mu/subx/011add.cc

171 lines
5.0 KiB
C++
Raw Normal View History

2017-10-13 04:50:38 +00:00
//:: register indirect addressing
2017-10-13 04:39:29 +00:00
2017-10-13 04:50:38 +00:00
:(scenario add_r32_to_mem_at_r32)
% Reg[3].i = 0x10;
% Reg[0].i = 0x60;
# word in addresses 0x60-0x63 has value 1
2017-10-13 05:17:28 +00:00
% Mem.at(0x60) = 1;
# op ModR/M SIB displacement immediate
2017-10-13 00:57:59 +00:00
01 18 # add EBX (reg 3) to *EAX (reg 0)
+run: add reg 3 to effective address
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000011
:(before "End Single-Byte Opcodes")
case 0x01: { // add r32 to r/m32
uint8_t modrm = next();
uint8_t arg2 = (modrm>>3)&0x7;
2017-10-13 04:20:31 +00:00
trace(2, "run") << "add reg " << NUM(arg2) << " to effective address" << end();
int32_t* arg1 = effective_address(modrm);
BINARY_ARITHMETIC_OP(+, *arg1, Reg[arg2].i);
break;
}
:(code)
// Implement tables 2-2 and 2-3 in the Intel manual, Volume 2.
// We return a pointer so that instructions can write to multiple bytes in
// 'Mem' at once.
int32_t* effective_address(uint8_t modrm) {
uint8_t mod = (modrm>>6);
2017-10-13 00:57:59 +00:00
// ignore middle 3 'reg opcode' bits
uint8_t rm = modrm & 0x7;
int32_t* result = 0;
switch (mod) {
case 0:
// mod 0 is usually indirect addressing
switch (rm) {
default:
2017-10-13 04:35:02 +00:00
trace(2, "run") << "effective address is mem at address 0x" << std::hex << Reg[rm].u << " (reg " << NUM(rm) << ")" << end();
assert(Reg[rm].u + sizeof(int32_t) <= Mem.size());
result = reinterpret_cast<int32_t*>(&Mem.at(Reg[rm].u)); // rely on the host itself being in little-endian order
break;
2017-10-13 04:35:02 +00:00
// End Mod 0 Special-cases
}
break;
2017-10-13 04:35:02 +00:00
// End Mod Special-cases
default:
2017-10-13 04:20:31 +00:00
cerr << "unrecognized mod bits: " << NUM(mod) << '\n';
exit(1);
}
return result;
}
2017-10-13 04:50:38 +00:00
//:: register direct addressing
2017-10-13 04:39:29 +00:00
2017-10-13 04:50:38 +00:00
:(scenario add_imm32_to_r32)
% Reg[3].i = 1;
# op ModRM SIB displacement immediate
81 c3 0a 0b 0c 0d # add 0x0d0c0b0a to EBX (reg 3)
2017-10-13 05:36:38 +00:00
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is reg 3
2017-10-13 05:36:38 +00:00
+run: subop add
+run: storing 0x0d0c0b0b
:(before "End Single-Byte Opcodes")
case 0x81: { // combine imm32 with r/m32
uint8_t modrm = next();
int32_t arg2 = imm32();
2017-10-13 05:36:38 +00:00
trace(2, "run") << "combine imm32 0x" << HEXWORD << arg2 << " with effective address" << end();
int32_t* arg1 = effective_address(modrm);
uint8_t subop = (modrm>>3)&0x7; // middle 3 'reg opcode' bits
switch (subop) {
case 0:
2017-10-13 05:36:38 +00:00
trace(2, "run") << "subop add" << end();
BINARY_ARITHMETIC_OP(+, *arg1, arg2);
break;
// End Op 81 Subops
default:
cerr << "unrecognized sub-opcode after 81: " << NUM(subop) << '\n';
exit(1);
}
break;
}
:(before "End Mod Special-cases")
case 3:
// mod 3 is just register direct addressing
trace(2, "run") << "effective address is reg " << NUM(rm) << end();
result = &Reg[rm].i;
break;
2017-10-13 04:50:38 +00:00
//:: lots more tests
:(scenario add_imm32_to_mem_at_r32)
% Reg[3].i = 0x60;
2017-10-13 05:17:28 +00:00
% Mem.at(0x60) = 1;
2017-10-13 04:50:38 +00:00
# op ModR/M SIB displacement immediate
81 03 0a 0b 0c 0d # add 0x0d0c0b0a to *EBX (reg 3)
2017-10-13 05:36:38 +00:00
+run: combine imm32 0x0d0c0b0a with effective address
2017-10-13 04:50:38 +00:00
+run: effective address is mem at address 0x60 (reg 3)
2017-10-13 05:36:38 +00:00
+run: subop add
2017-10-13 04:50:38 +00:00
+run: storing 0x0d0c0b0b
2017-10-13 05:17:28 +00:00
//:
:(scenario add_mem_at_r32_to_r32)
% Reg[0].i = 0x60;
% Reg[3].i = 0x10;
% Mem.at(0x60) = 1;
# op ModR/M SIB displacement immediate
03 18 # add *EAX (reg 0) to EBX (reg 3)
+run: add effective address to reg 3
+run: effective address is mem at address 0x60 (reg 0)
+run: storing 0x00000011
:(before "End Single-Byte Opcodes")
case 0x03: { // add r/m32 to r32
uint8_t modrm = next();
uint8_t arg1 = (modrm>>3)&0x7;
trace(2, "run") << "add effective address to reg " << NUM(arg1) << end();
const int32_t* arg2 = effective_address(modrm);
BINARY_ARITHMETIC_OP(+, Reg[arg1].i, *arg2);
break;
}
//:
:(scenario sub_imm32_from_eax)
% Reg[EAX].i = 0x0d0c0baa;
# op ModR/M SIB displacement immediate
2d 0a 0b 0c 0d # subtract 0x0d0c0b0a from EAX (reg 0)
+run: subtract imm32 0x0d0c0b0a from reg EAX
+run: storing 0x000000a0
:(before "End Single-Byte Opcodes")
case 0x2d: { // subtract imm32 from EAX
int32_t arg2 = imm32();
trace(2, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from reg EAX" << end();
BINARY_ARITHMETIC_OP(-, Reg[EAX].i, arg2);
break;
}
2017-10-13 05:36:38 +00:00
//:
:(scenario sub_imm32_from_r32)
% Reg[3].i = 10;
# op ModRM SIB displacement immediate
81 eb 01 00 00 00 # subtract 1 from EBX (reg 3)
+run: combine imm32 0x00000001 with effective address
+run: effective address is reg 3
+run: subop subtract
+run: storing 0x00000009
:(before "End Op 81 Subops")
case 5: {
trace(2, "run") << "subop subtract" << end();
BINARY_ARITHMETIC_OP(-, *arg1, arg2);
break;
}
2017-10-13 05:40:48 +00:00
//:
:(scenario sub_imm32_from_mem_at_r32)
% Reg[3].i = 0x60;
% Mem.at(0x60) = 10;
# op ModRM SIB displacement immediate
81 2b 01 00 00 00 # subtract 1 from *EBX (reg 3)
+run: combine imm32 0x00000001 with effective address
+run: effective address is mem at address 0x60 (reg 3)
+run: subop subtract
+run: storing 0x00000009