number);
INSTANCE(batpath);
if (!slurp(batpath, buf, sizeof(buf))) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
for (walk = buf, last = buf; (walk - buf) < 1024; walk++) {
if (*walk == '\n') {
last = walk + 1;
continue;
}
if (*walk != '=')
continue;
if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_NOW=")) {
watt_as_unit = true;
batt_info->remaining = atoi(walk + 1);
batt_info->percentage_remaining = -1;
} else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_NOW=")) {
watt_as_unit = false;
batt_info->remaining = atoi(walk + 1);
batt_info->percentage_remaining = -1;
} else if (BEGINS_WITH(last, "POWER_SUPPLY_CAPACITY=") && batt_info->remaining == -1) {
batt_info->percentage_remaining = atoi(walk + 1);
} else if (BEGINS_WITH(last, "POWER_SUPPLY_CURRENT_NOW="))
batt_info->present_rate = abs(atoi(walk + 1));
else if (BEGINS_WITH(last, "POWER_SUPPLY_VOLTAGE_NOW="))
voltage = abs(atoi(walk + 1));
else if (BEGINS_WITH(last, "POWER_SUPPLY_TIME_TO_EMPTY_NOW="))
batt_info->seconds_remaining = abs(atoi(walk + 1)) * 60;
/* on some systems POWER_SUPPLY_POWER_NOW does not exist, but actually
* it is the same as POWER_SUPPLY_CURRENT_NOW but with μWh as
* unit instead of μAh. We will calculate it as we need it
* later. */
else if (BEGINS_WITH(last, "POWER_SUPPLY_POWER_NOW="))
batt_info->present_rate = abs(atoi(walk + 1));
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Charging"))
batt_info->status = CS_CHARGING;
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Full"))
batt_info->status = CS_FULL;
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Discharging") || BEGINS_WITH(last, "POWER_SUPPLY_STATUS=Not charging"))
batt_info->status = CS_DISCHARGING;
2016-03-21 22:41:22 +00:00
else if (BEGINS_WITH(last, "POWER_SUPPLY_STATUS="))
batt_info->status = CS_UNKNOWN;
else if (BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL_DESIGN=") ||
BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL_DESIGN="))
batt_info->full_design = atoi(walk + 1);
else if (BEGINS_WITH(last, "POWER_SUPPLY_ENERGY_FULL=") ||
BEGINS_WITH(last, "POWER_SUPPLY_CHARGE_FULL="))
batt_info->full_last = atoi(walk + 1);
}
/* the difference between POWER_SUPPLY_ENERGY_NOW and
* POWER_SUPPLY_CHARGE_NOW is the unit of measurement. The energy is
* given in mWh, the charge in mAh. So calculate every value given in
* ampere to watt */
if (!watt_as_unit && voltage >= 0) {
if (batt_info->present_rate > 0) {
batt_info->present_rate = (((float)voltage / 1000.0) * ((float)batt_info->present_rate / 1000.0));
}
if (batt_info->remaining > 0) {
batt_info->remaining = (((float)voltage / 1000.0) * ((float)batt_info->remaining / 1000.0));
}
if (batt_info->full_design > 0) {
batt_info->full_design = (((float)voltage / 1000.0) * ((float)batt_info->full_design / 1000.0));
}
if (batt_info->full_last > 0) {
batt_info->full_last = (((float)voltage / 1000.0) * ((float)batt_info->full_last / 1000.0));
}
}
#elif defined(__DragonFly__)
union acpi_battery_ioctl_arg battio;
if (acpi_init()) {
battio.unit = number;
ioctl(acpifd, ACPIIO_BATT_GET_BIF, &battio);
batt_info->full_design = battio.bif.dcap;
batt_info->full_last = battio.bif.lfcap;
battio.unit = number;
ioctl(acpifd, ACPIIO_BATT_GET_BATTINFO, &battio);
batt_info->percentage_remaining = battio.battinfo.cap;
batt_info->present_rate = battio.battinfo.rate;
batt_info->seconds_remaining = battio.battinfo.min * 60;
switch (battio.battinfo.state) {
case 0:
batt_info->status = CS_FULL;
break;
case ACPI_BATT_STAT_CHARGING:
batt_info->status = CS_CHARGING;
break;
case ACPI_BATT_STAT_DISCHARG:
batt_info->status = CS_DISCHARGING;
break;
default:
batt_info->status = CS_UNKNOWN;
}
OUTPUT_FULL_TEXT(format_down);
}
#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
int state;
int sysctl_rslt;
size_t sysctl_size = sizeof(sysctl_rslt);
if (sysctlbyname(BATT_LIFE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
batt_info->percentage_remaining = sysctl_rslt;
if (sysctlbyname(BATT_TIME, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
batt_info->seconds_remaining = sysctl_rslt * 60;
if (sysctlbyname(BATT_STATE, &sysctl_rslt, &sysctl_size, NULL, 0) != 0) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
state = sysctl_rslt;
if (state == 0 && batt_info->percentage_remaining == 100)
batt_info->status = CS_FULL;
else if ((state & ACPI_BATT_STAT_CHARGING) && batt_info->percentage_remaining < 100)
batt_info->status = CS_CHARGING;
else
batt_info->status = CS_DISCHARGING;
#elif defined(__OpenBSD__)
/*
* We're using apm(4) here, which is the interface to acpi(4) on amd64/i386 and
* the generic interface on macppc/sparc64/zaurus. Machines that have ACPI
* battery sensors gain some extra information.
*/
struct apm_power_info apm_info;
struct sensordev sensordev;
struct sensor sensor;
size_t sdlen, slen;
int apm_fd;
int dev, mib[5] = {CTL_HW, HW_SENSORS, 0, 0, 0};
int volts = 0;
apm_fd = open("/dev/apm", O_RDONLY);
if (apm_fd < 0) {
OUTPUT_FULL_TEXT("can't open /dev/apm");
return false;
}
if (ioctl(apm_fd, APM_IOC_GETPOWER, &apm_info) < 0)
OUTPUT_FULL_TEXT("can't read power info");
close(apm_fd);
/* Don't bother to go further if there's no battery present. */
if ((apm_info.battery_state == APM_BATTERY_ABSENT) ||
(apm_info.battery_state == APM_BATT_UNKNOWN)) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
switch (apm_info.ac_state) {
case APM_AC_OFF:
batt_info->status = CS_DISCHARGING;
break;
case APM_AC_ON:
batt_info->status = CS_CHARGING;
break;
default:
/* If we don't know what's going on, just assume we're discharging. */
batt_info->status = CS_DISCHARGING;
break;
}
batt_info->percentage_remaining = apm_info.battery_life;
/* Can't give a meaningful value for remaining minutes if we're charging. */
if (batt_info->status != CS_CHARGING) {
batt_info->seconds_remaining = apm_info.minutes_left * 60;
}
/* If acpibat* are present, check sensors for data not present via APM. */
batt_info->present_rate = 0;
sdlen = sizeof(sensordev);
slen = sizeof(sensor);
for (dev = 0;; dev++) {
mib[2] = dev;
if (sysctl(mib, 3, &sensordev, &sdlen, NULL, 0) == -1) {
break;
}
/* 'path' is the node within the full path */
if (BEGINS_WITH(sensordev.xname, "acpibat")) {
/* power0 */
mib[3] = SENSOR_WATTS;
mib[4] = 0;
if (sysctl(mib, 5, &sensor, &slen, NULL, 0) == -1) {
/* try current0 */
mib[3] = SENSOR_AMPS;
if (sysctl(mib, 5, &sensor, &slen, NULL, 0) == -1)
continue;
volts = sensor.value;
/* we also need current voltage to convert amps to watts */
mib[3] = SENSOR_VOLTS_DC;
mib[4] = 1;
if (sysctl(mib, 5, &sensor, &slen, NULL, 0) == -1)
continue;
batt_info->present_rate += (((float)volts / 1000.0) * ((float)sensor.value / 1000.0));
} else {
batt_info->present_rate += sensor.value;
}
}
}
#elif defined(__NetBSD__)
/*
* Using envsys(4) via sysmon(4).
*/
int fd, rval;
bool is_found = false;
char sensor_desc[16];
prop_dictionary_t dict;
prop_array_t array;
prop_object_iterator_t iter;
prop_object_iterator_t iter2;
prop_object_t obj, obj2, obj3, obj4, obj5;
if (number >= 0)
(void)snprintf(sensor_desc, sizeof(sensor_desc), "acpibat%d", number);
fd = open("/dev/sysmon", O_RDONLY);
if (fd < 0) {
OUTPUT_FULL_TEXT("can't open /dev/sysmon");
return false;
}
rval = prop_dictionary_recv_ioctl(fd, ENVSYS_GETDICTIONARY, &dict);
if (rval == -1) {
close(fd);
return false;
}
if (prop_dictionary_count(dict) == 0) {
prop_object_release(dict);
close(fd);
return false;
}
iter = prop_dictionary_iterator(dict);
if (iter == NULL) {
prop_object_release(dict);
close(fd);
}
/* iterate over the dictionary returned by the kernel */
while ((obj = prop_object_iterator_next(iter)) != NULL) {
/* skip this dict if it's not what we're looking for */
if (number < 0) {
/* we want all batteries */
if (!BEGINS_WITH(prop_dictionary_keysym_cstring_nocopy(obj),
"acpibat"))
continue;
} else {
/* we want a specific battery */
if (strcmp(sensor_desc,
prop_dictionary_keysym_cstring_nocopy(obj)) != 0)
continue;
}
is_found = true;
array = prop_dictionary_get_keysym(dict, obj);
if (prop_object_type(array) != PROP_TYPE_ARRAY) {
prop_object_iterator_release(iter);
prop_object_release(dict);
close(fd);
return false;
}
iter2 = prop_array_iterator(array);
if (!iter2) {
prop_object_iterator_release(iter);
prop_object_release(dict);
close(fd);
return false;
}
struct battery_info batt_buf = {
.full_design = 0,
.full_last = 0,
.remaining = 0,
.present_rate = 0,
.status = CS_UNKNOWN,
};
int voltage = -1;
bool watt_as_unit = false;
/* iterate over array of dicts specific to target battery */
while ((obj2 = prop_object_iterator_next(iter2)) != NULL) {
obj3 = prop_dictionary_get(obj2, "description");
if (obj3 == NULL)
continue;
if (strcmp("charging", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
if (prop_number_integer_value(obj3))
batt_buf.status = CS_CHARGING;
else
batt_buf.status = CS_DISCHARGING;
} else if (strcmp("charge", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
obj4 = prop_dictionary_get(obj2, "max-value");
obj5 = prop_dictionary_get(obj2, "type");
batt_buf.remaining = prop_number_integer_value(obj3);
batt_buf.full_design = prop_number_integer_value(obj4);
if (strcmp("Ampere hour", prop_string_cstring_nocopy(obj5)) == 0)
watt_as_unit = false;
else
watt_as_unit = true;
} else if (strcmp("discharge rate", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
batt_buf.present_rate = prop_number_integer_value(obj3);
} else if (strcmp("charge rate", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
batt_info->present_rate = prop_number_integer_value(obj3);
} else if (strcmp("last full cap", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
batt_buf.full_last = prop_number_integer_value(obj3);
} else if (strcmp("voltage", prop_string_cstring_nocopy(obj3)) == 0) {
obj3 = prop_dictionary_get(obj2, "cur-value");
voltage = prop_number_integer_value(obj3);
}
}
prop_object_iterator_release(iter2);
if (!watt_as_unit && voltage != -1) {
batt_buf.present_rate = (((float)voltage / 1000.0) * ((float)batt_buf.present_rate / 1000.0));
batt_buf.remaining = (((float)voltage / 1000.0) * ((float)batt_buf.remaining / 1000.0));
batt_buf.full_design = (((float)voltage / 1000.0) * ((float)batt_buf.full_design / 1000.0));
batt_buf.full_last = (((float)voltage / 1000.0) * ((float)batt_buf.full_last / 1000.0));
}
if (batt_buf.remaining == batt_buf.full_design)
batt_buf.status = CS_FULL;
add_battery_info(batt_info, &batt_buf);
}
prop_object_iterator_release(iter);
prop_object_release(dict);
close(fd);
if (!is_found) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
batt_info->present_rate = abs(batt_info->present_rate);
#endif
return true;
}
/*
* Populate batt_info with aggregate information about all batteries.
* Returns false on error, and an error message will have been written.
*/
static bool slurp_all_batteries(struct battery_info *batt_info, yajl_gen json_gen, char *buffer, const char *path, const char *format_down) {
2019-01-23 07:56:40 +00:00
#if defined(__linux__)
char *outwalk = buffer;
bool is_found = false;
2016-10-23 19:20:31 +00:00
char *placeholder;
char *globpath = sstrdup(path);
if ((placeholder = strstr(path, "%d")) != NULL) {
char *globplaceholder = globpath + (placeholder - path);
*globplaceholder = '*';
strcpy(globplaceholder + 1, placeholder + 2);
}
2016-10-23 19:20:31 +00:00
if (!strcmp(globpath, path)) {
OUTPUT_FULL_TEXT("no '%d' in battery path");
return false;
}
2016-10-23 19:20:31 +00:00
glob_t globbuf;
if (glob(globpath, 0, NULL, &globbuf) == 0) {
for (size_t i = 0; i < globbuf.gl_pathc; i++) {
/* Probe to see if there is such a battery. */
struct battery_info batt_buf = {
.full_design = 0,
.full_last = 0,
.remaining = 0,
.present_rate = 0,
.status = CS_UNKNOWN,
};
if (!slurp_battery_info(&batt_buf, json_gen, buffer, i, globbuf.gl_pathv[i], format_down)) {
globfree(&globbuf);
free(globpath);
2016-10-23 19:20:31 +00:00
return false;
}
2016-10-23 19:20:31 +00:00
is_found = true;
add_battery_info(batt_info, &batt_buf);
}
globfree(&globbuf);
}
2016-10-23 19:20:31 +00:00
free(globpath);
if (!is_found) {
OUTPUT_FULL_TEXT(format_down);
return false;
}
batt_info->present_rate = abs(batt_info->present_rate);
#else
/* FreeBSD and OpenBSD only report aggregates. NetBSD always
* iterates through all batteries, so it's more efficient to
* aggregate in slurp_battery_info. */
return slurp_battery_info(batt_info, json_gen, buffer, -1, path, format_down);
#endif
return true;
}
void print_battery_info(yajl_gen json_gen, char *buffer, int number, const char *path, const char *format, const char *format_down, const char *status_chr, const char *status_bat, const char *status_unk, const char *status_full, int low_threshold, char *threshold_type, bool last_full_capacity, const char *format_percentage, bool hide_seconds) {
char *outwalk = buffer;
struct battery_info batt_info = {
.full_design = -1,
.full_last = -1,
.remaining = -1,
.present_rate = -1,
.seconds_remaining = -1,
.percentage_remaining = -1,
.status = CS_UNKNOWN,
};
bool colorful_output = false;
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__OpenBSD__)
/* These OSes report battery stats in whole percent. */
if (strcmp("%.02f%s", format_percentage) == 0) {
format_percentage = "%.00f%s";
}
#endif
#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__OpenBSD__)
/* These OSes report battery time in minutes. */
hide_seconds = true;
#endif
if (number < 0) {
if (!slurp_all_batteries(&batt_info, json_gen, buffer, path, format_down))
return;
} else {
if (!slurp_battery_info(&batt_info, json_gen, buffer, number, path, format_down))
return;
}
// *Choose* a measure of the 'full' battery. It is whichever is better of
// the battery's (hardware-given) design capacity (batt_info.full_design)
// and the battery's last known good charge (batt_info.full_last).
// We prefer the design capacity, but use the last capacity if we don't have it,
// or if we are asked to (last_full_capacity == true); but similarly we use
// the design capacity if we don't have the last capacity.
// If we don't have either then both full_design and full_last <= 0,
// which implies full <= 0, which bails out on the following line.
int full = batt_info.full_design;
if (full <= 0 || (last_full_capacity && batt_info.full_last > 0)) {
full = batt_info.full_last;
}
if (full <= 0 && batt_info.remaining < 0 && batt_info.percentage_remaining < 0) {
/* We have no physical measurements and no estimates. Nothing
* much we can report, then. */
OUTPUT_FULL_TEXT(format_down);
return;
}
if (batt_info.percentage_remaining < 0) {
batt_info.percentage_remaining = (((float)batt_info.remaining / (float)full) * 100);
/* Some batteries report POWER_SUPPLY_CHARGE_NOW=<full_design> when fully
* charged, even though thats plainly wrong. For people who chose to see
* the percentage calculated based on the last full capacity, we clamp the
* value to 100%, as that makes more sense.
* See http://bugs.debian.org/785398 */
if (last_full_capacity && batt_info.percentage_remaining > 100) {
batt_info.percentage_remaining = 100;
}
}
if (batt_info.seconds_remaining < 0 && batt_info.present_rate > 0 && batt_info.status != CS_FULL) {
if (batt_info.status == CS_CHARGING)
batt_info.seconds_remaining = 3600.0 * (full - batt_info.remaining) / batt_info.present_rate;
else if (batt_info.status == CS_DISCHARGING)
batt_info.seconds_remaining = 3600.0 * batt_info.remaining / batt_info.present_rate;
else
batt_info.seconds_remaining = 0;
}
if (batt_info.status == CS_DISCHARGING && low_threshold > 0) {
if (batt_info.percentage_remaining >= 0 && strcasecmp(threshold_type, "percentage") == 0 && batt_info.percentage_remaining < low_threshold) {
START_COLOR("color_bad");
colorful_output = true;
} else if (batt_info.seconds_remaining >= 0 && strcasecmp(threshold_type, "time") == 0 && batt_info.seconds_remaining < 60 * low_threshold) {
START_COLOR("color_bad");
colorful_output = true;
}
}
2020-02-10 17:52:04 +00:00
char string_status[STRING_SIZE];
char string_percentage[STRING_SIZE];
// following variables are not alwasy set. If they are not set they should be empty.
char string_remaining[STRING_SIZE] = "";
char string_emptytime[STRING_SIZE] = "";
char string_consumption[STRING_SIZE] = "";
2020-02-10 17:52:04 +00:00
const char *statusstr;
switch (batt_info.status) {
case CS_CHARGING:
statusstr = status_chr;
break;
case CS_DISCHARGING:
statusstr = status_bat;
break;
case CS_FULL:
statusstr = status_full;
break;
default:
statusstr = status_unk;
}
snprintf(string_status, STRING_SIZE, "%s", statusstr);
snprintf(string_percentage, STRING_SIZE, format_percentage, batt_info.percentage_remaining, pct_mark);
if (batt_info.seconds_remaining >= 0) {
int seconds, hours, minutes;
hours = batt_info.seconds_remaining / 3600;
seconds = batt_info.seconds_remaining - (hours * 3600);
minutes = seconds / 60;
seconds -= (minutes * 60);
if (hide_seconds)
snprintf(string_remaining, STRING_SIZE, "%02d:%02d", max(hours, 0), max(minutes, 0));
else
snprintf(string_remaining, STRING_SIZE, "%02d:%02d:%02d", max(hours, 0), max(minutes, 0), max(seconds, 0));
}
2020-02-10 17:52:04 +00:00
if (batt_info.seconds_remaining >= 0) {
time_t empty_time = time(NULL) + batt_info.seconds_remaining;
set_timezone(NULL); /* Use local time. */
struct tm *empty_tm = localtime(&empty_time);
if (hide_seconds)
snprintf(string_emptytime, STRING_SIZE, "%02d:%02d", max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0));
else
snprintf(string_emptytime, STRING_SIZE, "%02d:%02d:%02d", max(empty_tm->tm_hour, 0), max(empty_tm->tm_min, 0), max(empty_tm->tm_sec, 0));
}
2020-02-10 17:52:04 +00:00
if (batt_info.present_rate >= 0)
snprintf(string_consumption, STRING_SIZE, "%1.2fW", batt_info.present_rate / 1e6);
2020-02-10 17:52:04 +00:00
placeholder_t placeholders[] = {
{.name = "%status", .value = string_status},
{.name = "%percentage", .value = string_percentage},
{.name = "%remaining", .value = string_remaining},
{.name = "%emptytime", .value = string_emptytime},
{.name = "%consumption", .value = string_consumption}};
2020-02-10 17:52:04 +00:00
const size_t num = sizeof(placeholders) / sizeof(placeholder_t);
char *untrimmed = format_placeholders(format, &placeholders[0], num);
buffer = trim(untrimmed);
free(untrimmed);
if (colorful_output)
END_COLOR;
OUTPUT_FULL_TEXT(buffer);
2020-02-10 17:52:04 +00:00
free(buffer);
}